Research Article
BibTex RIS Cite

The effect of amaranth, a pseudo-cereal, on the activity of L. acidophilus probiotic bacteria and its antioxidant activity in the gastrointestinal digestion process

Year 2024, Volume: 10 Issue: 2, 104 - 114, 03.04.2024
https://doi.org/10.3153/FH24010

Abstract

Pseudo-cereals are an excellent source of nutrients, rich in carbohydrates, dietary fiber, protein, lipids, phytochemicals, and minerals such as magnesium, zinc, copper, sodium, potassium, and calcium. The positive effects of gluten-free pseudo-cereals on the digestive system are an alternative to natural cereals. Pseudo-cereals have prebiotic properties and strengthen digestion by positively affecting the development of probiotic bacteria, especially Lactobacillus. Therefore, the effect of amaranth, a pseudo-cereal, on the activity of L. acidophilus probiotic bacteria, which helps digestion, was determined. First, solvent, acidic, and basic hydrolysis extractions of amaranth in eight different solvent media were performed, and total phenolic content and antioxidant activity values were determined. The total phenolic content values in the gastrointestinal digestion process were investigated by applying three different consumption methods, milling, boiling, and drying, to amaranth grains. L. acidophilus probiotic bacteria were activated with milled, dried, and boiled amaranth, and the increase in viability was examined. While the viability of L. acidophilus activated with milled and dried amaranth increased by 9.47% and 7.46%, respectively, the viability of bacteria activated with boiled amaranth almost did not increase (0.60%).

Thanks

The author would like to thank Council of Higher Education and Bursa Uludağ University for supporting being a contracted post-doctoral researcher. The author would like to thank Prof. Dr. Saliha Şahin for her academic and scientific support.

