Review
BibTex RIS Cite

ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS

Year 2018, Volume: 4 Issue: 1, 63 - 79, 01.01.2018
https://doi.org/10.3153/JFHS18007

Abstract

Active packaging technology is one of the innovative
methods for preserving of food products, and antimicrobial packaging films is a
major branch and promising application of this technology. In order to control
microbial spoilage and also contamination of pathogen onto processed or fresh food,
antimicrobial agent(s) is/are incorporated into food packaging structure.
Polymer type as a carrier of antimicrobial can be petroleum-based plastic or
biopolymer: because of environmental concerns researchers have lean to
development of biodegradable antimicrobial films. Antimicrobial substances can
be organic acids, parabens, sulfites, nitrites, phosphates, alcohols,
antibiotics and bacteriocins.  Succeed of
antimicrobial film mainly depends on antimicrobial agent selection that
antimicrobial should be chosen according to the food type packed, and
deteriorative microbial flora of it. This review discussed the recent
application of antimicrobial-active films for food protection. Also, their
activity mechanisms against microorganisms, the effects of antimicrobials on
food quality and of the film properties were presented.  

References

  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. Lwt-Food Science and Technology, 43(6), 837-842.
  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126.
  • Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Cummins, E., & Kerry, J. P. (2015). Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 4, 26-35.
  • Barzegar, H., Azizi, M. H., Barzegar, M., & Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films. Carbohydrate Polymers, 110, 26-31.
  • Bastarrachea, L., Dhawan, S., & Sablani, S. S. (2011). Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Engineering Reviews, 3(2), 79-93.
  • Bastarrachea, L., Dhawan, S., Sablani, S. S., & Powers, J. (2010). Release kinetics of nisin from biodegradable poly(butylene adipate-co-terephthalate) films into water. Journal of Food Engineering, 100(1), 93-101.
  • Bhatia, S., & Bharti, A. (2015). Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film. Journal of Food Science and Technology-Mysore, 52(6), 3504-3512.
  • Bierhalz, A. C. K., da Silva, M. A., de Sousa, H. C., Braga, M. E. M., & Kieckbusch, T. G. (2013). Influence of natamycin loading methods on the physical characteristics of alginate active films. The Journal of Supercritical Fluids, 76, 74-82.
  • Bierhalz, A. C. K., da Silva, M. A., & Kieckbusch, T. G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 110(1), 18-25.
  • Branen, A. L., Davidson, P. M., Salminen, S., & Thorngate, J. (2001). Food additives: CRC Press.
  • Brennan, J. G., & Grandison, A. S. (2012). Food processing handbook: John Wiley & Sons.
  • Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626.
  • Campos-Requena, V. H., Rivas, B. L., Perez, M. A., Garrido-Miranda, K. A., & Pereira, E. D. (2015). Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release. European Polymer Journal, 71, 461-475.
  • Clarke, D., Molinaro, S., Tyuftin, A., Bolton, D., Fanning, S., & Kerry, J. P. (2016). Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment of their antimicrobial activity and impact on physical film properties. Food Control, 64, 202-211.
  • Cruz-Romero, M. C., Murphy, T., Morris, M., Cummins, E., & Kerry, J. P. (2013). Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 34(2), 393-397.
