Review
BibTex RIS Cite

GIDA BİLEŞENLERİNİN SPREY SOĞUTMA YÖNTEMİ İLE ENKAPSÜLASYONU

Year 2018, , 202 - 212, 01.04.2018
https://doi.org/10.3153/FH18021

Abstract

Sprey soğutma yöntemi ile gıda bileşenlerinin enkapsülasyonu son
yıllarda dikkat çeken bir teknoloji olup, özellikle ısıya ve suya duyarlı aktif
maddelerin kaplanmasında kullanılmaktadır. Sprey soğutma yöntemi, aktif
maddenin kaplama materyali veya materyalleri içerisine dispersiyonu, bu
karışımın atomizasyonu ve katılaştırma aşamalarından oluşmaktadır. Sprey
soğutma yöntemi ile enkapsülasyon işleminde
mumlar, hidrojenize yağlar, yağ
asitleri ve düşük sıcaklıklarda jel oluşturma özelliği iyi olan protein ve
karbonhidratlar kaplama materyalleri olarak kullanılmaktadır. Kaplama
materyallerinin tipi ve karışım oranı diğer enkapsülasyon yöntemlerinde olduğu
gibi sprey soğutma yönteminde de enkapsülasyon etkinliğini belirleyen önemli
özelliklerdir. Sprey soğutma yönteminin kullanıldığı çalışmalarda genellikle
aromalar, vitaminler, mineraller, yağlar ve probiyotikler enkapsüle edilmiştir.
Bu çalışmalarda kullanılan kaplama materyallerinin çeşidinin ve oranının
enkapsülasyon etkinliği üzerine etkisi ve/veya depolama süresince enkapsüle
edilen aktif maddenin stabilitesi incelenmiştir. Bu derleme çalışmasında, sprey
soğutma yönteminin enkapsülasyon işleminde kullanılabilirliği ve literatürde
gerçekleştirilen çalışmaların kapsamları detaylı olarak değerlendirilmiştir.

References

  • Alvim, I.D., Souza, F.D.S.D., Koury, I.P., Jurt, T., Dantas, F.B.H. (2013). Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles. Ciencia e Tecnologia de Alimentos, 33(1), 34-39.
  • Alvim, I.D., Stein, M.A., Koury, I.P., Balardin, F., Dantas, H., Cruz, C.V. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT - Food Science and Technology, 65, 689-694.
  • Bampi, G.B., Backes, G.T., Cansian, R.L., Matos-Jr, F.E., Ansolin, I.M.A., Poleto, B.C., Corezzolla, L.R., Favaro-Trindade, C.S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food and Bioprocess Technology, 9, 1422-1428.
  • Can Karaca, A., Low, N., Nickerson, M. (2013). Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein-maltodextrin microcapsule preparation. Journal of agricultural and food chemistry, 61(21), 5148-5155. Consoli, L., Grimaldi, R., Sartori, T., Menegalli, F.C., Hubinger, M.D. (2016). Gallic acid microparticles produced by spray chilling technique: Production and characterization. LWT - Food Science and Technology, 65, 79-87.
  • de Lara Pedroso, D., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal, 26(2), 127-132.
  • Desai, K.G.H., Park H.J. (2005). Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23, 1361-1394.
  • Gamboa, O.D., Gonçalves, L.G., Grosso, F.C. (2011). Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Science, 1, 1732-1739.
  • Garti, N., McClements, J.D. (2012), Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing, p. 110-130, ISBN 9780857091246
  • Koç, M., Sakin, M., Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16, 77-86.
  • Kwak, H.S. (Ed.). (2014). Nano-and microencapsulation for foods. John Wiley & Sons, p. 1-42, 223-248, ISBN 9781118292334
  • Lakkis, J.M. (2016). Encapsulation and controlled release technologies in food systems. John Wiley & Sons, p.116-177, ISBN 9781118733523 Matos-Jr, F.E., Comunian, T.A., Thomazini, M., Favaro-Trindade, C.S. (2017). Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. LWT-Food Science and Technology, 75, 251-260.
