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ABSTRACT 

Bio-films have been produced that attract attention with their functional behavior among conven-
tional food packaging materials of bio-based polymer blends. The physical and morphological 
properties of copolymeric biofilms have been extensively investigated. Biodegradable polymer 
and copolymer films were produced by in situ polymerization technique and prepared as solution 
casting. The strong water absorbency of polyvinyl alcohol and the antimicrobial property of poly-
vinylpyrrolidone are combined in a single material. Structural and morphological properties of the 
films were characterized by Fourier-Transform Infrared Spectroscopy and Scanning Electron Mi-
croscope analysis. These results show that the films obtained can be used as an environmentally 
friendly bio-based polymer blend packaging material to extend the shelf life of food products. 
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Introduction 
Hydrogels can offer new opportunities for the design of effi-
cient packaging materials with desirable properties (i.e. dura-
bility, biodegradability, and mechanical strength). It is a 
promising and emerging concept, as most biopolymer-based 
hydrogels must be biodegradable so they can be considered 
alternative eco-friendly packaging materials. In food packag-
ing systems, hydrogels have a great potential to be used as 
covering and carrier materials. Nowadays, biopolymer-based 
hydrogels have been preferred for food packaging. Hydrogels 
that can adsorb more than 100% and up to thousands of times 
their dry weight in water are called superabsorbent hydrogels 
(Batista et al., 2019; Feng et al., 2014). The main role of hy-
drogels in the food packaging system is humidity control in-
side of a packaging container. The activity of hydrogels in 
these systems can be given as mechanical resistance, swelling 
behavior potential, and moisture-holding capacity (Chen et 
al., 2016; Guilherme et al., 2015; Gulrez et al., 2021; Sro et 
al., 2016). Because of these properties, hydrogels are inter-
esting for various industrial fields. They contribute to the de-
velopment of common applications such as cosmetics, 
wastewater treatment, tissue engineering, drug release, bio-
sensing, agriculture, and biomedicine, generally, hydrogels 
are produced from synthetic compounds and their polymer 
matrices are linked predominantly by chemically crosslink-
ing. Compounds commonly used in the literature; polyacryla-
mide, poly (sodium acrylate), poly (acrylic acid), polyvi-
nylpyrrolidone (Kabiri et al., 2011; Ullah et al, 2015), and 
bio-based and biodegradable polymers. In most of the studies 
on food packaging, hydrogels have been prepared and used 
in film-shaped forms. While producing hydrogel films, the 
most important feature desired in food packaging applica-
tions is the absence of chemical crosslinkers (Kalia, 2016). 
Chemical crosslinkers may show toxic properties in their nu-
tritional value. Generally, hydrogels obtained using PVP 
(polyvinylpyrrolidone) and PVA are transparent, biodegrada-
ble, flexible, hydrophilic, and permeable. The most important 
active application of hydrogels in food packaging systems is 
to control the moisture generated by meat products, fresh 
fruits, vegetables, and other food products with higher water 
content (Bodbodak & Rafiee, 2016). Among various poly-
mers, Poly Vinyl Alcohol (PVA) is widely used as a film-
forming polymer with highly flexible, emulsive, and adhesive 
properties. It has been reported in previous studies that PVA 
improves its mechanical and antimicrobial properties to take 
advantage of its wide applications (Jayakumar et al., 2019). 
Polyvinyl alcohol (PVA) is a hydrophilic and non-toxic pol-
ymer with excellent film-forming, emulsifying, and adhesion 
properties along with high tensile strength and flexibility 
(Yuan et al., 2015). However, the major disadvantage of PVA 