  • de Moura, M. R., Mattoso, L. H. C., & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 109(3), 520-524.
  • Dobias, J., Chudackova, K., Voldrich, M., & Marek, M. (2000). Properties of polyethylene films with incorporated benzoic anhydride and/or ethyl and propyl esters of 4-hydroxybenzoic acid and their suitability for food packaging. Food Additives and Contaminants, 17(12), 1047-1053.
  • Dotto, G. L., Buriol, C., & Pinto, L. A. A. (2014). Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chemical Engineering Research and Design, 92(11),2324-2332.
  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24.
  • Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Buyukcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging 'containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating' to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354-363.
  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182.
  • Echegoyen, Y., & Nerin, C. (2013). Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology, 62, 16-22.
  • El-Saharty, Y. S., & Bary, A. A. (2002). High-performance liquid chromatographic determination of neutraceuticals, glucosamine sulphate and chitosan, in raw materials and dosage forms. Analytica Chimica Acta, 462(1), 125-131.
  • Fucinos, C., Miguez, M., Cerqueira, M. A., Costa, M. J., Vicente, A. A., Rua, M. L., & Pastrana, L. M. (2015). Functional Characterisation and Antimicrobial Efficiency Assessment of Smart Nanohydrogels Containing Natamycin Incorporated into Polysaccharide-Based Films. Food and Bioprocess Technology, 8(7), 1430-1441.
  • Guo, M., Jin, T. Z., Wang, L., Scullen, O. J., & Sommers, C. H. (2014). Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat. Food Control, 40, 64-70.
  • Hauser, C., & Wunderlich, J. (2011). Antimicrobial packaging films with a sorbic acid based coating. Procedia Food Science, 1, 197-202.
  • Imran, M., Klouj, A., Revol-Junelles, A.-M., & Desobry, S. (2014). Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. Journal of Food Engineering, 143, 178-185.
  • Kaba, N., & Duyar, H. A. (2008). Antimikrobiyal Paketleme. Ege Üniversitesi Su Ürünleri Dergisi, 25(2), 181-185. Kapetanakou, A. E., Agathaggelou, E. I., & Skandamis, P. N. (2014). Storage of pork meat under modified atmospheres containing vapors from commercial alcoholic beverages. International Journal of Food Microbiology, 178, 65-75.
  • Kashiri, M., Cerisuelo, J. P., Dominguez, I., Lopez-Carballo, G., Hernandez-Munoz, P., & Gavara, R. (2016). Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE). Food Hydrocolloids, 61, 547-554.
  • Klangmuang, P., & Sothornvit, R. (2016). Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloids, 61, 609-616.
  • Kumar, R., & Munstedt, H. (2005). Silver ion release from antimicrobial polyamide/silver composites. Biomaterials, 26(14), 2081-2088.
  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2013). Migration of antimicrobial agents from starch-based films into a food simulant. LWT - Food Science and Technology, 50(2), 432-438.
  • Kuplennik, N., Tchoudakov, R., Zelas, Z. B. B., Sadovski, A., Fishman, A., & Narkis, M. (2015). Antimicrobial packaging based on linear low-density polyethylene compounded with potassium sorbate. Lwt-Food Science and Technology, 62(1), 278-286.
  • Kurek, M., Laridon, Y., Torrieri, E., Guillard, V., Pant, A., Stramm, C., . . . Guillaume, C. (2017). A mathematical model for tailoring antimicrobial packaging material containing encapsulated volatile compounds. Innovative Food Science & Emerging Technologies, 42, 64-72.