  • Matos-Jr, F.E., Di Sabatino, M., Passerini, N., Favaro-Trindade, C.S., Albertini, B. (2015). Development and characterization of solid lipid microparticles loaded with ascorbic acid and produced by spray congealing. Food Research International, 67, 52-59.
  • Okuro, P.K., Thomazini, M., Balieiro, J.C., Liberal, R.D., Fávaro-Trindade, C.S. (2013). Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Research International, 53(1), 96-103.
  • Oriani, V.B., Alvim, I.D., Consoli, L., Molina, G., Pastore, G.M., Hubinger, M.D. (2016). Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Research International, 80, 41-49.
  • Paucar, O.C., Tulini, F.L., Thomazini, M., Balieiro, J.C.C., Pallone, E.M.J.A., Favaro-Trindade, C.S. (2016). Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D 3. Food and Bioproducts Processing, 100, 344-350.
  • Pelissari, J.R., Souza, V.B., Pigoso, A.A., Tulini, F.L., Thomazini, M., Rodrigues, C.E. C., Urbano, A., Favaro-Trindade, C.S. (2016). Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food and Bioproducts Processing, 98, 86-94.
  • Ribeiro, M.M.M., Arellano, D.B., Grosso, C.R.F. (2012). The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process. Food Research International, 47(1), 38-44.
  • Rokka, S., Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. European Food Research and Technology, 231(1), 1-12.
  • Sagis, L.M. (2015). Microencapsulation and microspheres for food applications. Academic Press, p.235-248, ISBN 9780128003503
  • Salvim, M.O., Thomazini, M., Pelaquim, F.P., Urbano, A., Moraes, I.C., Favaro-Trindade, C.S. (2015). Production and structural characterization of solid lipid microparticles loaded with soybean protein hydrolysate. Food research international, 76, 689-696.
  • Sartori, T., Consoli, L., Dupas Hubinger, M., Cecilia Menegalli, F. (2015). Ascorbic acid microencapsulation by spray chilling: Production and characterization. LWT-Food Science and Technology, 63, 353-360.
  • Schrooyen, P.M.M., van der Meer, R., de Kruif, C.G. (2001). Microencapsulation: its application in nutrition, Proceedings of the Nutrition Society, 60, 475-479. Ünal, E., Erginkaya, Z. (2010). Probiyotik mikroorganizmaların mikroenkapsülasyonu. Gıda Dergisi, 35(4), 297-304.
  • Wegmüller, R., Zimmermann, M. B., Bühr, V. G., Windhab, E. J., Hurrell, R. F. (2006). Development, stability, and sensory testing of microcapsules containing iron, iodine, and vitamin A for use in food fortification, Journal of food science, 71(2), 181-187.
  • Yajima, T., Umeki, N., Itai, S. (1999). Optimum spray congealing conditions for masking the bitter taste of clarithromycin in wax matrix. Chemical and Pharmaceutical Bulletin, 47, 220-225.
  • Zoet, F. D., Grandia, J., Sibeijn, M. (2011). Encapsulated fat soluble vitamin, NL Patent, 050668
  • Zungur, A. (2013). Mikroenkapsülasyon işleminin ekstra sızma zeytinyağı tozunun depolanması sırasında oksidatif stabilite, sorpsiyon ve fiziksel kalite kriterleri üzerine etkisi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir.
  • Zungur, A., Güngör, Ö., Koç, M., Kaymak Ertekin, F. (2013). Emülsiyonların özellikleri ve emülsifikasyon koşullarının aroma ve yağların mikroenkapsülasyonu üzerine etkisi. Akademik Gıda, 11, 116-124.

