Research Article
PDF EndNote BibTex RIS Cite

PVP/PVA blended hydrogels as a biofilm for use in food packaging applications

Year 2022, Volume 8, Issue 3, 172 - 180, 01.07.2022
https://doi.org/10.3153/FH22017

Abstract

Bio-films have been produced that attract attention with their functional behavior among conventional food packaging materials of bio-based polymer blends. The physical and morphological properties of copolymeric biofilms have been extensively investigated. Biodegradable polymer and copolymer films were produced by in situ polymerization technique and prepared as solution casting. The strong water absorbency of polyvinyl alcohol and the antimicrobial property of polyvinylpyrrolidone are combined in a single material. Structural and morphological properties of the films were characterized by Fourier-Transform Infrared Spectroscopy and Scanning Electron Microscope analysis. These results show that the films obtained can be used as an environmentally friendly bio-based polymer blend packaging material to extend the shelf life of food products.

References

  • Aloui, H., Khwaldia, K., Hamdi, M., Fortunati, E., Kenny, J.M. (2016). Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA-based nanocomposites. ACS Sustainable Chemistry & Engineering, 4(3), 794-800. https://doi.org/10.1021/acssuschemeng.5b00806
  • Alves, N.M., Mano, J.F. (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 43, 401-414. https://doi.org/10.1016/j.ijbiomac.2008.09.007
  • Bandatang, N., Pongsomboon, S., Jumpapaeng, P. (2021). Antimicrobial electrospun nanofiber mats of NaOH-hydrolyzed chitosan (HCS)/PVP/PVA incorporated with in-situ synthesized AgNPs: Fabrication, characterization, and antibacterial activity. International Journal of Biological Macromolecules, 190, 585-600. https://doi.org/10.1016/j.ijbiomac.2021.08.209
  • Batista, R.A., Judith, P., Espitia, P., Souza, J. De, Quintans, S., Machado, M., Cordeiro, J. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 205, 106-116. https://doi.org/10.1016/j.carbpol.2018.10.006
  • Bellelli, M., Licciardello, F., Pulvirenti, A., Fava, P. (2018). Properties of poly (vinyl alcohol ) films as determined by thermal curing and addition of polyfunctional organic acids. Food Packaging and Shelf Life, 18, 95-100. https://doi.org/10.1016/j.fpsl.2018.10.004
  • Bergmann, M. (2015). Marine Anthropogenic Litter. Springer, ISBN 978-3-319-16509-7. https://doi.org/10.1007/978-3-319-16510-3
  • Bodbodak, S., Rafiee, Z. (2016). Recent trends in active packaging in fruits and vegetables. In M. W. Siddiqui (Ed.), Eco-Friendly Technology for Postharvest Produce Quality, 77-125. https://doi.org/10.1016/B978-0-12-804313-4.00003-7
  • Brine, T.O., Thompson, R.C. (2010). Degradation of plastic carrier bags in the marine environment. Marine Pollution Bulletin, 60(12), 2279-2283. https://doi.org/10.1016/j.marpolbul.2010.08.005
  • Caló, E., Khutoryanskiy, V.V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252-267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
  • Carla, I., Souza, L., Fernandes, M., Souza, R.G. De, Cleveilton, J., Santos, D., Albuquerque-júnior, R.L.C. De. (2013). Effect of the maltodextrin-induced chemical reticulation on the physical properties and healing potential of collagen-based membranes containing Brazilian red propolis extract. Global Journal of Medicine and Medical Sciences, 1(1), 44-54.
  • Chang, C., Zhang, L. (2011). Cellulose-based hydrogels : Present status and application prospects. Carbohydrate Polymers, 84(1), 40-53. https://doi.org/10.1016/j.carbpol.2010.12.023
  • Chen, Y., Tang, H., Liu, Y., Tan, H. (2016). Preparation and study on the volume phase transition properties of novel carboxymethyl chitosan grafted polyampholyte superab-sorbent polymers. Journal of the Taiwan Institute of Chemical Engineers, 59, 569-577. https://doi.org/10.1016/j.jtice.2015.09.011
  • Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E. (2011). Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981-1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001
  • Deligkaris, K., Tadele, T.S., Olthuis, W., Berg, A. Van Den. (2010). Hydrogel-based devices for biomedical applications. Sensors & Actuators: B. Chemical, 147(2), 765-774. https://doi.org/10.1016/j.snb.2010.03.083
  • Dilkes-Hoffman, L.S., Lane, J.L., Grant, T., Pratt, S., Lant, P.A. (2018). Environmental impact of biodegradable food packaging when considering food waste. Journal of Cleaner Production, 180, 325-334. https://doi.org/10.1016/j.jclepro.2018.01.169
  • Feng, E., Ma, G., Wu, Y., Wang, H., Lei, Z. (2014). Preparation and properties of organic-inorganic composite superabsorbent based on xanthan gum and loess. Carbohydrate Polymers, 111, 463-468. https://doi.org/10.1016/j.carbpol.2014.04.031
  • Fischer, F., Bauer, S. (2009). Ein tausendsassa in der chemie polyvinylpyrrolidon. Chem. Unserer Zeit, 43, 376-383. https://doi.org/10.1002/ciuz.200900492
  • Gregorova, A., Saha, N., Kitano, T., Saha, P. (2015). Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydrate Polymers, 117, 559-568. https://doi.org/10.1016/j.carbpol.2014.10.009
  • Guilherme, M.R., Aouada, F.A., Fajardo, A.R., Martins, A.F., Paulino, A.T., Davi, M.F.T., Muniz, E.C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier : A review. European Polymer Journal, 72, 365-385. https://doi.org/10.1016/j.eurpolymj.2015.04.017
  • Gulrez, S.K., Al-Assaf, S., Phillips, G.O. (2021). Hydro-gels: methods of preparation, characterization and applica-tions. Progress in Molecular and Environmental Bioengineering– From Analysis and Modeling to Technology Applications, 117-150. https://doi.org/10.5772/24553
  • Haghighi, H., Gullo, M., La, S., Pfeifer, F., Wilhelm, H., Licciardello, F., Pulvirenti, A. (2021). Characterization of bio-nanocomposite films based on gelatin / polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocolloids, 113, 106454. https://doi.org/10.1016/j.foodhyd.2020.106454
  • Haghighi, H., Kameni, S., Pfeifer, F., Wilhelm, H., Licciardello, F., Fava, P., Pulvirenti, A. (2020). Food Hydrocolloids Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, 100, 105419. https://doi.org/10.1016/j.foodhyd.2019.105419
  • Hebeish, A., Hashem, M., El-hady, M.M.A., Sharaf, S. (2013). Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydrate Polymers, 92(1), 407-413. https://doi.org/10.1016/j.carbpol.2012.08.094
  • Hoare, T.R., Kohane, D.S. (2008). Hydrogels in drug delivery : Progress and challenges. Polymer, 49(8), 1993-2007. https://doi.org/10.1016/j.polymer.2008.01.027
  • Jayakumar, A., Heera, K.V., Sumi, T.S., Joseph, M., Mathew, S., Praveen, G., Radhakrishnan, E.K., (2019). Starch-PVA composite fi lms with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. International Journal of Biological Macromolecules, 136, 395–403. https://doi.org/10.1016/j.ijbiomac.2019.06.018
  • Kabiri, K., Omidian, H., Zohuriaan-Mehr, M.J., Dorou-diani, S. (2011). Superabsorbent Hydrogel Composites and Nanocomposites: A Review. Polymer Composites, 32, 277-289. https://doi.org/10.1002/pc.21046
  • Kalia, S., (2016). Polymeric Hydrogels as Smart Biomaterials. Springer Series on Polymer and Composite Materials, ISBN: 978-3-319-25322-0. https://doi.org/10.1007/978-3-319-25322-0
  • Kanatt, S.R., Rao, M.S., Chawla, S.P., Sharma, A. (2012). Food Hydrocolloids Active chitosan e polyvinyl alcohol fi lms with natural extracts. Food Hydrocolloids, 29(2), 290-297. https://doi.org/10.1016/j.foodhyd.2012.03.005
  • Keipert, S., Voigt, R. (1979). Interactions between macromolecular adjuvants and drugs. Part 18: The binding behavior of sodium carboxymethylcellulose and other macromolecules towards streptomycin sulphate (author’s transl). Die Pharmazie, 34(9), 548-551.