  • Lantano, C., Alfieri, I., Cavazza, A., Corradini, C., Lorenzi, A., Zucchetto, N., & Montenero, A. (2014). Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging. Food Chemistry, 165, 342-347.
  • Li, W., Zhang, C., Chi, H., Li, L., Lan, T., Han, P., . . . Qin, Y. (2017). Development of Antimicrobial Packaging Film Made from Poly (Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles. Molecules, 22(7).
  • Liu, W., & Hansen, J. N. (1990). Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Applied and Environmental Microbiology, 56(8), 2551-2558.
  • Lorevice, M. V., Otoni, C. G., de Moura, M. R., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732-740.
  • Matsumura, Y., Yoshikata, K., Kunisaki, S. i., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281.
  • Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41(6), 464-469.
  • Mulla, M., Ahmed, J., Al-Attar, H., Castro-Aguirre, E., Arfat, Y. A., & Auras, R. (2017). Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control, 73, 663-671.
  • O' Callaghan, K. A. M., & Kerry, J. P. (2014). Assessment of the antimicrobial activity of potentially active substances (nanoparticled and non-nanoparticled) against cheese-derived microorganisms. International Journal of Dairy Technology, 67(4), 483-489.
  • Olasupo, N. A., Fitzgerald, D. J., Gasson, M. J., & Narbad, A. (2003). Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 37(6), 448-451.
  • Ouattara, B., Simard, R. E., Piette, G., Bégin, A., & Holley, R. A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62(1), 139-148.
  • Ozdemir, M., & Floros, J. D. (2001). Analysis and modeling of potassium sorbate diffusion through edible whey protein films. Journal of Food Engineering, 47(2), 149-155.
  • Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185-193.
  • Panea, B., Ripoll, G., González, J., Fernández-Cuello, Á., & Albertí, P. (2014). Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering, 123, 104-112.
  • Patiño, J. H., Henríquez, L. E., Restrepo, D., Mendoza, M. P., Lantero, M. I., & García, M. A. (2014). Evaluation of polyamide composite casings with silver–zinc crystals for sausages packaging. Food Packaging and Shelf Life, 1(1), 3-9.
  • Pekcan, G., Köksal, E., Küçükerdönmez, O., & Ozel, H. (2006). Household food wastage in Turkey. Rome, Italy: FAO.
  • Perez, L. M., Soazo, M. D., Balague, C. E., Rubiolo, A. C., & Verdini, R. A. (2014). Effect of pH on the effectiveness of whey protein/glycerol edible. films containing potassium sorbate to control non-O157 shiga toxin-producing Escherichia coli in ready-to-eat foods. Food Control, 37, 298-304.
  • Pires, A. C. D., Soares, N. D. F., de Andrade, N. J., do Silva, L. H. M., Camilloto, G. P., & Bernardes, P. C. (2008). Development and Evaluation of Active Packaging for Sliced Mozzarella Preservation. Packaging Technology and Science, 21(7), 375-383.
  • Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652.
  • Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327-335.
  • Ripoche, A. C., Chollet, E., Peyrol, E., & Sebti, I. (2006). Evaluation of nisin diffusion in a polysaccharide gel: Influence of agarose and fatty content. Innovative Food Science & Emerging Technologies, 7(1-2), 107-111.
  • Rodriguez-Martinez, A. V., Sendon, R., Abad, M. J., Gonzalez-Rodriguez, M. V., Barros-Velazquez, J., Aubourg, S. P., . . . de Quiros, A. R. B. (2016). Migration kinetics of sorbic acid from polylactic acid and seaweed based films into food simulants. LWT-Food Science and Technology, 65, 630-636.
