Research Article
BibTex RIS Cite

CHARACTERIZATION OF FLOWER AND COTTON HONEY VOLATILE COMPOUNDS USING SOLVENT ASSISTED FLAVOR EVAPORATION

Year 2018, Volume: 4 Issue: 1, 25 - 36, 01.01.2018
https://doi.org/10.3153/JFHS18004

Abstract

In the present study, the composition of
aroma compounds of flower and cotton honey from Gaziantep province investigated
by gas chromatography-mass spectrometry
(GC-MS).
Aroma compounds of honey extracted using solvent-assisted flavor evaporation
(SAFE) with dichloromethane for the first time in Turkey.
The SAFE extraction method is a prominent method in recent
years because it prevents the formation of unwanted by-products during the
analysis of aroma compounds. As consequences of results, respectively 36 and 33
aromatic compounds identified and the total concentration of volatile compounds
detected
2043 μg/kg and 1901 μg/kg in flower and cotton honey, respectively. Of all
aroma compounds detected in the samples, acids, and alcohols were present at
the highest level, followed by ketones, aldehydes, terpenes and lactones.
Furthermore, phenylethyl alcohol and cinnamaldehyde identified in the study,
considered to be main aroma markers of cotton honey. 

References

  • Alissandrakis, E., Kibaris, A.C., Tarantilis, P.A., Harizanis, P.C. & Polissiou M. (2005). Flavour compounds of Greek cotton honey. Journal of the Science of Food and Agriculture, 85, 1444-1452.
  • Alissandrakis, E., Tarantilis, P.A., Harizanis, P.C. & Polissiou, M. (2005). Evaluation of four isolation techniques for honey aroma compounds. Journal of the Science of Food and Agriculture, 85, 91–97.
  • Alissandrakis, E., Tarantilis, P.A., Harizanis, P.C. & Polissiou M. (2007). Aroma investigation of unifloral Greek citrus honey using solid phase microextraction coupled to gas chromatographic–mass spectrometric analysis. Food Chemistry, 100, 396-404.
  • Ampuero, S., Bogdanov, S. & Bosset. J.O. (2004). Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218, 198-207.
  • Amtmann, M. (2010). The chemical relationship between the scent features of goldenrod (Solidago canadensis L.) flower and ıts unifloral honey. Journal of Food Composition and Analysis, 23, 122-129.
  • Bianchi, F., Mangia, A., Mattarozzi, M. & Musci, M. (2011). Characterization of the volatile profile of thistle honey using headspace solid-phase microextraction and gas chromatography–mass spectrometry. Food Chemistry, 129, 1030-1036.
  • Castro-Vazquez, L., Diaz-Maroto, M.C. & Perez-Coello, M.S. (2006). Volatile composition and contribution to the aroma of Spanish honeydew honeys. Identification of a new chemical marker. Journal of Agricultural and Food Chemistry, 54, 4809-4813.
  • Castro-Vazquez, L., Diaz-Maroto., M.C. & Perez-Coello, M.S. (2007). Aroma composition and new chemical markers of Spanish citrus honeys. Food Chemistry, 103, 601-606.
  • Castro-Vazquez, L., Leon-Ruiz, V., Alanon, M.E., Pérez-Coello, M.S. & Gonzalez-Porto, A.V. (2014). Floral origin markers for authenticating lavandin honey (Lavandula angustifolia x latifolia). Discrimination from lavender honey (Lavandula latifolia). Food Control, 37, 362-370.
  • Castro-Vazquez, L., Pirez-Coello, M.S. & Cabezudo, M.D. (2003). Analysis of volatile compounds of rosemary honey. comparison of different extraction techniques. Chromatographia, 57, 227-233.
  • Darcy, B.R., Rintoul, G.B., Rowland, C.Y. & Blackman, A.J. (1997). Composition of Australian honey extractives. 1. Norisoprenoids, monoterpenes, and other natural volatiles from blue gum (Eucalyptus leucoxylon) and yellow box (Eucaliptus melliodora). Journal of Agricultural and Food Chemistry, 45, 1834-1843.
  • Escriche, I., Visquert, M., Juan-Borras, M. & Fito, P. (2009). Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chemistry, 112, 329-338.
  • Engel, W., Bahr, W. & Schieberle, P. (1999). Solvent assisted flavour evaporation a new and versatile technique for the careful and direct ısolation of aroma compounds from complex food matrices. European Food Research and Technology, 209, 237-41.
  • Jerkovic, I. & Marijanovic Z. (2010). Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chemistry & Biodiversity, 7, 2309-2325.
  • Jerkovic, I., Tuberoso, C.I.G., Marijanovic, Z., Jelic, M. & Kasum, A. (2009). Headspace, volatile and semi-volatile patterns of Paliurus spina-christi unifloral honey as markers of botanical origin. Food Chemistry, 112, 239-245.