References

  • Aklan, A., & Aybastıer, Ö. (2023). Beyaz hindibadan (Cichorium intybus L.) antioksidan maddelerin ultrasonik destekli ekstraksiyon parametrelerinin kemometrik optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13, 553–565. https://doi.org/10.17714/gumusfenbil.1239972
  • Bekkering, C.S., & Tian, L. (2019). Thinking outside of the cereal box: Breeding underutilised (Pseudo) cereals for improved human nutrition. Frontiers in Genetics, 10(December), 1–7. https://doi.org/10.3389/fgene.2019.01289
  • Benzie, I.F.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
  • Boeing, J.S., Barizão, É.O., e Silva, B.C., Montanher, P.F., de Cinque Almeida, V., & Visentainer, J.V. (2014). Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chemistry Central Journal, 8(1), 1–9. https://doi.org/10.1186/s13065-014-0048-1
  • Çelik, S.E. (2011). Farklı tür, karışım ve çözücü ortamlarına uygulanabilen modifiye CUPRAC antioksidan kapasite ölçümleri. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, (Doktora Tezi), 193 sayfa.
  • Dantas, A.M., Mafaldo, I. ., Oliveira, P. . de L., Lima, M. dos S., Magnani, M., & Borges, G. da S. . (2019). Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chemistry, 274, 202–214. https://doi.org/10.1016/j.foodchem.2018.08.099
  • de Araújo, F.F., de Paulo Farias, D., Neri-Numa, I.A., Dias-Audibert, F.L., Delafiori, J., de Souza, F.G., … Pastore, G.M. (2021). Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit. LWT - Food Science and Technology, 135. https://doi.org/10.1016/j.lwt.2020.110230
  • Güçlü, K., Altun, M., Özyürek, M., Karademir, S.E., & Apak, R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41, 76–85. https://doi.org/10.1111/j.1365-2621.2006.01347.x
  • House, N.C., Puthenparampil, D., Malayil, D., & Narayanankutty, A. (2020). Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. South African Journal of Botany, 135, 408–412. https://doi.org/10.1016/j.sajb.2020.09.026
  • Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids, and proteins. Food Chemistry, 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013
  • Karaaslan, N.M., Karaaslan, M.G., & Ates, B. (2018). Effects of some extraction solvents on the antioxidant properties of strawberry fruit. International Journal of Pure and Applied Sciences, 4(2), 102–109. https://doi.org/10.29132/ijpas.354885
  • Karkar, B., & Şahin, S. (2022). Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. European Food Research and Technology, 248(1), 219–241. https://doi.org/10.1007/s00217-021-03875-y
  • Kocková, M., Dilongová, M., Hybenová, E., & Valík, L. (2013). Evaluation of cereals and pseudocereals suitability for the development of new probiotic foods. Journal of Chemistry, 2013, 414303. https://doi.org/10.1155/2013/414303
  • López-Mejía, O.A., López-Malo, A., & Palou, E. (2014). Antioxidant capacity of extracts from amaranth (Amaranthus et al.) seeds or leaves. Industrial Crops and Products, 53, 55–59. https://doi.org/10.1016/j.indcrop.2013.12.017
  • Malleshi, N.G., Agarwal, A., Tiwari, A., & Sood, S. (2020). Nutritional quality and health benefits. In Millets and Pseudo Cereals. Singh, M., Sood, S., Ed.; Woodhead Publishing, U.K., pp 159-168. ISBN: 978-0-12-820089-6159–168. https://doi.org/10.1016/B978-0-12-820089-6.00009-4
  • Olawoye, B., & Gbadamosi, S.O. (2020). Influence of processing on the physiochemical, functional and pasting properties of Nigerian Amaranthus viridis seed flour: a multivariate analysis approach. SN Applied Sciences, 2(4), 1–13. https://doi.org/10.1007/s42452-020-2418-8
  • Pavan, V.Ô., Sancho, R.A.S., & Pastore, G.M. (2014). The effect of invitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus and Annona marcgravii). LWT - Food Science and Technology, 59(2P2), 1247–1251. https://doi.org/10.1016/j.lwt.2014.05.040
  • Peiretti, P.G., Meineri, G., Gai, F., Longato, E., & Amarowicz, R. (2017). Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Natural Product Research, 31(18), 2178–2182. https://doi.org/10.1080/14786419.2017.1278597
  • Petrova, P., & Petrov, K. (2020). Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients, 12(4), 1–26. https://doi.org/10.3390/nu12041118
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Ruth, O.N., Unathi, K., Nomali, N., & Chinsamy, M. (2021). Underutilization versus nutritional-nutraceutical potential of the amaranthus food plant: A mini-review. Applied Sciences, 11(15). https://doi.org/10.3390/app11156879
  • Sandoval-Sicairos, E.S., Domínguez-Rodríguez, M., Montoya-Rodríguez, A., Milán-Noris, A.K., Reyes-Moreno, C., & Milán-Carrillo, J. (2020). Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in Mexican Amaranth. Plant Foods for Human Nutrition, 75(2), 192–199. https://doi.org/10.1007/s11130-020-00798-z
  • Sarker, U., Oba, S., & Daramy, M.A. (2020). Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-60252-7
  • Shewry, P.R. (2016). Protein chemistry of Dicotyledonous grains. Reference Module in Food Science, (1989), 466–472. https://doi.org/10.1016/b978-0-08-100596-5.00105-0
  • Silva, A.D., Ávila, S., Küster, R.T., dos Santos, M.P., Grassi, M.T., de Queiroz Pereira Pinto, C., … Ferreira, S.M.R. (2021). In vitro bioaccessibility of proteins, phenolics, flavonoids and antioxidant activity of Amaranthus viridis. Plant Foods for Human Nutrition, 76(4), 478–486. https://doi.org/10.1007/s11130-021-00924-5
  • Singleton, V.L., Orthofer, R., & Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/j.scienta.2016.11.004
  • Tipigil, E. (2015). İki Farklı Yöntem Kullanılarak Probiyotik Bakteri Mikroenkapsülasyonu ve Ayranda Depolama Periyodu Boyunca Hücre Stabilitesi Üzerine Etkilerinin Karşılaştırılması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, (Yüksek Lisans Tezi), İzmir, 87.
  • Turkmen, N., Sari, F., & Velioglu, Y.S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry, 99(4), 835–841. https://doi.org/10.1016/j.foodchem.2005.08.034
  • Ugural, A., & Akyol, A. (2022). Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics? Critical Reviews in Food Science and Nutrition, 62(7), 1725–1739. https://doi.org/10.1080/10408398.2020.1846493
  • Upasana, & Yadav, L. (2022). Pseudocereals: A Novel Path towards Healthy Eating. Pseudocereals, (April). https://doi.org/10.5772/intechopen.103708
  • Yeşil, S., & Levent, H. (2022). The influence of fermented buckwheat, quinoa and amaranth flour on gluten-free bread quality. LWT - Food Science and Technology, 160. https://doi.org/10.1016/j.lwt.2022.113301
Year 2024, Volume: 10 Issue: 2, 104 - 114, 03.04.2024
https://doi.org/10.3153/FH24010

