Research Article
PDF EndNote BibTex Cite

Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi

Year 2022, Volume 8, Issue 3, 181 - 192, 01.07.2022
https://doi.org/10.3153/FH22018

Abstract

Bu çalışmanın amacı, vakumlu emdirim yöntemi ile patates dilimlerinin literatür çalışmalarınca insan sağlığı üzerine olan faydalı etkileri kanıtlanmış olan C ve D vitaminlerince zenginleştirilmesidir. Bu amaçla C ve D vitamini içeren solüsyonlarla vakumlu emdirim yapılan patates örneklerinin, vitamin içerikleri ile antioksidan kapasiteleri belirlenmiştir. Ayrıca örnekler buharda ve derin yağda kızartılarak pişirilmiş, pişirme kayıpları belirlenmiş ve pişirilen örneklere duyusal analizler yapılmıştır. Vakumlu emdirim uygulanmamış patates dilimlerinin C vitamini içeriği 14.13±0.08 mg/100g olarak belirlenirken, vakumlu emdirme işlemi ile bu miktar %65 oranında arttırılarak 39.42±0.15 mg/100g olarak belirlenmiştir. Patates dilimlerinin kontrol örneğinde tespit limit değerinin (LOD) altında olan D vitamini içerikleri vakumlu emdirim işlemi ile yaklaşık 6 kat arttırılmıştır. Kontrol örneğine göre vakumlu emdirim uygulanan örneklerin antioksidan kapasite değerlerinde de artış (DPPH yönteminde yaklaşık %23 oranında ve ABTS yönteminde yaklaşık %6.5 oranında) gözlenmiştir. Buharda pişirme yönteminde vitamin içeriğinde oldukça düşük kayıplar gözlenirken, kızartma işleminde D vitamini içeriği yarı yarıya azalmıştır. Duyusal analizler sonucunda vakumlu emdirim uygulanan örneklerle kontrol örneği arasında istatistiki açıdan fark bulunamamıştır. Genel beğeni skorları değerlendirildiğinde panelistler tarafından en çok beğenilen örnekler derin yağda kızartılan örnekler olmuştur.