  • Sanchez-Valdes, S., Ortega-Ortiz, H., Valle, L. F. R. D., Medellin-Rodriguez, F. J., & Guedea-Miranda, R. (2009). Mechanical and Antimicrobial Properties of Multilayer Films with a Polyethylene/Silver Nanocomposite Layer. Journal of Applied Polymer Science, 111(2), 953-962.
  • Sebti, I., Carnet, A. R., Blanc, D., Saurel, R., & Coma, V. (2003). Controlled Diffusion of an Antimicrobial Peptide from a Biopolymer Film. Chemical Engineering Research and Design, 81(9), 1099-1104.
  • Shemesh, R., Krepker, M., Goldman, D., Danin-Poleg, Y., Kashi, Y., Nitzan, N., . . . Segal, E. (2015). Antibacterial and antifungal LDPE films for active packaging. Polymers for Advanced Technologies, 26(1), 110-116.
  • Silveira, M. F. A., Soares, N. F. F., Geraldine, R. M., Andrade, N. J., & Goncalves, M. P. J. (2007). Antimicrobial efficiency and sorbic acid migration from active films into pastry dough. Packaging Technology and Science, 20(4), 287-292.
  • Siripatrawan, U., & Noipha, S. (2012). Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocolloids, 27(1), 102-108.
  • Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids, 61, 695-702.
  • Sohaib, M., Anjum, F. M., Arshad, M. S., & Rahman, U. U. (2016). Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. Journal of Food Science and Technology-Mysore, 53(1), 19-30.
  • Song, H., Li, B., Lin, Q. B., Wu, H. J., & Chen, Y. (2011). Migration of silver from nanosilver-polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A, 28(12), 1758-1762.
  • Soysal, C., Bozkurt, H., Dirican, E., Guclu, M., Bozhuyuk, E. D., Uslu, A. E., & Kaya, S. (2015). Effect of antimicrobial packaging on physicochemical and microbial quality of chicken drumsticks. Food Control, 54, 294-299.
  • Sung, S.-Y., Sin, L. T., Tee, T.-T., Bee, S.-T., Rahmat, A., Rahman, W., Tan, A. C., & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123.
  • Takala, P. N., Vu, K. D., Salmieri, S., Khan, R. A., & Lacroix, M. (2013). Antibacterial effect of biodegradable active packaging on the growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in fresh broccoli stored at 4 degrees C. LWT-Food Science and Technology, 53(2), 499-506.
  • Teerakarn, A., Hirt, D. E., Acton, J. C., Rieck, J. R., & Dawson, P. L. (2002). Nisin diffusion in protein films: Effects of film type and temperature. Journal of Food Science, 67(8), 3019-3025.
  • von Goetz, N., Fabricius, L., Glaus, R., Weitbrecht, V., Gunther, D., & Hungerbuhler, K. (2013). Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Additives & Contaminants: Part A, 30(3), 612-620. Wang, H. L., Hao, L. L., Wang, P., Chen, M. M., Jiang, S. W., & Jiang, S. T. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids, 63, 437-446.
  • Wang, H. L., Zhang, R., Zhang, H., Jiang, S. W., Liu, H., Sun, M., & Jiang, S. T. (2015). Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol). Carbohydrate Polymers, 127, 64-71.
  • Yoshida, C. M. P., Bastos, C. E. N., & Franco, T. T. (2010). Modeling of potassium sorbate diffusion through chitosan films. LWT - Food Science and Technology, 43(4), 584-589.
  • Zendo, T., Nakayama, J., Fujita, K., & Sonomoto, K. (2008). Bacteriocin detection by liquid chromatography/mass spectrometry for rapid identification. Journal of Applied Microbiology, 104(2), 499-507.
  • Zhou, F., Ji, B. P., Zhang, H., Jiang, H., Yang, Z. W., Li, J. J., Li, J. H., Ren, Y. L., &Yan, W. J. (2007). Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella typhimurium. Journal of Food Protection, 70(7), 1704-1709.
Year 2018, Volume: 4 Issue: 1, 63 - 79, 01.01.2018
https://doi.org/10.3153/JFHS18007