is the moisture-related mechanical property changes that 
greatly limit its application (Jayakumar et al., 2019). Because 
of that, in this study, the physical properties of PVP were used 
to eliminate the disadvantage. Due to the chemical nature of 
each type of food, undesirable effects of ambient change re-
quire pH change indicators to be included in food packaging. 
This also increases consumer trust as it ensures the safety of 
the product (Park, 2016). At this point, hydrogels also act as 
smart materials, due to their responses in different pH envi-
ronments. To examine the food packaging system in terms of 
waste management, biodegradable food packaging provides 
an advantage for existing packaging that cannot be recycled 
and degraded (Dilkes-Hoffman et al., 2018). The biodegrada-
bility problem of common plastic food packaging is a global 
environmental problem (Bergmann, 2015). This problem will 
continue to increase as urbanization and dietary change in de-
veloping countries lead to an increasing global dependence 
on packaged foods (Dilkes-Hoffman et al., 2018). Another 
attractive aspect of biodegradable food packaging is that it 
can expand waste management options for materials that can-
not be easily recycled (Brine & Thompson, 2010; Volova et 
al., 2010). The desired improvement in food packaging sys-
tems is the replacement of non-biodegradable petroleum-
based polymers with environmentally friendly bio-based pol-
ymeric hydrogels materials that also have a longer food shelf 
life (Haghighi et al., 2020; Kanatt et al., 2012). PVA is a syn-
thetic, low-cost, non-toxic, and water-soluble polymer with 
the excellent film-forming ability, which has been commer-
cially obtained from the hydrolysis of polyvinyl acetate. Alt-
hough PVA is a synthetic material, it has been reported to be 
biodegradable. This defines PVA as a biodegradable poly-
mer. High tensile strength, flexibility, gas barrier properties, 
and good resistance to acid/alkali environments are among 
the specific features of PVA (Aloui et al., 2021). PVA can 
easily form mixtures with hydrophilic polymers. Since PVP 
also has excellent physiological compatibility, when these 
two polymers are mixed, the easy interaction between PVA 
and PVP is expected to occur through intermolecular hydro-
gen bonding between the hydroxyl group of PVA and the car-
bonyl group of PVP (Mahdavinia et al., 2009; Sunitha & 
Jeba, 2017). Copolymer films resulting from the high com-
patibility of PVP and PVA show a homogeneous structure. In 
addition, with the PVA/PVP blend, the single film production 
cost is reduced and the mechanical properties and stability of 
the blend are improved (Haghighi et al., 2020). On the other 
hand, in 2003, PVA has been evaluated for safety by the Joint 
FAO/WHO Expert Committee on Food Additives (JECFA) 
(Haghighi et al., 2021; WHO, 2004) and it has also been con-
firmed for packaging of the meat and poultry products by the 
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USDA (Bellelli et al., 2018; Kanatt et al., 2012). Polyvi-
nylpyrrolidone (PVP) as a hydrophilic synthetic polymer was 
discovered in 1939 (Fischer, 2009; Gregorova et al., 2015). 
PVP has been used as a binder and stabilizer in the cosmetic, 
pharmaceutical, and food industries (Keipert & Voigt, 1979). 
It is a water-soluble polymer with good biomedical properties 
but exhibits poor mechanical properties (Saha, 2014; 
Shkolnik, 1992). Due to its water solubility and film-forming 
ability, PVP can be mixed with other polymeric or cellulosic 
materials and form films with new improved mechanical 
properties (Wang et al., 2007). However, the water-soluble 
nature of PVP makes it impossible to use PVP directly as a 
packaging material (Li et al., 2020). This study includes the 
production of PVP/PVA blends as a bio-film with desired 
properties in different ratios (0:100; 25:75; 50:50; 75:25 and 
100:0) for food packaging applications. Among the study, 
physicochemical, microstructural, physical, mechanical, and 
water barrier properties for food packaging applications were 
evaluated. PVP and PVA polymers have interacted with each 
other through hydrogen bonding. This article reports the pro-
duction of synthetic biopolymer-based (polyvinylpyrrolidone 
(PVP)) and PVA as a novel copolymeric hydrogel biofilm 
and its physicochemical property under controlled environ-
mental conditions. 

Materials and Methods 
Method 

The composite biofilms were produced by mixing PVA and 
PVP solutions in different amounts by the solution casting 
method. Dry hydrogel films were prepared by solution cast-
ing method and named "PVP/PVA composite biofilms". 

Materials 

Polyvinylpyrrolidone (PVP) average molecular weight of 
40,000 was purchased from Merck. Powder Poly (vinyl alco-
hol) PVA with an average molecular weight of 89,000-98,000 
was purchased from Sigma-Aldrich. Both polymer solutions 
produced in this study were prepared using distilled water. 

Preparation of the PVP/PVA Composite Biofilms 

10% PVA solution was stirred at 80°C for 4 hours. For the 
10% PVP solution, the temperature was 60°C and the mixing 
time was 2 hours. 10% polymer solutions were blended in 
certain amounts (0:100; 25:75; 50:50; 75:25 and 100:0) and 
stirred for more 1 hour at 60°C. PVP/PVA blend was poured 
into 60x15 mm glass petri dishes in equal volumes. The solu-
tions were left to dry for a week under room conditions. After, 
the film-formed polymers were separated from the glass petri 
dishes with the help of a micro spatula and forceps without 
any damage. The mechanism of these interactions is given in 
Figure 1. 

Characterization 

Chemical bond properties of PVP/PVA composite biofilms 
obtained at different ratios were elucidated by FTIR analysis. 
Spectrums were taken in ATR mode with Perkin Elmer, 
Spectrum 100 device in the range of 4000-400 cm-1 wave-
number at 4cm-1 resolution. The morphological properties of 
the films were investigated in Carl Zeiss, Supra 40 VP 
FESEM device at 15 kV voltage value at different magnifica-
tions. The conductivity of the films was achieved by platinum 
coating with the Qourum DC Sputter device. The transpar-
ency properties of the films are demonstrated by photo-
graphing the text under the film. 