Abstract

References

  • Aklan, A., & Aybastıer, Ö. (2023). Beyaz hindibadan (Cichorium intybus L.) antioksidan maddelerin ultrasonik destekli ekstraksiyon parametrelerinin kemometrik optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13, 553–565. https://doi.org/10.17714/gumusfenbil.1239972
  • Bekkering, C.S., & Tian, L. (2019). Thinking outside of the cereal box: Breeding underutilised (Pseudo) cereals for improved human nutrition. Frontiers in Genetics, 10(December), 1–7. https://doi.org/10.3389/fgene.2019.01289
  • Benzie, I.F.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
  • Boeing, J.S., Barizão, É.O., e Silva, B.C., Montanher, P.F., de Cinque Almeida, V., & Visentainer, J.V. (2014). Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chemistry Central Journal, 8(1), 1–9. https://doi.org/10.1186/s13065-014-0048-1
  • Çelik, S.E. (2011). Farklı tür, karışım ve çözücü ortamlarına uygulanabilen modifiye CUPRAC antioksidan kapasite ölçümleri. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, (Doktora Tezi), 193 sayfa.
  • Dantas, A.M., Mafaldo, I. ., Oliveira, P. . de L., Lima, M. dos S., Magnani, M., & Borges, G. da S. . (2019). Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chemistry, 274, 202–214. https://doi.org/10.1016/j.foodchem.2018.08.099
  • de Araújo, F.F., de Paulo Farias, D., Neri-Numa, I.A., Dias-Audibert, F.L., Delafiori, J., de Souza, F.G., … Pastore, G.M. (2021). Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit. LWT - Food Science and Technology, 135. https://doi.org/10.1016/j.lwt.2020.110230
  • Güçlü, K., Altun, M., Özyürek, M., Karademir, S.E., & Apak, R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot (Prunus armeniaca) assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41, 76–85. https://doi.org/10.1111/j.1365-2621.2006.01347.x
  • House, N.C., Puthenparampil, D., Malayil, D., & Narayanankutty, A. (2020). Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. South African Journal of Botany, 135, 408–412. https://doi.org/10.1016/j.sajb.2020.09.026
  • Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids, and proteins. Food Chemistry, 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013
  • Karaaslan, N.M., Karaaslan, M.G., & Ates, B. (2018). Effects of some extraction solvents on the antioxidant properties of strawberry fruit. International Journal of Pure and Applied Sciences, 4(2), 102–109. https://doi.org/10.29132/ijpas.354885
  • Karkar, B., & Şahin, S. (2022). Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. European Food Research and Technology, 248(1), 219–241. https://doi.org/10.1007/s00217-021-03875-y
  • Kocková, M., Dilongová, M., Hybenová, E., & Valík, L. (2013). Evaluation of cereals and pseudocereals suitability for the development of new probiotic foods. Journal of Chemistry, 2013, 414303. https://doi.org/10.1155/2013/414303
  • López-Mejía, O.A., López-Malo, A., & Palou, E. (2014). Antioxidant capacity of extracts from amaranth (Amaranthus et al.) seeds or leaves. Industrial Crops and Products, 53, 55–59. https://doi.org/10.1016/j.indcrop.2013.12.017
  • Malleshi, N.G., Agarwal, A., Tiwari, A., & Sood, S. (2020). Nutritional quality and health benefits. In Millets and Pseudo Cereals. Singh, M., Sood, S., Ed.; Woodhead Publishing, U.K., pp 159-168. ISBN: 978-0-12-820089-6159–168. https://doi.org/10.1016/B978-0-12-820089-6.00009-4
  • Olawoye, B., & Gbadamosi, S.O. (2020). Influence of processing on the physiochemical, functional and pasting properties of Nigerian Amaranthus viridis seed flour: a multivariate analysis approach. SN Applied Sciences, 2(4), 1–13. https://doi.org/10.1007/s42452-020-2418-8