References

  • Abobaker, A., Alzwi, A., Alraied, A.H.A. (2020). Overview of the possible role of vitamin C in management of COVID-19. Pharmacological Reports, 1-12. https://doi.org/10.1007/s43440-020-00176-1
  • Aburjai, T., Al-Khalil, S., Abuirjeie, M. (1998). Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves. Phytochemistry, 49(8), 2497-2499. https://doi.org/10.1016/S0031-9422(98)00246-5
  • Barat, J.M., Talens, P., Barrera, C., Chiralt, A., Fito, P. (2002). Pineapple candying at mild temperature by applying vacuum impregnation. Journal of Food Science, 67(8), 3046-3052. https://doi.org/10.1111/j.1365-2621.2002.tb08857.x
  • Barba, F.J., Esteve, M.J., Frígola, A. (2011). Determination of vitamins E (α-, γ-and δ-tocopherol) and D (cholecalciferol and ergocalciferol) by liquid chromatography in milk, fruit juice and vegetable beverage. European Food Research and Technology, 232(5), 829-836. https://doi.org/10.1007/s00217-011-1450-8
  • Barba, F.J., Esteve, M.J., Frigola, A. (2012). Impact of high-pressure processing on vitamin E (α-, γ-, and δ-tocopherol), vitamin D (cholecalciferol and ergocalciferol), and fatty acid profiles in liquid foods. Journal of Agricultural and Food Chemistry, 60(14), 3763-3768. https://doi.org/10.1021/jf205355h
  • Bauer, S.R., Kapoor, A., Rath, M., Thomas, S.A. (2020). What is the role of supplementation with ascorbic acid, zinc, vitamin D, or N-acetylcysteine for prevention or treatment of COVID-19?. Cleveland Clinic Journal of Medicine, 1-3. https://doi.org/10.3949/ccjm.87a.ccc046
  • Bellary, A.N., Indiramma, A.R., Prakash, M., Baskaran, R., Rastogi, N.K. (2016). Anthocyanin infused watermelon rind and its stability during storage. Innovative Food Science & Emerging Technologies, 33, 554-562. https://doi.org/10.1016/j.ifset.2015.10.010
  • Bendich, A., Langseth, L. (1995). The health effects of vitamin C supplementation: a review. Journal of the American College of Nutrition, 14(2), 124-136. https://doi.org/10.1080/07315724.1995.10718484
  • Betoret, N., Puente, L., Dıaz, M., Pagán, M., Garcıa, M., Gras, M., Martı́nez-Monzó, J., Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2), 273-277. https://doi.org/10.1016/S0260-8774(02)00268-6
  • Blanda, G., Cerretani, L., Bendini, A., Cardinali, A., Scarpellini, A., Lercker, G. (2008). Effect of vacuum impregnation on the phenolic content of Granny Smith and Stark Delicious frozen apple cvv. European Food Research and Technology, 226(5), 1229-1237. https://doi.org/10.1007/s00217-007-0624-x
  • Boland, R., Skliar, M., Curino, A., Milanesi, L. (2003). Vitamin D compounds in plants. Plant Science, 164(3), 357-369. https://doi.org/10.1016/S0168-9452(02)00420-X
  • Bough, R.A., Holm, D.G., Jayanty, S.S. (2020). Evaluation of cooked flavor for fifteen potato genotypes and the correlation of sensory analysis to instrumental methods. American Journal of Potato Research, 97(1), 63-77. https://doi.org/10.1007/s12230-019-09757-0
  • Burg, P., Fraile, P. (1995). Vitamin C destruction during the cooking of a potato dish. LWT-Food Science and Technology, 28(5), 506-514. https://doi.org/10.1006/fstl.1995.0085
  • Cortés, M., Herrera, E., Rodríguez, E. (2015). Experimental optimization of the freeze dry process of cape gooseberry added with active compounds by vacuum impregnation. Vitae, 22(1), 47-56. https://doi.org/10.17533/udea.vitae.v22n1a06
  • Duarte-Correa, Y., Díaz-Osorio, A., Osorio-Arias, J., Sobral, P.J., Vega-Castro, O. (2020). Development of fortified low-fat potato chips through vacuum impregnation and microwave vacuum drying. Innovative Food Science & Emerging Technologies, 64, 102437. https://doi.org/10.1016/j.ifset.2020.102437
  • Griffin, G., Hewison, M., Hopkin, J., Kenny, R., Quinton, R., Rhodes, J., Thickett, D. (2020). Vitamin D and COVID-19: evidence and recommendations for supplementation. Royal Society Open Science, 7(12), 201912. https://doi.org/10.1098/rsos.201912
  • Henríquez Arias, L. E., Patiño Gómez, J. H., Salazar, J. A. (2012). Application of the matrixes engineering on the development of minimally processed Hass avocado (Persea americana Mill) with additions of vitamin C and calcium. Revista Lasallista de Investigación, 9(2), 44-54.
  • Hironaka, K., Kikuchi, M., Koaze, H., Sato, T., Kojima, M., Yamamoto, K., Tsuda, S. (2011). Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation. Food Chemistry, 127(3), 1114-1118. https://doi.org/10.1016/j.foodchem.2011.01.111
  • Hironaka, K., Oda, Y., Koaze, H. (2014). Iron enrichment of whole potato tuber by vacuum impregnation. LWT-Food Science and Technology, 59(1), 504-509. https://doi.org/10.1016/j.lwt.2014.04.043
  • Hironaka, K., Koaze, H., Oda, Y., Shimada, K. (2015). Zinc enrichment of whole potato tuber by vacuum impregnation. Journal of Food Science and Technology, 52(4), 2352-2358. https://doi.org/10.1007/s13197-013-1194-5
  • Holick, M. F. (2011). Health benefits of vitamin D and sunlight: a D-bate. Nature Reviews Endocrinology, 7(2), 73-75. https://doi.org/10.1038/nrendo.2010.234
  • Ikanone, C.E.O., Oyekan, P.O. (2014). Effect of boiling and frying on the total carbohydrate, vitamin C and mineral contents of Irish (Solanun tuberosum) and sweet (Ipomea batatas) potato tubers. Nigerian Food Journal, 32(2), 33-39. https://doi.org/10.1016/S0189-7241(15)30115-6