  • Li, Y., Dong, Q., Chen, J., Li, L. (2020). Effects of coaxial electrospun eugenol loaded core-sheath PVP / shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biology and Technology, 159, 111028. https://doi.org/10.1016/j.postharvbio.2019.111028
  • Mahdavinia, G.R., Mousavi, S.B., Karimi, F., Marandi, G.B., Garabaghi, H., Shahabvand, S. (2009). Synthesis of porous poly ( acrylamide ) hydrogels using calcium carbonate and its application for slow release of potassium nitrate. eXPRESS Polymer Letters, 3(5), 279-285. https://doi.org/10.3144/expresspolymlett.2009.35
  • Nunes, P. S., Silva, A., Cristina, J., Souza, C. De, Vasconcelos, B., Monteiro, T., Araújo, D.S. (2016). Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. International Journal of Pharmaceutics, 513, 473-482. https://doi.org/10.1016/j.ijpharm.2016.09.040
  • Park, K.S., Choi, E.M., Kim, J.Y., Choi, S.H., (2016). Study on the containers and packaging of natural materials. Food & Beverage Packaging, 7, 7110. https://doi.org/10.4172/2157-7110.C1.039
  • Portillo-Rodríguez, B., Sanchez-Vasquez, J.D., Reyes-Reyes, M., Lopez-Sandoval, R. (2022). The effect of the PVA hydrolysis degree on the electrical properties of organic resistive memories based on PVA + CNT composites. Diamond & Related Materials, 121, 108720. https://doi.org/10.1016/j.diamond.2021.108720
  • Porto, N., Carla, N., Cruz, S. (2017). Usnic acid-incorporated alginate and gelatin sponges prepared by freeze-drying for biomedical applications. Journal of Thermal Analysis and Calorimetry, 1707-1713. https://doi.org/10.1007/s10973-016-5760-8
  • Rodríguez-vázquez, M., Vega-ruiz, B., Ramos-zúñiga, R., Saldaña-koppel, D.A., Quiñones-olvera, L.F. (2015). Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Hindawi Publishing Corporation BioMed Research International, 2015, 1-15. https://doi.org/10.1155/2015/821279
  • Saha, P., Gregorava, A., Saha, N., Kitano, T. (2015). Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydrate Polymers, 117, 559-568. https://doi.org/10.1016/j.carbpol.2014.10.009
  • Shkolnik, S. (1992). Radiation effects on polymers (ACS Symposium Series 475), by R. L. Clough and S. W. Shalaby (eds), American Chemical Society, Washington, DC (1991), 633. Polymers for Advanced Technologies, 3, 191-192.
  • Ng, W.L., Yeong, W.Y., Naing, M.W. (2016). Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Procedia CIRP, 49, 105-112. https://doi.org/10.1016/j.procir.2015.09.002
  • Sunitha, N., Jeba Jeevitha R.S. (2017). Study on the performance of PVA/PVP blends at different drying temperature. International Journal of Latest Trends in Engineering and Technology, 233-238.
  • Ullah, F., Othman, M.B.H., Javed, F., Ahmad, Z., Akil, H.M. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering C, 57, 414-433. https://doi.org/10.1016/j.msec.2015.07.053
  • Volova, T.G., Boyandin, A.N., Vasiliev, A.D., Karpov, V.A., Prudnikova, S.V, Mishukova, O.V, Gitelson, I.I. (2010). Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polymer Degradation and Stability, 95, 2350-2359. https://doi.org/10.1016/j.polymdegradstab.2010.08.023
  • Wang, M., Xu, L., Hu, H., Zhai, M., Peng, J. (2007). Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nuclear Instruments and Methods in Physics Research B, 265, 385-389. https://doi.org/10.1016/j.nimb.2007.09.009
  • World Health Organization (WHO) Food and Agriculture Organization (FAO) of the United Nations. (‎2004)‎. Evaluation of certain food additives and contaminants: sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, ISBN: 9241209224, 922, 176.
  • Yuan, P., Tan, D., Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes : recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. https://doi.org/10.1016/j.clay.2015.05.001