  • Karabagias, I.K, Badeka, A., Kontakos, S. & Karabournioti, S. (2014). Characterization and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters, and chemometrics. Food Chemistry, 146 548-557.
  • Kus, M.K., Jerkovic, I., Tuberosoc, C.I.G. & Sarolic M. (2013). The volatile profiles of a rare apple (Malus domestica BORKH.) honey: shikimic acid-pathway derivatives, terpenes, and others. Chemistry & Biodiversity, 10, 1638-1652.
  • Moreira, R.F.A. & DeMaria, C.A.B. (2005). Investigation of the aroma compounds from headspace and aqueous solution from the cambara (Gochnatia Velutina) honey. Flavour and Fragrance Journal, 20, 13–17.
  • Moreira, R.F.A., DeMaria, C.A.B., Pietroluongo, R.F.A. & Trugo, L.C. (2010). Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. Food Chemistry, 121, 697–704.
  • Moreira, R.F.A., Trugo, L.C., Pietroluongo, M. & DeMaria, C.A.B. (2002). Flavor composition of cashew (Anacardium occidentale) and marmeleiro (Croton Species) honeys. Journal of Agricultural and Food Chemistry, 50, 7616-7621.
  • Morrison, R.T. & Boyd RN. (1992). Organic chemistry (1st ed.). Englewood Cliffs, New Jersey: Prentice Hall International, Inc. (p. 657).
  • Odeh, I., Abu-Lafi, S., Dewik, H., Al-Najjar, I., Imam, A., Dembitsky, V.M. & Hanus LO. (2007). A variety of volatile compounds as markers in Palestinian honey from Thymus capitatus, Thymelaea hirsuta, and Tolpis virgata. Food Chemistry, 101, 1393-1397.
  • Pino, J.A. (2012) Analysis of odour-active compounds of black mangrove (Avicennia germinans L.) honey by solid-phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography-olfactometry. International Journal of Food Science & Technology, 47, 1688-1694.
  • Plutowska, B., Chmiel, T., Dymerski, T. & Wardencki W. (2011). A headspace solid-phase microextraction method development and ıts application in the determination of volatiles in honeys by gas chromatography. Food Chemistry, 126, 1288-1298.
  • Pontes, M., Marques, & J.C. Camara, J.S. (2007). Screening of Volatile composition from Portuguese multifloral honeys using headspace solid-phase microextraction-gas chromatography–quadrupole mass spectrometry. Talanta, 74, 91-103.
  • Radovic, B., Careri, M., Mangia, A., Musci, M., Gerboles, M., & Anklam, E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4), 511-520.
  • Rowland, C.Y., Blackman, A.J., Darcy, B. & Rintoul, G.B. (1995). Comparison of organic extractives found in leatherwood (Eucryphia lucida) honey and leatherwood flowers and leaves. Journal of Agricultural and Food Chemistry, 43, 753-763.
  • Ruisinger, B. & Schieberle, P. (2012). Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept. Journal of Agricultural and Food Chemistry, 60(17), 4186-4194.
  • Senyuva, H.Z., Gilbert, J., Sibel, S., Charlton, A., Cansu, D. & Neslihan G. (2009). Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. Journal of Agricultural and Food Chemistry, 57, 3911-3919.
  • Silici, S. (2011). Determination of volatile compounds of pine honeys. Turkish Journal of Biology, 35, 641-645.
  • Soria, A.C., Sanz, J. & Martinez-Castro, I. (2009). SPME Followed by GC–MS: A powerful technique for qualitative analysis of honey volatiles. European Food Research and Technology, 228, 579-590.
  • Speziale, M., Vazquez-Araujo, L., Mincione, A. & Carbonell-Barrachina, A.A. (2010). volatile composition and descriptive sensory analysis of Italian vanilla torrone. International Journal of Food Science & Technology, 45, 1586-1593.
  • Tananaki, C., Gounari, S. & Thrasyvoulou, A. (2009). The effect of smoke on the volatile characteristics of honey. Journal of Apicultural Research, 48 (2), 142-144.
  • Tananaki, C., Thrasyvoulou, A., Giraudel, J.L. & Montury M. (2007). Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using kohonen self organising maps. Food Chemistry, 101, 1687-1693. Verzera, A., Tripodi, G., Condurso, C., Dima, G. & Marra A. (2014). Chiral volatile compounds for the determination of orange honey authenticity. Food Control, 39, 237-243.
  • Wardencki, W., Chmiel, T., Dymerski, T., Biernacka, P. & Plutowska, B. (2009). Application of gas chromatography, mass spectrometry and olfactometry for quality assessment of selected food products. Ecological Chemistry and Engineering, 16 (3), 287-300.
  • Zhou, Q., Wıntersteen, C.L. & Cadwallader, K.R. (2002). Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey. Journal of Agric