 

 

 
Figure 1. Schematic illustration of the PVP/PVA mechanism 
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Results and Discussion 
FTIR Analysis  

The Fourier transform infrared (FTIR) spectra were charac-
terized to confirm the presence or absence of the various vi-
brational bands in PVP/PVA blended biofilms. The results 
obtained are given in Figure 2. In the samples with high PVA 
content (75% and 50%), the hydroxyl groups (O-H) of PVA 
were seen as wide and broadband in the 3270cm-1 region 
(Portillo-Rodríguez et al., 2021). Wide flat peaks were ob-
served in PVP/PVA (25:75%wt) (black line) and PVP/PVA 
(50:50%wt) at 3267 cm-1 and 3278 cm-1, respectively, and 
PVP/PVA (75:25%wt) (red line) was seen as a narrow peak 
at 3356 cm-1. While the asymmetric stretch bands of the C-H 
groups were observed at 2943 cm-1 in the black and blue lines 
(Portillo-Rodríguez et al., 2021), they lost their intensity in 

the region enclosed in the circle which the blend containing 
75% PVP shown in the red line. When the amount of PVP in 
the mixture increased to 75%, the strong peak at 2943 cm-1 
disappeared. The short-intensity peak PVP/PVA (75:25 %wt) 
observed at approximately 2158     cm-1 in the region between 
1900 cm-1 - 2250 cm-1, which is enclosed in the circle, is not 
seen in the (red line). In the region marked with a rectangle 
in the range of 863 cm-1 – 1007 cm-1, the moderate-intensity 
920 cm-1 band completely disappeared in PVP/PVA (75:25 
% wt) (red line). In all three samples, plane bending of CH-
OH groups and CH2 bending vibrations were observed at 
1640 cm-1 and 1420 cm-1, respectively. The band at 1079    
cm-1 corresponds to the C–O stretching vibration at all 3 sam-
ples (Portillo-Rodríguez et al., 2021). In addition, character-
istic peaks of PVP, carbonyl, and –CN groups were observed 
at 1650 cm-1 and 1300 cm-1, respectively (Bandatang et al., 
2021). 

 
Figure 2.  FTIR spectrums of PVP/PVA (25:75 % wt) (black line); PVP/PVA (50:50 

% wt) (blue line); PVP/PVA (75:25 % wt) (red line). 
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SEM Results 

As the PVP ratio in the blends increased, the surface mor-
phology of the films changed from homogeneous to hetero-
geneous. The porosity on the film surfaces was increased 
through the PVP additive. With increasing porosity, the me-
chanical strength of the films decreased and the transparent 
property of the films was lost. The film-forming ability of 
PVA decreased with increasing PVP amount in composites. 
Figure 3 shows SEM images of plain PVA and plain PVP was 
n at 500x and 2000x magnification, respectively. As seen in 

Figure 3(a2 and b2), plain PVP which was obtained without 
the use of crosslinkers did not show film properties. While 
the homogeneous surface of PVA was evident in both mag-
nifications, the film features of plain PVP were not observed. 

In Figure 4, the morphological differences were seen with the 
amount of PVP in the blend increasing from left to right. In 
Figure 4(c), heterogeneous pore distribution on the surface of 
the film obtained by 75% PVP and 25% PVA blend is seen. 

 

 
Figure 3. SEM images of plain PVA and PVP film at 500x magnification (a1 and b1, respec-

tively); at 2000x magnification (a2 and b2, respectively). 

 
Figure 4.  SEM images of (a) PVP/PVA (25:75 %wt); (b) PVP/PVA (50:50 %wt); (c) 

PVP/PVA (75:25 %wt) at 500x magnification. 
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Transparency Tests 

As seen in Figure 5, the visibility of the text placed under the 
obtained films was photographed to determine the transpar-
ency. It is seen in Figure 5(a) that the 100% PVA film is com-
pletely transparent. On the other hand, increased PVP addi-
tive in the blends engendered opacity in the films. Fig. 5(d) 
showed that the PVP/PVA with 75% PVP additive has lost 
its film form. As the amount of PVP increased in the films, 
the surface morphology lost its elasticity due to the increased 
heterogeneous porosity, as seen in the SEM images (Fig.4). 

Conclusion 
PVA / PVP hydrogel films are transparent, flexible, and ex-
hibit good mechanical properties. These biopolymer-based 
hydrogel films were produced without the use of toxic cross-
linking agents. Significant differences of functional groups in 
FTIR spectra, and morphological evaluations of films ob-
tained by SEM analysis. Composite biofilm with 25:75 ratios 
of PVP and PVA shows the best mechanical properties 
among all test specimens (i.e. 0:100; 25:75; 50:50; 75:25 and 
100:0). Therefore, 25:75 %wt. PVP/PVA composite biofilm 
has been recognized as a useful food packaging material and 
further experiments with this particular composite biofilm are 
targeted. 

 

 

 
Figure 5.  Photograph of (a) plain PVA film (b) PVP/PVA (25:75 %wt.); (b) PVP/PVA (50:50 %wt.); (c) PVP/PVA (75:25 

%wt.)
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