Year 2022, Volume 8, Issue 3, 172 - 180, 01.07.2022
https://doi.org/10.3153/FH22017

Abstract

References

  • Aloui, H., Khwaldia, K., Hamdi, M., Fortunati, E., Kenny, J.M. (2016). Synergistic effect of halloysite and cellulose nanocrystals on the functional properties of PVA-based nanocomposites. ACS Sustainable Chemistry & Engineering, 4(3), 794-800. https://doi.org/10.1021/acssuschemeng.5b00806
  • Alves, N.M., Mano, J.F. (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 43, 401-414. https://doi.org/10.1016/j.ijbiomac.2008.09.007
  • Bandatang, N., Pongsomboon, S., Jumpapaeng, P. (2021). Antimicrobial electrospun nanofiber mats of NaOH-hydrolyzed chitosan (HCS)/PVP/PVA incorporated with in-situ synthesized AgNPs: Fabrication, characterization, and antibacterial activity. International Journal of Biological Macromolecules, 190, 585-600. https://doi.org/10.1016/j.ijbiomac.2021.08.209
  • Batista, R.A., Judith, P., Espitia, P., Souza, J. De, Quintans, S., Machado, M., Cordeiro, J. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 205, 106-116. https://doi.org/10.1016/j.carbpol.2018.10.006
  • Bellelli, M., Licciardello, F., Pulvirenti, A., Fava, P. (2018). Properties of poly (vinyl alcohol ) films as determined by thermal curing and addition of polyfunctional organic acids. Food Packaging and Shelf Life, 18, 95-100. https://doi.org/10.1016/j.fpsl.2018.10.004
  • Bergmann, M. (2015). Marine Anthropogenic Litter. Springer, ISBN 978-3-319-16509-7. https://doi.org/10.1007/978-3-319-16510-3
  • Bodbodak, S., Rafiee, Z. (2016). Recent trends in active packaging in fruits and vegetables. In M. W. Siddiqui (Ed.), Eco-Friendly Technology for Postharvest Produce Quality, 77-125. https://doi.org/10.1016/B978-0-12-804313-4.00003-7
  • Brine, T.O., Thompson, R.C. (2010). Degradation of plastic carrier bags in the marine environment. Marine Pollution Bulletin, 60(12), 2279-2283. https://doi.org/10.1016/j.marpolbul.2010.08.005
  • Caló, E., Khutoryanskiy, V.V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252-267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
  • Carla, I., Souza, L., Fernandes, M., Souza, R.G. De, Cleveilton, J., Santos, D., Albuquerque-júnior, R.L.C. De. (2013). Effect of the maltodextrin-induced chemical reticulation on the physical properties and healing potential of collagen-based membranes containing Brazilian red propolis extract. Global Journal of Medicine and Medical Sciences, 1(1), 44-54.
  • Chang, C., Zhang, L. (2011). Cellulose-based hydrogels : Present status and application prospects. Carbohydrate Polymers, 84(1), 40-53. https://doi.org/10.1016/j.carbpol.2010.12.023
  • Chen, Y., Tang, H., Liu, Y., Tan, H. (2016). Preparation and study on the volume phase transition properties of novel carboxymethyl chitosan grafted polyampholyte superab-sorbent polymers. Journal of the Taiwan Institute of Chemical Engineers, 59, 569-577. https://doi.org/10.1016/j.jtice.2015.09.011
  • Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E. (2011). Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981-1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001
  • Deligkaris, K., Tadele, T.S., Olthuis, W., Berg, A. Van Den. (2010). Hydrogel-based devices for biomedical applications. Sensors & Actuators: B. Chemical, 147(2), 765-774. https://doi.org/10.1016/j.snb.2010.03.083
  • Dilkes-Hoffman, L.S., Lane, J.L., Grant, T., Pratt, S., Lant, P.A. (2018). Environmental impact of biodegradable food packaging when considering food waste. Journal of Cleaner Production, 180, 325-334. https://doi.org/10.1016/j.jclepro.2018.01.169