Abstract

References

  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. Lwt-Food Science and Technology, 43(6), 837-842.
  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126.
  • Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Cummins, E., & Kerry, J. P. (2015). Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 4, 26-35.
  • Barzegar, H., Azizi, M. H., Barzegar, M., & Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films. Carbohydrate Polymers, 110, 26-31.
  • Bastarrachea, L., Dhawan, S., & Sablani, S. S. (2011). Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Engineering Reviews, 3(2), 79-93.
  • Bastarrachea, L., Dhawan, S., Sablani, S. S., & Powers, J. (2010). Release kinetics of nisin from biodegradable poly(butylene adipate-co-terephthalate) films into water. Journal of Food Engineering, 100(1), 93-101.
  • Bhatia, S., & Bharti, A. (2015). Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film. Journal of Food Science and Technology-Mysore, 52(6), 3504-3512.
  • Bierhalz, A. C. K., da Silva, M. A., de Sousa, H. C., Braga, M. E. M., & Kieckbusch, T. G. (2013). Influence of natamycin loading methods on the physical characteristics of alginate active films. The Journal of Supercritical Fluids, 76, 74-82.
  • Bierhalz, A. C. K., da Silva, M. A., & Kieckbusch, T. G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 110(1), 18-25.
  • Branen, A. L., Davidson, P. M., Salminen, S., & Thorngate, J. (2001). Food additives: CRC Press.
  • Brennan, J. G., & Grandison, A. S. (2012). Food processing handbook: John Wiley & Sons.
  • Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626.
  • Campos-Requena, V. H., Rivas, B. L., Perez, M. A., Garrido-Miranda, K. A., & Pereira, E. D. (2015). Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release. European Polymer Journal, 71, 461-475.
  • Clarke, D., Molinaro, S., Tyuftin, A., Bolton, D., Fanning, S., & Kerry, J. P. (2016). Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment of their antimicrobial activity and impact on physical film properties. Food Control, 64, 202-211.
  • Cruz-Romero, M. C., Murphy, T., Morris, M., Cummins, E., & Kerry, J. P. (2013). Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 34(2), 393-397.
  • de Moura, M. R., Mattoso, L. H. C., & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 109(3), 520-524.
  • Dobias, J., Chudackova, K., Voldrich, M., & Marek, M. (2000). Properties of polyethylene films with incorporated benzoic anhydride and/or ethyl and propyl esters of 4-hydroxybenzoic acid and their suitability for food packaging. Food Additives and Contaminants, 17(12), 1047-1053.
  • Dotto, G. L., Buriol, C., & Pinto, L. A. A. (2014). Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chemical Engineering Research and Design, 92(11),2324-2332.
  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24.
  • Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Buyukcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging 'containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating' to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354-363.
  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182.
  • Echegoyen, Y., & Nerin, C. (2013). Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology, 62, 16-22.
  • El-Saharty, Y. S., & Bary, A. A. (2002). High-performance liquid chromatographic determination of neutraceuticals, glucosamine sulphate and chitosan, in raw materials and dosage forms. Analytica Chimica Acta, 462(1), 125-131.
  • Fucinos, C., Miguez, M., Cerqueira, M. A., Costa, M. J., Vicente, A. A., Rua, M. L., & Pastrana, L. M. (2015). Functional Characterisation and Antimicrobial Efficiency Assessment of Smart Nanohydrogels Containing Natamycin Incorporated into Polysaccharide-Based Films. Food and Bioprocess Technology, 8(7), 1430-1441.
  • Guo, M., Jin, T. Z., Wang, L., Scullen, O. J., & Sommers, C. H. (2014). Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat. Food Control, 40, 64-70.
  • Hauser, C., & Wunderlich, J. (2011). Antimicrobial packaging films with a sorbic acid based coating. Procedia Food Science, 1, 197-202.
  • Imran, M., Klouj, A., Revol-Junelles, A.-M., & Desobry, S. (2014). Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. Journal of Food Engineering, 143, 178-185.
  • Kaba, N., & Duyar, H. A. (2008). Antimikrobiyal Paketleme. Ege Üniversitesi Su Ürünleri Dergisi, 25(2), 181-185. Kapetanakou, A. E., Agathaggelou, E. I., & Skandamis, P. N. (2014). Storage of pork meat under modified atmospheres containing vapors from commercial alcoholic beverages. International Journal of Food Microbiology, 178, 65-75.