  • Joshi, A.P.K., Rupasinghe, H.P.V., Pitts, N.L. (2010). Sensory and nutritional quality of the apple snacks prepared by vacuum impregnation process. Journal of Food Quality, 33(6), 758-767. https://doi.org/10.1111/j.1745-4557.2010.00349.x
  • Joshi, A., Kar, A., Rudra, S.G., Sagar, V.R., Varghese, E., Lad, M., Singh, B. (2016). Vacuum impregnation: a promising way for mineral fortification in potato porous matrix (potato chips). Journal of Food Science and Technology, 53(12), 4348-4353. https://doi.org/10.1007/s13197-016-2424-4
  • Külen, O., Stushnoff, C., Holm, D.G. (2013). Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. Journal of the Science of Food and Agriculture, 93(10), 2437-2444. https://doi.org/10.1002/jsfa.6053
  • Lopez, S.V., Moreira, R.G. (2019). Increased phenolic compounds in potato chips vacuum impregnated with green tea. Journal of Food Science, 84(4), 807-817. https://doi.org/10.1111/1750-3841.14492
  • Mashkour, M., Maghsoudlou, Y., Kashaninejad, M., Aalami, M. (2018). Effect of ultrasound pretreatment on iron fortification of potato using vacuum impregnation. Journal of Food Processing and Preservation, 42(5), e13590. https://doi.org/10.1111/jfpp.13590
  • Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2), 181-188. https://doi.org/10.1016/S0260-8774(02)00247-9
  • Mokhtari, Z., Hekmatdoost, A., Nourian, M. (2016). Antioxidant efficacy of vitamin D. Journal of Parathyroid Disease, 5(1), 11-16.
  • Moreira, R.G., Almohaimeed, S. (2018). Technology for processing of potato chips impregnated with red rootbeet phenolic compounds. Journal of Food Engineering, 228, 57-68. https://doi.org/10.1016/j.jfoodeng.2018.02.010
  • Naidu, K. A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal, 2(1), 1-10. https://doi.org/10.1186/1475-2891-2-7
  • Nawirska-Olszańska, A., Pasławska, M., Stępień, B., Oziembłowski, M., Sala, K., Smorowska, A. (2020). Effect of vacuum impregnation with apple-pear juice on content of bioactive compounds and antioxidant activity of dried chokeberry fruit. Foods, 9(1), 108. https://doi.org/10.3390/foods9010108
  • Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.H., Levine, M. (2003). Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18-35. https://doi.org/10.1080/07315724.2003.10719272
  • Panarese, V., Dejmek, P., Rocculi, P., Galindo, F. G. (2013). Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Science & Emerging Technologies, 18, 169-176. https://doi.org/10.1016/j.ifset.2013.01.008
  • Park, S.I., Kodihalli, I., Zhao, Y. (2005). Nutritional, sensory, and physicochemical properties of vitamin E‐and mineral‐fortified fresh‐cut apples by use of vacuum impregnation. Journal of Food Science, 70(9), S593-S599. https://doi.org/10.1111/j.1365-2621.2005.tb08334.x
  • Rahman, M.M., Khan, M.M.R., Hosain, M.M. (2007). Analysis of vitamin C (ascorbic acid) contents in various fruits and vegetables by UV-spectrophotometry. Bangladesh Journal of Scientific and Industrial Research, 42(4), 417-424. https://doi.org/10.3329/bjsir.v42i4.749
  • Rößle, C., Brunton, N., Gormley, T.R., Butler, F. (2011). Quality and antioxidant capacity of fresh‐cut apple wedges enriched with honey by vacuum impregnation. International Journal of Food Science & Technology, 46(3), 626-634. https://doi.org/10.1111/j.1365-2621.2010.02526.x
  • Salvatori, D., Andrés, A., Chiralt, A., Fito, P. (1998). The response of some properties of fruits to vacuum impregnation. Journal of Food Process Engineering, 21(1), 59-73. https://doi.org/10.1111/j.1745-4530.1998.tb00439.x
  • Senturk Parreidt, T., Schmid, M., Müller, K. (2018). Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon. Journal of Food Science, 83(4), 929-936. https://doi.org/10.1111/1750-3841.14091
  • Singh, U., Bradbury, J.H. (1988). HPLC determination of vitamin A and vitamin D2 in South Pacific root crops. Journal of the Science of Food and Agriculture, 45(1), 87-94. https://doi.org/10.1002/jsfa.2740450111
  • Türkiye Cumhuriyeti Tarım ve Orman Bakanlığı. (2019, Aralık). Dünyada patates. https://www.tarimorman.gov.tr/bugem/belgeler/m%c4%b0ll%c4%b0%20tarım/patates%20aralık%20b%c3%9clten%c4%b0.pdf adresinden alındı. (Erişim 03.09.2021).
  • Ursachi, C., Segal, R., Muresan, C. (2009). Vacuum impregnation viability of some fruits. Journal of Agroalimentary Processes and Technologies, 15(2), 316-319.
  • Xie, J., Zhao, Y. (2003). Nutritional enrichment of fresh apple (Royal Gala) by vacuum impregnation. International Journal of Food Sciences and Nutrition, 54(5), 387-398. https://doi.org/10.1080/09637480310001595261
  • Xie, J., Zhao, Y. (2004). Use of vacuum impregnation to develop high quality and nutritionally fortified frozen strawberries. Journal of Food Processing and Preservation, 28(2), 117-132. https://doi.org/10.1111/j.1745-4549.2004.tb00815.x
  • Yılmaz, F. M., Ersus Bilek, S. (2017). Vakumlu Emdirim (İmpregnasyon) Teknolojisinin Fonksiyonel Meyve ve Sebze Ürünlerinin Geliştirilmesinde Kullanımı. Akademik Gıda, 15(2), 163-171. https://doi.org/10.24323/akademik-gida.333673
  • Yılmaz, F. M., Bilek, S. E. (2018). Ultrasound-assisted vacuum impregnation on the fortification of fresh-cut apple with calcium and black carrot phenolics. Ultrasonics Sonochemistry, 48, 509-516. https://doi.org/10.1016/j.ultsonch.2018.07.007
  • Zhao, Y., Xie, J. (2004). Practical applications of vacuum impregnation in fruit and vegetable processing. Trends in Food Science & Technology, 15(9), 434-451. https://doi.org/10.1016/j.tifs.2004.01.008