  • Feng, E., Ma, G., Wu, Y., Wang, H., Lei, Z. (2014). Preparation and properties of organic-inorganic composite superabsorbent based on xanthan gum and loess. Carbohydrate Polymers, 111, 463-468. https://doi.org/10.1016/j.carbpol.2014.04.031
  • Fischer, F., Bauer, S. (2009). Ein tausendsassa in der chemie polyvinylpyrrolidon. Chem. Unserer Zeit, 43, 376-383. https://doi.org/10.1002/ciuz.200900492
  • Gregorova, A., Saha, N., Kitano, T., Saha, P. (2015). Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydrate Polymers, 117, 559-568. https://doi.org/10.1016/j.carbpol.2014.10.009
  • Guilherme, M.R., Aouada, F.A., Fajardo, A.R., Martins, A.F., Paulino, A.T., Davi, M.F.T., Muniz, E.C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier : A review. European Polymer Journal, 72, 365-385. https://doi.org/10.1016/j.eurpolymj.2015.04.017
  • Gulrez, S.K., Al-Assaf, S., Phillips, G.O. (2021). Hydro-gels: methods of preparation, characterization and applica-tions. Progress in Molecular and Environmental Bioengineering– From Analysis and Modeling to Technology Applications, 117-150. https://doi.org/10.5772/24553
  • Haghighi, H., Gullo, M., La, S., Pfeifer, F., Wilhelm, H., Licciardello, F., Pulvirenti, A. (2021). Characterization of bio-nanocomposite films based on gelatin / polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocolloids, 113, 106454. https://doi.org/10.1016/j.foodhyd.2020.106454
  • Haghighi, H., Kameni, S., Pfeifer, F., Wilhelm, H., Licciardello, F., Fava, P., Pulvirenti, A. (2020). Food Hydrocolloids Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocolloids, 100, 105419. https://doi.org/10.1016/j.foodhyd.2019.105419
  • Hebeish, A., Hashem, M., El-hady, M.M.A., Sharaf, S. (2013). Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydrate Polymers, 92(1), 407-413. https://doi.org/10.1016/j.carbpol.2012.08.094
  • Hoare, T.R., Kohane, D.S. (2008). Hydrogels in drug delivery : Progress and challenges. Polymer, 49(8), 1993-2007. https://doi.org/10.1016/j.polymer.2008.01.027
  • Jayakumar, A., Heera, K.V., Sumi, T.S., Joseph, M., Mathew, S., Praveen, G., Radhakrishnan, E.K., (2019). Starch-PVA composite fi lms with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. International Journal of Biological Macromolecules, 136, 395–403. https://doi.org/10.1016/j.ijbiomac.2019.06.018
  • Kabiri, K., Omidian, H., Zohuriaan-Mehr, M.J., Dorou-diani, S. (2011). Superabsorbent Hydrogel Composites and Nanocomposites: A Review. Polymer Composites, 32, 277-289. https://doi.org/10.1002/pc.21046
  • Kalia, S., (2016). Polymeric Hydrogels as Smart Biomaterials. Springer Series on Polymer and Composite Materials, ISBN: 978-3-319-25322-0. https://doi.org/10.1007/978-3-319-25322-0
  • Kanatt, S.R., Rao, M.S., Chawla, S.P., Sharma, A. (2012). Food Hydrocolloids Active chitosan e polyvinyl alcohol fi lms with natural extracts. Food Hydrocolloids, 29(2), 290-297. https://doi.org/10.1016/j.foodhyd.2012.03.005
  • Keipert, S., Voigt, R. (1979). Interactions between macromolecular adjuvants and drugs. Part 18: The binding behavior of sodium carboxymethylcellulose and other macromolecules towards streptomycin sulphate (author’s transl). Die Pharmazie, 34(9), 548-551.
  • Li, Y., Dong, Q., Chen, J., Li, L. (2020). Effects of coaxial electrospun eugenol loaded core-sheath PVP / shellac fibrous films on postharvest quality and shelf life of strawberries. Postharvest Biology and Technology, 159, 111028. https://doi.org/10.1016/j.postharvbio.2019.111028