  • Kashiri, M., Cerisuelo, J. P., Dominguez, I., Lopez-Carballo, G., Hernandez-Munoz, P., & Gavara, R. (2016). Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE). Food Hydrocolloids, 61, 547-554.
  • Klangmuang, P., & Sothornvit, R. (2016). Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloids, 61, 609-616.
  • Kumar, R., & Munstedt, H. (2005). Silver ion release from antimicrobial polyamide/silver composites. Biomaterials, 26(14), 2081-2088.
  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2013). Migration of antimicrobial agents from starch-based films into a food simulant. LWT - Food Science and Technology, 50(2), 432-438.
  • Kuplennik, N., Tchoudakov, R., Zelas, Z. B. B., Sadovski, A., Fishman, A., & Narkis, M. (2015). Antimicrobial packaging based on linear low-density polyethylene compounded with potassium sorbate. Lwt-Food Science and Technology, 62(1), 278-286.
  • Kurek, M., Laridon, Y., Torrieri, E., Guillard, V., Pant, A., Stramm, C., . . . Guillaume, C. (2017). A mathematical model for tailoring antimicrobial packaging material containing encapsulated volatile compounds. Innovative Food Science & Emerging Technologies, 42, 64-72.
  • Lantano, C., Alfieri, I., Cavazza, A., Corradini, C., Lorenzi, A., Zucchetto, N., & Montenero, A. (2014). Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging. Food Chemistry, 165, 342-347.
  • Li, W., Zhang, C., Chi, H., Li, L., Lan, T., Han, P., . . . Qin, Y. (2017). Development of Antimicrobial Packaging Film Made from Poly (Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles. Molecules, 22(7).
  • Liu, W., & Hansen, J. N. (1990). Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Applied and Environmental Microbiology, 56(8), 2551-2558.
  • Lorevice, M. V., Otoni, C. G., de Moura, M. R., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732-740.
  • Matsumura, Y., Yoshikata, K., Kunisaki, S. i., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281.
  • Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41(6), 464-469.
  • Mulla, M., Ahmed, J., Al-Attar, H., Castro-Aguirre, E., Arfat, Y. A., & Auras, R. (2017). Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control, 73, 663-671.
  • O' Callaghan, K. A. M., & Kerry, J. P. (2014). Assessment of the antimicrobial activity of potentially active substances (nanoparticled and non-nanoparticled) against cheese-derived microorganisms. International Journal of Dairy Technology, 67(4), 483-489.
  • Olasupo, N. A., Fitzgerald, D. J., Gasson, M. J., & Narbad, A. (2003). Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 37(6), 448-451.
  • Ouattara, B., Simard, R. E., Piette, G., Bégin, A., & Holley, R. A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62(1), 139-148.
  • Ozdemir, M., & Floros, J. D. (2001). Analysis and modeling of potassium sorbate diffusion through edible whey protein films. Journal of Food Engineering, 47(2), 149-155.
  • Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185-193.
  • Panea, B., Ripoll, G., González, J., Fernández-Cuello, Á., & Albertí, P. (2014). Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering, 123, 104-112.
  • Patiño, J. H., Henríquez, L. E., Restrepo, D., Mendoza, M. P., Lantero, M. I., & García, M. A. (2014). Evaluation of polyamide composite casings with silver–zinc crystals for sausages packaging. Food Packaging and Shelf Life, 1(1), 3-9.
  • Pekcan, G., Köksal, E., Küçükerdönmez, O., & Ozel, H. (2006). Household food wastage in Turkey. Rome, Italy: FAO.
  • Perez, L. M., Soazo, M. D., Balague, C. E., Rubiolo, A. C., & Verdini, R. A. (2014). Effect of pH on the effectiveness of whey protein/glycerol edible. films containing potassium sorbate to control non-O157 shiga toxin-producing Escherichia coli in ready-to-eat foods. Food Control, 37, 298-304.
  • Pires, A. C. D., Soares, N. D. F., de Andrade, N. J., do Silva, L. H. M., Camilloto, G. P., & Bernardes, P. C. (2008). Development and Evaluation of Active Packaging for Sliced Mozzarella Preservation. Packaging Technology and Science, 21(7), 375-383.
  • Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652.
  • Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327-335.
  • Ripoche, A. C., Chollet, E., Peyrol, E., & Sebti, I. (2006). Evaluation of nisin diffusion in a polysaccharide gel: Influence of agarose and fatty content. Innovative Food Science & Emerging Technologies, 7(1-2), 107-111.