ÇİÇEK VE PAMUK BALLARINDAKİ UÇUCU BİLEŞİKLERİN ÇÖZGEN YARDIMI İLE AROMA EKSTRAKSİYON YÖNTEMİ KULLANILARAK KARAKTERİZASYONU

Year 2018, Volume: 4 Issue: 1, 25 - 36, 01.01.2018
https://doi.org/10.3153/JFHS18004

Abstract

Bu çalışmada, Gaziantep ilinde üretilen çiçek ve pamuk
ballarının aroma maddeleri bileşimi, gaz kromatografisi-kütle
spektrofotometresi (GC-MS) yardımı ile incelenmiştir. Ballardaki aroma
maddeleri, Türkiye’de ilk defa
çözgen yardımı ile aroma ekstraksiyon
sistemi (SAFE) ve diklorometan çözgeni kullanılarak ekstrakte edilmiştir. SAFE
ekstraksiyon yöntemi, aroma maddeleri analizi sırasında istenmeyen yan ürün
oluşumunu engellediği için son yıllarda öne çıkan bir yöntemdir. Elde edilen
sonuçlara göre, çiçek ve pamuk ballarında sırası ile 36 ve 33 aroma bileşiği
belirlenmiş ve toplam miktarları
2043 μg/kg ve 1901 μg/kg olarak tespit edilmiştir. Ballarda miktar olarak öne çıkan kimyasal
aroma grupları, asitler ve alkoller olurken bu grupları ketonlar, aldehitler,
terpenler ve laktonlar takip etmiştir. Ayrıca, çalışmada tespit edilen
feniletil alkol ve sinnamaldehit
bileşiklerinin pamuk balları için biyoişaretleyici aroma maddeleri oldukları da
düşünülmektedir.