  • Mahdavinia, G.R., Mousavi, S.B., Karimi, F., Marandi, G.B., Garabaghi, H., Shahabvand, S. (2009). Synthesis of porous poly ( acrylamide ) hydrogels using calcium carbonate and its application for slow release of potassium nitrate. eXPRESS Polymer Letters, 3(5), 279-285. https://doi.org/10.3144/expresspolymlett.2009.35
  • Nunes, P. S., Silva, A., Cristina, J., Souza, C. De, Vasconcelos, B., Monteiro, T., Araújo, D.S. (2016). Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. International Journal of Pharmaceutics, 513, 473-482. https://doi.org/10.1016/j.ijpharm.2016.09.040
  • Park, K.S., Choi, E.M., Kim, J.Y., Choi, S.H., (2016). Study on the containers and packaging of natural materials. Food & Beverage Packaging, 7, 7110. https://doi.org/10.4172/2157-7110.C1.039
  • Portillo-Rodríguez, B., Sanchez-Vasquez, J.D., Reyes-Reyes, M., Lopez-Sandoval, R. (2022). The effect of the PVA hydrolysis degree on the electrical properties of organic resistive memories based on PVA + CNT composites. Diamond & Related Materials, 121, 108720. https://doi.org/10.1016/j.diamond.2021.108720
  • Porto, N., Carla, N., Cruz, S. (2017). Usnic acid-incorporated alginate and gelatin sponges prepared by freeze-drying for biomedical applications. Journal of Thermal Analysis and Calorimetry, 1707-1713. https://doi.org/10.1007/s10973-016-5760-8
  • Rodríguez-vázquez, M., Vega-ruiz, B., Ramos-zúñiga, R., Saldaña-koppel, D.A., Quiñones-olvera, L.F. (2015). Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Hindawi Publishing Corporation BioMed Research International, 2015, 1-15. https://doi.org/10.1155/2015/821279
  • Saha, P., Gregorava, A., Saha, N., Kitano, T. (2015). Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydrate Polymers, 117, 559-568. https://doi.org/10.1016/j.carbpol.2014.10.009
  • Shkolnik, S. (1992). Radiation effects on polymers (ACS Symposium Series 475), by R. L. Clough and S. W. Shalaby (eds), American Chemical Society, Washington, DC (1991), 633. Polymers for Advanced Technologies, 3, 191-192.
  • Ng, W.L., Yeong, W.Y., Naing, M.W. (2016). Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Procedia CIRP, 49, 105-112. https://doi.org/10.1016/j.procir.2015.09.002
  • Sunitha, N., Jeba Jeevitha R.S. (2017). Study on the performance of PVA/PVP blends at different drying temperature. International Journal of Latest Trends in Engineering and Technology, 233-238.
  • Ullah, F., Othman, M.B.H., Javed, F., Ahmad, Z., Akil, H.M. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering C, 57, 414-433. https://doi.org/10.1016/j.msec.2015.07.053
  • Volova, T.G., Boyandin, A.N., Vasiliev, A.D., Karpov, V.A., Prudnikova, S.V, Mishukova, O.V, Gitelson, I.I. (2010). Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polymer Degradation and Stability, 95, 2350-2359. https://doi.org/10.1016/j.polymdegradstab.2010.08.023
  • Wang, M., Xu, L., Hu, H., Zhai, M., Peng, J. (2007). Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nuclear Instruments and Methods in Physics Research B, 265, 385-389. https://doi.org/10.1016/j.nimb.2007.09.009
  • World Health Organization (WHO) Food and Agriculture Organization (FAO) of the United Nations. (‎2004)‎. Evaluation of certain food additives and contaminants: sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, ISBN: 9241209224, 922, 176.
  • Yuan, P., Tan, D., Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes : recent research advances and future prospects. Applied Clay Science, 112-113, 75-93. https://doi.org/10.1016/j.clay.2015.05.001