Enrichment of potato slices with vitamins C and D by vacuum impregnation

Year 2022, Volume 8, Issue 3, 181 - 192, 01.07.2022
https://doi.org/10.3153/FH22018

Abstract

This study aims to enrich the potato slices with vitamins C and D, whose beneficial effects on human health have been proven by literature studies, using the vacuum impregnation method. For this purpose, the vitamin contents and antioxidant capacities of potato samples vacuum impregnated with solutions containing vitamins C and D were determined. In addition, the samples were cooked by steaming and deep-fried, cooking losses were determined, and sensory analyzes were carried out on the cooked samples. While the vitamin C content of potato slices without vacuum impregnation was determined as 14.13±0.08 mg/100g, this amount was increased by 65% with the vacuum impregnation process and determined as 39.42±0.15 mg/100g. The vitamin D contents of the potato slices, which were below the limit of detection value (LOD) in the control sample, were increased approximately six times by the vacuum impregnation process. The antioxidant capacity values of the vacuum impregnated samples were also increased (approximately 23% in the DPPH method and approximately 6.5% in the ABTS method) compared to the control sample. While very low losses were observed in the vitamin content in the steam cooking method, the vitamin D content was reduced by half in the frying process. As a result of sensory analysis, no statistical difference was found between the vacuum-impregnated samples and the control sample. When the general appreciation scores were evaluated, the most liked samples by the panelists were deep-fried.