ENCAPSULATION OF FOOD MATERIALS WITH SPRAY COOLING METHOD

Year 2018, , 202 - 212, 01.04.2018
https://doi.org/10.3153/FH18021

Abstract

Encapsulation of food materials with spray cooling has been a remarkable
technology in recent years and is especially used for encapsulating heat and
water sensitive active materials. The spray cooling method comprises the
dispersion of the active material into the coating material or materials, the
atomization of the mixture and the solidification stages. In the food industry,
aromas, vitamins, oils and probiotics can be encapsulated by using spray
cooling method. Waxes, hydrogenated oils, fatty acids and, proteins and
carbohydrates that are good at forming gels at low temperatures are used as
coating materials in the encapsulation process by spray cooling. The type and
mixing ratio of coating materials are the most important features that
determine the encapsulation efficiency in spray cooling as well as in other
encapsulation methods. Aromas, vitamins, minerals, oils and prebiotics are
mostly encapsulated in the studies where spray cooling method is used. In these
studies, the effect of coating material type and ratio on encapsulation
efficiency and/or the storage stability of active material have been
investigated. In this review study, usability of spray cooling method in
encapsulation process and the scope of the studies carried out in the
literature have been evaluated.      

References

  • Alvim, I.D., Souza, F.D.S.D., Koury, I.P., Jurt, T., Dantas, F.B.H. (2013). Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles. Ciencia e Tecnologia de Alimentos, 33(1), 34-39.
  • Alvim, I.D., Stein, M.A., Koury, I.P., Balardin, F., Dantas, H., Cruz, C.V. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT - Food Science and Technology, 65, 689-694.
  • Bampi, G.B., Backes, G.T., Cansian, R.L., Matos-Jr, F.E., Ansolin, I.M.A., Poleto, B.C., Corezzolla, L.R., Favaro-Trindade, C.S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis and its use in the preparation of savory probiotic cereal bars. Food and Bioprocess Technology, 9, 1422-1428.
  • Can Karaca, A., Low, N., Nickerson, M. (2013). Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein-maltodextrin microcapsule preparation. Journal of agricultural and food chemistry, 61(21), 5148-5155. Consoli, L., Grimaldi, R., Sartori, T., Menegalli, F.C., Hubinger, M.D. (2016). Gallic acid microparticles produced by spray chilling technique: Production and characterization. LWT - Food Science and Technology, 65, 79-87.
  • de Lara Pedroso, D., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. International Dairy Journal, 26(2), 127-132.
  • Desai, K.G.H., Park H.J. (2005). Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23, 1361-1394.
  • Gamboa, O.D., Gonçalves, L.G., Grosso, F.C. (2011). Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Science, 1, 1732-1739.
  • Garti, N., McClements, J.D. (2012), Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead Publishing, p. 110-130, ISBN 9780857091246
  • Koç, M., Sakin, M., Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 16, 77-86.
  • Kwak, H.S. (Ed.). (2014). Nano-and microencapsulation for foods. John Wiley & Sons, p. 1-42, 223-248, ISBN 9781118292334
  • Lakkis, J.M. (2016). Encapsulation and controlled release technologies in food systems. John Wiley & Sons, p.116-177, ISBN 9781118733523 Matos-Jr, F.E., Comunian, T.A., Thomazini, M., Favaro-Trindade, C.S. (2017). Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. LWT-Food Science and Technology, 75, 251-260.
  • Matos-Jr, F.E., Di Sabatino, M., Passerini, N., Favaro-Trindade, C.S., Albertini, B. (2015). Development and characterization of solid lipid microparticles loaded with ascorbic acid and produced by spray congealing. Food Research International, 67, 52-59.
  • Okuro, P.K., Thomazini, M., Balieiro, J.C., Liberal, R.D., Fávaro-Trindade, C.S. (2013). Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Research International, 53(1), 96-103.
  • Oriani, V.B., Alvim, I.D., Consoli, L., Molina, G., Pastore, G.M., Hubinger, M.D. (2016). Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Research International, 80, 41-49.
  • Paucar, O.C., Tulini, F.L., Thomazini, M., Balieiro, J.C.C., Pallone, E.M.J.A., Favaro-Trindade, C.S. (2016). Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D 3. Food and Bioproducts Processing, 100, 344-350.
  • Pelissari, J.R., Souza, V.B., Pigoso, A.A., Tulini, F.L., Thomazini, M., Rodrigues, C.E. C., Urbano, A., Favaro-Trindade, C.S. (2016). Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food and Bioproducts Processing, 98, 86-94.
  • Ribeiro, M.M.M., Arellano, D.B., Grosso, C.R.F. (2012). The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process. Food Research International, 47(1), 38-44.
  • Rokka, S., Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. European Food Research and Technology, 231(1), 1-12.
  • Sagis, L.M. (2015). Microencapsulation and microspheres for food applications. Academic Press, p.235-248, ISBN 9780128003503
  • Salvim, M.O., Thomazini, M., Pelaquim, F.P., Urbano, A., Moraes, I.C., Favaro-Trindade, C.S. (2015). Production and structural characterization of solid lipid microparticles loaded with soybean protein hydrolysate. Food research international, 76, 689-696.
  • Sartori, T., Consoli, L., Dupas Hubinger, M., Cecilia Menegalli, F. (2015). Ascorbic acid microencapsulation by spray chilling: Production and characterization. LWT-Food Science and Technology, 63, 353-360.
  • Schrooyen, P.M.M., van der Meer, R., de Kruif, C.G. (2001). Microencapsulation: its application in nutrition, Proceedings of the Nutrition Society, 60, 475-479. Ünal, E., Erginkaya, Z. (2010). Probiyotik mikroorganizmaların mikroenkapsülasyonu. Gıda Dergisi, 35(4), 297-304.
  • Wegmüller, R., Zimmermann, M. B., Bühr, V. G., Windhab, E. J., Hurrell, R. F. (2006). Development, stability, and sensory testing of microcapsules containing iron, iodine, and vitamin A for use in food fortification, Journal of food science, 71(2), 181-187.
  • Yajima, T., Umeki, N., Itai, S. (1999). Optimum spray congealing conditions for masking the bitter taste of clarithromycin in wax matrix. Chemical and Pharmaceutical Bulletin, 47, 220-225.
  • Zoet, F. D., Grandia, J., Sibeijn, M. (2011). Encapsulated fat soluble vitamin, NL Patent, 050668
  • Zungur, A. (2013). Mikroenkapsülasyon işleminin ekstra sızma zeytinyağı tozunun depolanması sırasında oksidatif stabilite, sorpsiyon ve fiziksel kalite kriterleri üzerine etkisi. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir.
  • Zungur, A., Güngör, Ö., Koç, M., Kaymak Ertekin, F. (2013). Emülsiyonların özellikleri ve emülsifikasyon koşullarının aroma ve yağların mikroenkapsülasyonu üzerine etkisi. Akademik Gıda, 11, 116-124.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Emine Varhan 0000-0002-3246-928X

Mehmet Koç 0000-0002-7295-7640

Publication Date April 1, 2018
Submission Date August 22, 2017
Published in Issue Year 2018

Cite

APA Varhan, E., & Koç, M. (2018). GIDA BİLEŞENLERİNİN SPREY SOĞUTMA YÖNTEMİ İLE ENKAPSÜLASYONU. Food and Health, 4(3), 202-212. https://doi.org/10.3153/FH18021

ustresim_2021_1.png

Journal is licensed under a 

CreativeCommons Attribtion-ShareAlike 4.0 International Licence 146271331027042

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:


Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).