Details

Primary Language English
Subjects Food Science and Technology
Journal Section Research Articles
Authors

Fatma Özge GÖKMEN> (Primary Author)
Bilecik Şeyh Edebali University, Central Research Laboratory
0000-0002-5548-8790
Türkiye

Thanks The author thanks Bilecik Seyh Edebali University, Central Research Laboratory for SEM and FTIR analysis.
Publication Date July 1, 2022
Application Date December 19, 2021
Acceptance Date January 5, 2022
Published in Issue Year 2022, Volume 8, Issue 3

Cite

Bibtex @research article { jfhs1038447, journal = {Food and Health}, eissn = {2602-2834}, address = {Vidin Caddesi No:28 D:4 Kocamustafapaşa 34107 Fatih İstanbul}, publisher = {Özkan ÖZDEN}, year = {2022}, volume = {8}, number = {3}, pages = {172 - 180}, doi = {10.3153/FH22017}, title = {PVP/PVA blended hydrogels as a biofilm for use in food packaging applications}, key = {cite}, author = {Gökmen, Fatma Özge} }
APA Gökmen, F. Ö. (2022). PVP/PVA blended hydrogels as a biofilm for use in food packaging applications . Food and Health , 8 (3) , 172-180 . DOI: 10.3153/FH22017
MLA Gökmen, F. Ö. "PVP/PVA blended hydrogels as a biofilm for use in food packaging applications" . Food and Health 8 (2022 ): 172-180 <http://jfhs.scientificwebjournals.com/en/pub/issue/69254/1038447>
Chicago Gökmen, F. Ö. "PVP/PVA blended hydrogels as a biofilm for use in food packaging applications". Food and Health 8 (2022 ): 172-180
RIS TY - JOUR T1 - PVP/PVA blended hydrogels as a biofilm for use in food packaging applications AU - Fatma ÖzgeGökmen Y1 - 2022 PY - 2022 N1 - doi: 10.3153/FH22017 DO - 10.3153/FH22017 T2 - Food and Health JF - Journal JO - JOR SP - 172 EP - 180 VL - 8 IS - 3 SN - -2602-2834 M3 - doi: 10.3153/FH22017 UR - https://doi.org/10.3153/FH22017 Y2 - 2022 ER -
EndNote %0 Food and Health PVP/PVA blended hydrogels as a biofilm for use in food packaging applications %A Fatma Özge Gökmen %T PVP/PVA blended hydrogels as a biofilm for use in food packaging applications %D 2022 %J Food and Health %P -2602-2834 %V 8 %N 3 %R doi: 10.3153/FH22017 %U 10.3153/FH22017
ISNAD Gökmen, Fatma Özge . "PVP/PVA blended hydrogels as a biofilm for use in food packaging applications". Food and Health 8 / 3 (July 2022): 172-180 . https://doi.org/10.3153/FH22017
AMA Gökmen F. Ö. PVP/PVA blended hydrogels as a biofilm for use in food packaging applications. Food Health. 2022; 8(3): 172-180.
Vancouver Gökmen F. Ö. PVP/PVA blended hydrogels as a biofilm for use in food packaging applications. Food and Health. 2022; 8(3): 172-180.
IEEE F. Ö. Gökmen , "PVP/PVA blended hydrogels as a biofilm for use in food packaging applications", Food and Health, vol. 8, no. 3, pp. 172-180, Jul. 2022, doi:10.3153/FH22017

ustresim_2021_1.png

journal is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14627 13310

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.