References

  • Abobaker, A., Alzwi, A., Alraied, A.H.A. (2020). Overview of the possible role of vitamin C in management of COVID-19. Pharmacological Reports, 1-12. https://doi.org/10.1007/s43440-020-00176-1
  • Aburjai, T., Al-Khalil, S., Abuirjeie, M. (1998). Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves. Phytochemistry, 49(8), 2497-2499. https://doi.org/10.1016/S0031-9422(98)00246-5
  • Barat, J.M., Talens, P., Barrera, C., Chiralt, A., Fito, P. (2002). Pineapple candying at mild temperature by applying vacuum impregnation. Journal of Food Science, 67(8), 3046-3052. https://doi.org/10.1111/j.1365-2621.2002.tb08857.x
  • Barba, F.J., Esteve, M.J., Frígola, A. (2011). Determination of vitamins E (α-, γ-and δ-tocopherol) and D (cholecalciferol and ergocalciferol) by liquid chromatography in milk, fruit juice and vegetable beverage. European Food Research and Technology, 232(5), 829-836. https://doi.org/10.1007/s00217-011-1450-8
  • Barba, F.J., Esteve, M.J., Frigola, A. (2012). Impact of high-pressure processing on vitamin E (α-, γ-, and δ-tocopherol), vitamin D (cholecalciferol and ergocalciferol), and fatty acid profiles in liquid foods. Journal of Agricultural and Food Chemistry, 60(14), 3763-3768. https://doi.org/10.1021/jf205355h
  • Bauer, S.R., Kapoor, A., Rath, M., Thomas, S.A. (2020). What is the role of supplementation with ascorbic acid, zinc, vitamin D, or N-acetylcysteine for prevention or treatment of COVID-19?. Cleveland Clinic Journal of Medicine, 1-3. https://doi.org/10.3949/ccjm.87a.ccc046
  • Bellary, A.N., Indiramma, A.R., Prakash, M., Baskaran, R., Rastogi, N.K. (2016). Anthocyanin infused watermelon rind and its stability during storage. Innovative Food Science & Emerging Technologies, 33, 554-562. https://doi.org/10.1016/j.ifset.2015.10.010
  • Bendich, A., Langseth, L. (1995). The health effects of vitamin C supplementation: a review. Journal of the American College of Nutrition, 14(2), 124-136. https://doi.org/10.1080/07315724.1995.10718484
  • Betoret, N., Puente, L., Dıaz, M., Pagán, M., Garcıa, M., Gras, M., Martı́nez-Monzó, J., Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2), 273-277. https://doi.org/10.1016/S0260-8774(02)00268-6
  • Blanda, G., Cerretani, L., Bendini, A., Cardinali, A., Scarpellini, A., Lercker, G. (2008). Effect of vacuum impregnation on the phenolic content of Granny Smith and Stark Delicious frozen apple cvv. European Food Research and Technology, 226(5), 1229-1237. https://doi.org/10.1007/s00217-007-0624-x
  • Boland, R., Skliar, M., Curino, A., Milanesi, L. (2003). Vitamin D compounds in plants. Plant Science, 164(3), 357-369. https://doi.org/10.1016/S0168-9452(02)00420-X
  • Bough, R.A., Holm, D.G., Jayanty, S.S. (2020). Evaluation of cooked flavor for fifteen potato genotypes and the correlation of sensory analysis to instrumental methods. American Journal of Potato Research, 97(1), 63-77. https://doi.org/10.1007/s12230-019-09757-0
  • Burg, P., Fraile, P. (1995). Vitamin C destruction during the cooking of a potato dish. LWT-Food Science and Technology, 28(5), 506-514. https://doi.org/10.1006/fstl.1995.0085
  • Cortés, M., Herrera, E., Rodríguez, E. (2015). Experimental optimization of the freeze dry process of cape gooseberry added with active compounds by vacuum impregnation. Vitae, 22(1), 47-56. https://doi.org/10.17533/udea.vitae.v22n1a06
  • Duarte-Correa, Y., Díaz-Osorio, A., Osorio-Arias, J., Sobral, P.J., Vega-Castro, O. (2020). Development of fortified low-fat potato chips through vacuum impregnation and microwave vacuum drying. Innovative Food Science & Emerging Technologies, 64, 102437. https://doi.org/10.1016/j.ifset.2020.102437