References

  • Alissandrakis, E., Kibaris, A.C., Tarantilis, P.A., Harizanis, P.C. & Polissiou M. (2005). Flavour compounds of Greek cotton honey. Journal of the Science of Food and Agriculture, 85, 1444-1452.
  • Alissandrakis, E., Tarantilis, P.A., Harizanis, P.C. & Polissiou, M. (2005). Evaluation of four isolation techniques for honey aroma compounds. Journal of the Science of Food and Agriculture, 85, 91–97.
  • Alissandrakis, E., Tarantilis, P.A., Harizanis, P.C. & Polissiou M. (2007). Aroma investigation of unifloral Greek citrus honey using solid phase microextraction coupled to gas chromatographic–mass spectrometric analysis. Food Chemistry, 100, 396-404.
  • Ampuero, S., Bogdanov, S. & Bosset. J.O. (2004). Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX. European Food Research and Technology, 218, 198-207.
  • Amtmann, M. (2010). The chemical relationship between the scent features of goldenrod (Solidago canadensis L.) flower and ıts unifloral honey. Journal of Food Composition and Analysis, 23, 122-129.
  • Bianchi, F., Mangia, A., Mattarozzi, M. & Musci, M. (2011). Characterization of the volatile profile of thistle honey using headspace solid-phase microextraction and gas chromatography–mass spectrometry. Food Chemistry, 129, 1030-1036.
  • Castro-Vazquez, L., Diaz-Maroto, M.C. & Perez-Coello, M.S. (2006). Volatile composition and contribution to the aroma of Spanish honeydew honeys. Identification of a new chemical marker. Journal of Agricultural and Food Chemistry, 54, 4809-4813.
  • Castro-Vazquez, L., Diaz-Maroto., M.C. & Perez-Coello, M.S. (2007). Aroma composition and new chemical markers of Spanish citrus honeys. Food Chemistry, 103, 601-606.
  • Castro-Vazquez, L., Leon-Ruiz, V., Alanon, M.E., Pérez-Coello, M.S. & Gonzalez-Porto, A.V. (2014). Floral origin markers for authenticating lavandin honey (Lavandula angustifolia x latifolia). Discrimination from lavender honey (Lavandula latifolia). Food Control, 37, 362-370.
  • Castro-Vazquez, L., Pirez-Coello, M.S. & Cabezudo, M.D. (2003). Analysis of volatile compounds of rosemary honey. comparison of different extraction techniques. Chromatographia, 57, 227-233.
  • Darcy, B.R., Rintoul, G.B., Rowland, C.Y. & Blackman, A.J. (1997). Composition of Australian honey extractives. 1. Norisoprenoids, monoterpenes, and other natural volatiles from blue gum (Eucalyptus leucoxylon) and yellow box (Eucaliptus melliodora). Journal of Agricultural and Food Chemistry, 45, 1834-1843.
  • Escriche, I., Visquert, M., Juan-Borras, M. & Fito, P. (2009). Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chemistry, 112, 329-338.
  • Engel, W., Bahr, W. & Schieberle, P. (1999). Solvent assisted flavour evaporation a new and versatile technique for the careful and direct ısolation of aroma compounds from complex food matrices. European Food Research and Technology, 209, 237-41.
  • Jerkovic, I. & Marijanovic Z. (2010). Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chemistry & Biodiversity, 7, 2309-2325.
  • Jerkovic, I., Tuberoso, C.I.G., Marijanovic, Z., Jelic, M. & Kasum, A. (2009). Headspace, volatile and semi-volatile patterns of Paliurus spina-christi unifloral honey as markers of botanical origin. Food Chemistry, 112, 239-245.
  • Karabagias, I.K, Badeka, A., Kontakos, S. & Karabournioti, S. (2014). Characterization and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters, and chemometrics. Food Chemistry, 146 548-557.
  • Kus, M.K., Jerkovic, I., Tuberosoc, C.I.G. & Sarolic M. (2013). The volatile profiles of a rare apple (Malus domestica BORKH.) honey: shikimic acid-pathway derivatives, terpenes, and others. Chemistry & Biodiversity, 10, 1638-1652.
  • Moreira, R.F.A. & DeMaria, C.A.B. (2005). Investigation of the aroma compounds from headspace and aqueous solution from the cambara (Gochnatia Velutina) honey. Flavour and Fragrance Journal, 20, 13–17.
  • Moreira, R.F.A., DeMaria, C.A.B., Pietroluongo, R.F.A. & Trugo, L.C. (2010). Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. Food Chemistry, 121, 697–704.
  • Moreira, R.F.A., Trugo, L.C., Pietroluongo, M. & DeMaria, C.A.B. (2002). Flavor composition of cashew (Anacardium occidentale) and marmeleiro (Croton Species) honeys. Journal of Agricultural and Food Chemistry, 50, 7616-7621.