  • Rodriguez-Martinez, A. V., Sendon, R., Abad, M. J., Gonzalez-Rodriguez, M. V., Barros-Velazquez, J., Aubourg, S. P., . . . de Quiros, A. R. B. (2016). Migration kinetics of sorbic acid from polylactic acid and seaweed based films into food simulants. LWT-Food Science and Technology, 65, 630-636.
  • Sanchez-Valdes, S., Ortega-Ortiz, H., Valle, L. F. R. D., Medellin-Rodriguez, F. J., & Guedea-Miranda, R. (2009). Mechanical and Antimicrobial Properties of Multilayer Films with a Polyethylene/Silver Nanocomposite Layer. Journal of Applied Polymer Science, 111(2), 953-962.
  • Sebti, I., Carnet, A. R., Blanc, D., Saurel, R., & Coma, V. (2003). Controlled Diffusion of an Antimicrobial Peptide from a Biopolymer Film. Chemical Engineering Research and Design, 81(9), 1099-1104.
  • Shemesh, R., Krepker, M., Goldman, D., Danin-Poleg, Y., Kashi, Y., Nitzan, N., . . . Segal, E. (2015). Antibacterial and antifungal LDPE films for active packaging. Polymers for Advanced Technologies, 26(1), 110-116.
  • Silveira, M. F. A., Soares, N. F. F., Geraldine, R. M., Andrade, N. J., & Goncalves, M. P. J. (2007). Antimicrobial efficiency and sorbic acid migration from active films into pastry dough. Packaging Technology and Science, 20(4), 287-292.
  • Siripatrawan, U., & Noipha, S. (2012). Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocolloids, 27(1), 102-108.
  • Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids, 61, 695-702.
  • Sohaib, M., Anjum, F. M., Arshad, M. S., & Rahman, U. U. (2016). Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. Journal of Food Science and Technology-Mysore, 53(1), 19-30.
  • Song, H., Li, B., Lin, Q. B., Wu, H. J., & Chen, Y. (2011). Migration of silver from nanosilver-polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A, 28(12), 1758-1762.
  • Soysal, C., Bozkurt, H., Dirican, E., Guclu, M., Bozhuyuk, E. D., Uslu, A. E., & Kaya, S. (2015). Effect of antimicrobial packaging on physicochemical and microbial quality of chicken drumsticks. Food Control, 54, 294-299.
  • Sung, S.-Y., Sin, L. T., Tee, T.-T., Bee, S.-T., Rahmat, A., Rahman, W., Tan, A. C., & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123.
  • Takala, P. N., Vu, K. D., Salmieri, S., Khan, R. A., & Lacroix, M. (2013). Antibacterial effect of biodegradable active packaging on the growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in fresh broccoli stored at 4 degrees C. LWT-Food Science and Technology, 53(2), 499-506.
  • Teerakarn, A., Hirt, D. E., Acton, J. C., Rieck, J. R., & Dawson, P. L. (2002). Nisin diffusion in protein films: Effects of film type and temperature. Journal of Food Science, 67(8), 3019-3025.
  • von Goetz, N., Fabricius, L., Glaus, R., Weitbrecht, V., Gunther, D., & Hungerbuhler, K. (2013). Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Additives & Contaminants: Part A, 30(3), 612-620. Wang, H. L., Hao, L. L., Wang, P., Chen, M. M., Jiang, S. W., & Jiang, S. T. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids, 63, 437-446.
  • Wang, H. L., Zhang, R., Zhang, H., Jiang, S. W., Liu, H., Sun, M., & Jiang, S. T. (2015). Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol). Carbohydrate Polymers, 127, 64-71.
  • Yoshida, C. M. P., Bastos, C. E. N., & Franco, T. T. (2010). Modeling of potassium sorbate diffusion through chitosan films. LWT - Food Science and Technology, 43(4), 584-589.
  • Zendo, T., Nakayama, J., Fujita, K., & Sonomoto, K. (2008). Bacteriocin detection by liquid chromatography/mass spectrometry for rapid identification. Journal of Applied Microbiology, 104(2), 499-507.
  • Zhou, F., Ji, B. P., Zhang, H., Jiang, H., Yang, Z. W., Li, J. J., Li, J. H., Ren, Y. L., &Yan, W. J. (2007). Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella typhimurium. Journal of Food Protection, 70(7), 1704-1709.
There are 72 citations in total.

Details

Subjects Food Engineering
Journal Section Articles
Authors

Sevgin Dıblan 0000-0002-7998-4801

Sevim Kaya 0000-0003-4790-7630

Publication Date January 1, 2018
Submission Date July 14, 2017
Published in Issue Year 2018Volume: 4 Issue: 1

Cite

APA Dıblan, S., & Kaya, S. (2018). ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS. Food and Health, 4(1), 63-79. https://doi.org/10.3153/JFHS18007

16339

Journal is licensed under a

CreativeCommons Attribtion-ShareAlike 4.0 International Licence  14627 1331027042
Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

27222

Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).