  • Griffin, G., Hewison, M., Hopkin, J., Kenny, R., Quinton, R., Rhodes, J., Thickett, D. (2020). Vitamin D and COVID-19: evidence and recommendations for supplementation. Royal Society Open Science, 7(12), 201912. https://doi.org/10.1098/rsos.201912
  • Henríquez Arias, L. E., Patiño Gómez, J. H., Salazar, J. A. (2012). Application of the matrixes engineering on the development of minimally processed Hass avocado (Persea americana Mill) with additions of vitamin C and calcium. Revista Lasallista de Investigación, 9(2), 44-54.
  • Hironaka, K., Kikuchi, M., Koaze, H., Sato, T., Kojima, M., Yamamoto, K., Tsuda, S. (2011). Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation. Food Chemistry, 127(3), 1114-1118. https://doi.org/10.1016/j.foodchem.2011.01.111
  • Hironaka, K., Oda, Y., Koaze, H. (2014). Iron enrichment of whole potato tuber by vacuum impregnation. LWT-Food Science and Technology, 59(1), 504-509. https://doi.org/10.1016/j.lwt.2014.04.043
  • Hironaka, K., Koaze, H., Oda, Y., Shimada, K. (2015). Zinc enrichment of whole potato tuber by vacuum impregnation. Journal of Food Science and Technology, 52(4), 2352-2358. https://doi.org/10.1007/s13197-013-1194-5
  • Holick, M. F. (2011). Health benefits of vitamin D and sunlight: a D-bate. Nature Reviews Endocrinology, 7(2), 73-75. https://doi.org/10.1038/nrendo.2010.234
  • Ikanone, C.E.O., Oyekan, P.O. (2014). Effect of boiling and frying on the total carbohydrate, vitamin C and mineral contents of Irish (Solanun tuberosum) and sweet (Ipomea batatas) potato tubers. Nigerian Food Journal, 32(2), 33-39. https://doi.org/10.1016/S0189-7241(15)30115-6
  • Joshi, A.P.K., Rupasinghe, H.P.V., Pitts, N.L. (2010). Sensory and nutritional quality of the apple snacks prepared by vacuum impregnation process. Journal of Food Quality, 33(6), 758-767. https://doi.org/10.1111/j.1745-4557.2010.00349.x
  • Joshi, A., Kar, A., Rudra, S.G., Sagar, V.R., Varghese, E., Lad, M., Singh, B. (2016). Vacuum impregnation: a promising way for mineral fortification in potato porous matrix (potato chips). Journal of Food Science and Technology, 53(12), 4348-4353. https://doi.org/10.1007/s13197-016-2424-4
  • Külen, O., Stushnoff, C., Holm, D.G. (2013). Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. Journal of the Science of Food and Agriculture, 93(10), 2437-2444. https://doi.org/10.1002/jsfa.6053
  • Lopez, S.V., Moreira, R.G. (2019). Increased phenolic compounds in potato chips vacuum impregnated with green tea. Journal of Food Science, 84(4), 807-817. https://doi.org/10.1111/1750-3841.14492
  • Mashkour, M., Maghsoudlou, Y., Kashaninejad, M., Aalami, M. (2018). Effect of ultrasound pretreatment on iron fortification of potato using vacuum impregnation. Journal of Food Processing and Preservation, 42(5), e13590. https://doi.org/10.1111/jfpp.13590
  • Menrad, K. (2003). Market and marketing of functional food in Europe. Journal of Food Engineering, 56(2), 181-188. https://doi.org/10.1016/S0260-8774(02)00247-9
  • Mokhtari, Z., Hekmatdoost, A., Nourian, M. (2016). Antioxidant efficacy of vitamin D. Journal of Parathyroid Disease, 5(1), 11-16.
  • Moreira, R.G., Almohaimeed, S. (2018). Technology for processing of potato chips impregnated with red rootbeet phenolic compounds. Journal of Food Engineering, 228, 57-68. https://doi.org/10.1016/j.jfoodeng.2018.02.010
  • Naidu, K. A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal, 2(1), 1-10. https://doi.org/10.1186/1475-2891-2-7