  • Pavan, V.Ô., Sancho, R.A.S., & Pastore, G.M. (2014). The effect of invitro digestion on the antioxidant activity of fruit extracts (Carica papaya, Artocarpus heterophillus and Annona marcgravii). LWT - Food Science and Technology, 59(2P2), 1247–1251. https://doi.org/10.1016/j.lwt.2014.05.040
  • Peiretti, P.G., Meineri, G., Gai, F., Longato, E., & Amarowicz, R. (2017). Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Natural Product Research, 31(18), 2178–2182. https://doi.org/10.1080/14786419.2017.1278597
  • Petrova, P., & Petrov, K. (2020). Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients, 12(4), 1–26. https://doi.org/10.3390/nu12041118
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Ruth, O.N., Unathi, K., Nomali, N., & Chinsamy, M. (2021). Underutilization versus nutritional-nutraceutical potential of the amaranthus food plant: A mini-review. Applied Sciences, 11(15). https://doi.org/10.3390/app11156879
  • Sandoval-Sicairos, E.S., Domínguez-Rodríguez, M., Montoya-Rodríguez, A., Milán-Noris, A.K., Reyes-Moreno, C., & Milán-Carrillo, J. (2020). Phytochemical compounds and antioxidant activity modified by germination and hydrolysis in Mexican Amaranth. Plant Foods for Human Nutrition, 75(2), 192–199. https://doi.org/10.1007/s11130-020-00798-z
  • Sarker, U., Oba, S., & Daramy, M.A. (2020). Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-60252-7
  • Shewry, P.R. (2016). Protein chemistry of Dicotyledonous grains. Reference Module in Food Science, (1989), 466–472. https://doi.org/10.1016/b978-0-08-100596-5.00105-0
  • Silva, A.D., Ávila, S., Küster, R.T., dos Santos, M.P., Grassi, M.T., de Queiroz Pereira Pinto, C., … Ferreira, S.M.R. (2021). In vitro bioaccessibility of proteins, phenolics, flavonoids and antioxidant activity of Amaranthus viridis. Plant Foods for Human Nutrition, 76(4), 478–486. https://doi.org/10.1007/s11130-021-00924-5
  • Singleton, V.L., Orthofer, R., & Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/j.scienta.2016.11.004
  • Tipigil, E. (2015). İki Farklı Yöntem Kullanılarak Probiyotik Bakteri Mikroenkapsülasyonu ve Ayranda Depolama Periyodu Boyunca Hücre Stabilitesi Üzerine Etkilerinin Karşılaştırılması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, (Yüksek Lisans Tezi), İzmir, 87.
  • Turkmen, N., Sari, F., & Velioglu, Y.S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry, 99(4), 835–841. https://doi.org/10.1016/j.foodchem.2005.08.034
  • Ugural, A., & Akyol, A. (2022). Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics? Critical Reviews in Food Science and Nutrition, 62(7), 1725–1739. https://doi.org/10.1080/10408398.2020.1846493
  • Upasana, & Yadav, L. (2022). Pseudocereals: A Novel Path towards Healthy Eating. Pseudocereals, (April). https://doi.org/10.5772/intechopen.103708
  • Yeşil, S., & Levent, H. (2022). The influence of fermented buckwheat, quinoa and amaranth flour on gluten-free bread quality. LWT - Food Science and Technology, 160. https://doi.org/10.1016/j.lwt.2022.113301
There are 31 citations in total.

Details

Primary Language English
Subjects Food Biotechnology
Journal Section Research Articles
Authors

Büşra Karkar 0000-0001-6547-5558

Early Pub Date February 29, 2024
Publication Date April 3, 2024
Submission Date August 17, 2023
Published in Issue Year 2024Volume: 10 Issue: 2

Cite

APA Karkar, B. (2024). The effect of amaranth, a pseudo-cereal, on the activity of L. acidophilus probiotic bacteria and its antioxidant activity in the gastrointestinal digestion process. Food and Health, 10(2), 104-114. https://doi.org/10.3153/FH24010

16339

Journal is licensed under a

CreativeCommons Attribtion-ShareAlike 4.0 International Licence  14627 1331027042
Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

27222

Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).