  • Morrison, R.T. & Boyd RN. (1992). Organic chemistry (1st ed.). Englewood Cliffs, New Jersey: Prentice Hall International, Inc. (p. 657).
  • Odeh, I., Abu-Lafi, S., Dewik, H., Al-Najjar, I., Imam, A., Dembitsky, V.M. & Hanus LO. (2007). A variety of volatile compounds as markers in Palestinian honey from Thymus capitatus, Thymelaea hirsuta, and Tolpis virgata. Food Chemistry, 101, 1393-1397.
  • Pino, J.A. (2012) Analysis of odour-active compounds of black mangrove (Avicennia germinans L.) honey by solid-phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography-olfactometry. International Journal of Food Science & Technology, 47, 1688-1694.
  • Plutowska, B., Chmiel, T., Dymerski, T. & Wardencki W. (2011). A headspace solid-phase microextraction method development and ıts application in the determination of volatiles in honeys by gas chromatography. Food Chemistry, 126, 1288-1298.
  • Pontes, M., Marques, & J.C. Camara, J.S. (2007). Screening of Volatile composition from Portuguese multifloral honeys using headspace solid-phase microextraction-gas chromatography–quadrupole mass spectrometry. Talanta, 74, 91-103.
  • Radovic, B., Careri, M., Mangia, A., Musci, M., Gerboles, M., & Anklam, E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72(4), 511-520.
  • Rowland, C.Y., Blackman, A.J., Darcy, B. & Rintoul, G.B. (1995). Comparison of organic extractives found in leatherwood (Eucryphia lucida) honey and leatherwood flowers and leaves. Journal of Agricultural and Food Chemistry, 43, 753-763.
  • Ruisinger, B. & Schieberle, P. (2012). Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept. Journal of Agricultural and Food Chemistry, 60(17), 4186-4194.
  • Senyuva, H.Z., Gilbert, J., Sibel, S., Charlton, A., Cansu, D. & Neslihan G. (2009). Profiling Turkish honeys to determine authenticity using physical and chemical characteristics. Journal of Agricultural and Food Chemistry, 57, 3911-3919.
  • Silici, S. (2011). Determination of volatile compounds of pine honeys. Turkish Journal of Biology, 35, 641-645.
  • Soria, A.C., Sanz, J. & Martinez-Castro, I. (2009). SPME Followed by GC–MS: A powerful technique for qualitative analysis of honey volatiles. European Food Research and Technology, 228, 579-590.
  • Speziale, M., Vazquez-Araujo, L., Mincione, A. & Carbonell-Barrachina, A.A. (2010). volatile composition and descriptive sensory analysis of Italian vanilla torrone. International Journal of Food Science & Technology, 45, 1586-1593.
  • Tananaki, C., Gounari, S. & Thrasyvoulou, A. (2009). The effect of smoke on the volatile characteristics of honey. Journal of Apicultural Research, 48 (2), 142-144.
  • Tananaki, C., Thrasyvoulou, A., Giraudel, J.L. & Montury M. (2007). Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using kohonen self organising maps. Food Chemistry, 101, 1687-1693. Verzera, A., Tripodi, G., Condurso, C., Dima, G. & Marra A. (2014). Chiral volatile compounds for the determination of orange honey authenticity. Food Control, 39, 237-243.
  • Wardencki, W., Chmiel, T., Dymerski, T., Biernacka, P. & Plutowska, B. (2009). Application of gas chromatography, mass spectrometry and olfactometry for quality assessment of selected food products. Ecological Chemistry and Engineering, 16 (3), 287-300.
  • Zhou, Q., Wıntersteen, C.L. & Cadwallader, K.R. (2002). Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey. Journal of Agric
There are 36 citations in total.

Details

Subjects Food Engineering
Journal Section Articles
Authors

Ahmet Salih Sönmezdağ 0000-0001-6360-4037

Publication Date January 1, 2018
Submission Date April 9, 2017
Published in Issue Year 2018Volume: 4 Issue: 1

Cite

APA Sönmezdağ, A. S. (2018). CHARACTERIZATION OF FLOWER AND COTTON HONEY VOLATILE COMPOUNDS USING SOLVENT ASSISTED FLAVOR EVAPORATION. Food and Health, 4(1), 25-36. https://doi.org/10.3153/JFHS18004

16339

Journal is licensed under a

CreativeCommons Attribtion-ShareAlike 4.0 International Licence  14627 1331027042
Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

27222

Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).