  • Nawirska-Olszańska, A., Pasławska, M., Stępień, B., Oziembłowski, M., Sala, K., Smorowska, A. (2020). Effect of vacuum impregnation with apple-pear juice on content of bioactive compounds and antioxidant activity of dried chokeberry fruit. Foods, 9(1), 108. https://doi.org/10.3390/foods9010108
  • Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.H., Levine, M. (2003). Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18-35. https://doi.org/10.1080/07315724.2003.10719272
  • Panarese, V., Dejmek, P., Rocculi, P., Galindo, F. G. (2013). Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation. Innovative Food Science & Emerging Technologies, 18, 169-176. https://doi.org/10.1016/j.ifset.2013.01.008
  • Park, S.I., Kodihalli, I., Zhao, Y. (2005). Nutritional, sensory, and physicochemical properties of vitamin E‐and mineral‐fortified fresh‐cut apples by use of vacuum impregnation. Journal of Food Science, 70(9), S593-S599. https://doi.org/10.1111/j.1365-2621.2005.tb08334.x
  • Rahman, M.M., Khan, M.M.R., Hosain, M.M. (2007). Analysis of vitamin C (ascorbic acid) contents in various fruits and vegetables by UV-spectrophotometry. Bangladesh Journal of Scientific and Industrial Research, 42(4), 417-424. https://doi.org/10.3329/bjsir.v42i4.749
  • Rößle, C., Brunton, N., Gormley, T.R., Butler, F. (2011). Quality and antioxidant capacity of fresh‐cut apple wedges enriched with honey by vacuum impregnation. International Journal of Food Science & Technology, 46(3), 626-634. https://doi.org/10.1111/j.1365-2621.2010.02526.x
  • Salvatori, D., Andrés, A., Chiralt, A., Fito, P. (1998). The response of some properties of fruits to vacuum impregnation. Journal of Food Process Engineering, 21(1), 59-73. https://doi.org/10.1111/j.1745-4530.1998.tb00439.x
  • Senturk Parreidt, T., Schmid, M., Müller, K. (2018). Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon. Journal of Food Science, 83(4), 929-936. https://doi.org/10.1111/1750-3841.14091
  • Singh, U., Bradbury, J.H. (1988). HPLC determination of vitamin A and vitamin D2 in South Pacific root crops. Journal of the Science of Food and Agriculture, 45(1), 87-94. https://doi.org/10.1002/jsfa.2740450111
  • Türkiye Cumhuriyeti Tarım ve Orman Bakanlığı. (2019, Aralık). Dünyada patates. https://www.tarimorman.gov.tr/bugem/belgeler/m%c4%b0ll%c4%b0%20tarım/patates%20aralık%20b%c3%9clten%c4%b0.pdf adresinden alındı. (Erişim 03.09.2021).
  • Ursachi, C., Segal, R., Muresan, C. (2009). Vacuum impregnation viability of some fruits. Journal of Agroalimentary Processes and Technologies, 15(2), 316-319.
  • Xie, J., Zhao, Y. (2003). Nutritional enrichment of fresh apple (Royal Gala) by vacuum impregnation. International Journal of Food Sciences and Nutrition, 54(5), 387-398. https://doi.org/10.1080/09637480310001595261
  • Xie, J., Zhao, Y. (2004). Use of vacuum impregnation to develop high quality and nutritionally fortified frozen strawberries. Journal of Food Processing and Preservation, 28(2), 117-132. https://doi.org/10.1111/j.1745-4549.2004.tb00815.x
  • Yılmaz, F. M., Ersus Bilek, S. (2017). Vakumlu Emdirim (İmpregnasyon) Teknolojisinin Fonksiyonel Meyve ve Sebze Ürünlerinin Geliştirilmesinde Kullanımı. Akademik Gıda, 15(2), 163-171. https://doi.org/10.24323/akademik-gida.333673
  • Yılmaz, F. M., Bilek, S. E. (2018). Ultrasound-assisted vacuum impregnation on the fortification of fresh-cut apple with calcium and black carrot phenolics. Ultrasonics Sonochemistry, 48, 509-516. https://doi.org/10.1016/j.ultsonch.2018.07.007
  • Zhao, Y., Xie, J. (2004). Practical applications of vacuum impregnation in fruit and vegetable processing. Trends in Food Science & Technology, 15(9), 434-451. https://doi.org/10.1016/j.tifs.2004.01.008

Details

Primary Language Turkish
Subjects Food Science and Technology
Journal Section Research Articles
Authors

Zehra GÜNEL> (Primary Author)
Konya Gıda ve Tarım Üniversitesi, Mühendislik ve Mimarlık Fakültesi, Gıda Mühendisliği Bölümü
0000-0002-3431-7984
Türkiye

Publication Date July 1, 2022
Application Date September 12, 2021
Acceptance Date February 14, 2022
Published in Issue Year 2022, Volume 8, Issue 3

Cite

Bibtex @research article { jfhs994422, journal = {Food and Health}, eissn = {2602-2834}, address = {Vidin Caddesi No:28 D:4 Kocamustafapaşa 34107 Fatih İstanbul}, publisher = {Özkan ÖZDEN}, year = {2022}, volume = {8}, number = {3}, pages = {181 - 192}, doi = {10.3153/FH22018}, title = {Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi}, key = {cite}, author = {Günel, Zehra} }
APA Günel, Z. (2022). Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi . Food and Health , 8 (3) , 181-192 . DOI: 10.3153/FH22018
MLA Günel, Z. "Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi" . Food and Health 8 (2022 ): 181-192 <http://jfhs.scientificwebjournals.com/en/pub/issue/69254/994422>
Chicago Günel, Z. "Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi". Food and Health 8 (2022 ): 181-192
RIS TY - JOUR T1 - Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi AU - Zehra Günel Y1 - 2022 PY - 2022 N1 - doi: 10.3153/FH22018 DO - 10.3153/FH22018 T2 - Food and Health JF - Journal JO - JOR SP - 181 EP - 192 VL - 8 IS - 3 SN - -2602-2834 M3 - doi: 10.3153/FH22018 UR - https://doi.org/10.3153/FH22018 Y2 - 2022 ER -
EndNote %0 Food and Health Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi %A Zehra Günel %T Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi %D 2022 %J Food and Health %P -2602-2834 %V 8 %N 3 %R doi: 10.3153/FH22018 %U 10.3153/FH22018
ISNAD Günel, Zehra . "Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi". Food and Health 8 / 3 (July 2022): 181-192 . https://doi.org/10.3153/FH22018
AMA Günel Z. Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi. Food Health. 2022; 8(3): 181-192.
Vancouver Günel Z. Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi. Food and Health. 2022; 8(3): 181-192.
IEEE Z. Günel , "Vakumlu emdirim tekniği ile patates dilimlerinin C ve D vitaminlerince zenginleştirilmesi", Food and Health, vol. 8, no. 3, pp. 181-192, Jul. 2022, doi:10.3153/FH22018

ustresim_2021_1.png

journal is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14627 13310

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.