Research Article
BibTex RIS Cite
Year 2019, Volume: 5 Issue: 1, 64 - 76, 01.01.2019
https://doi.org/10.3153/FH19007

Abstract

References

  • Cobucci-Ponzano, B., Conte, F., Bedini, E., Corsaro, M.M., Parrilli, M., Sulzenbacher, G., Lipski, A., Dal Piaz, F., Lepore, L., Rossi, M. (2009). β-Glycosyl azides as substrates for α-glycosynthases: Preparation of efficient α-L-fucosynthases. Chemistry & Biology, 16, 1097-1108.
  • Cobucci-Ponzano, B., Zorzetti, C., Strazzulli, A., Carillo, S., Bedini, E., Corsaro, M.M., Comfort, D.A., Kelly, R.M., Rossi, M., Moracci, M. (2011). A novel alpha-D-galactosynthase from Thermotoga maritima converts beta-D-galactopyranosyl azide to alpha-galacto-oligosaccharides. Glycobiology, 21, 448-456.
  • Crout, D.H.G., Vic, G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Current Opinion in Chemical Biology, 2, 96-111.
  • Dey, P.M., Pridham, J.B. (1972). Biochemistry of α-galactosidases. Advanced Enzymology, 36, 91-130.
  • Dey, P.M., Patel, S., Brownleader, M.D. (1993). Induction of alpha-galactosidase in Penicillium ochrochloron by guar (Cyamopsis tetragonobola) gum. Biotechnology and Applied Biochemistry, 17, 361-371.
  • Duffaud, G.D., McCutchen, C.M., Leduc, P., Parker, K.N., Kelly, R.M. (1997). Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Applied and Environmental Microbiology, 63, 169-177.
  • Gibson, G.R., Roberfroid, M.B. (1995). Dietary Modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition, 125, 1401-1412.
  • Gupta, R., Jung, E., Brunak, S. (2004). Prediction of N-glycosylation sites in human proteins.
  • Gurkok, S., Soyler, B., Biely, P., Ogel, Z.B. (2010). Cloning and heterologous expression of the extracellular alpha-galactosidase from Aspergillus fumigatus in Aspergillus sojae under the control of gpdA promoter. Journal of Molecular Catalysis B: Enzymatic, 64, 146-149.
  • Gurkok, S., Cekmecelioglu, D., Ogel, Z.B. (2011). Optimization of culture conditions for Aspergillus sojae expressing an Aspergillus fumigatus α-galactosidase. Bioresource Technology, 102, 4925-4929.
  • Hashimoto, H., Katayama, C., Goto, M., Okinaga, T., Kitahata, S. (1995). Transgalactosylation catalyzed by α-galactosidase from Candida guilliermondii H-404. Bioscience, Biotechnology, and Biochemistry, 59(4), 619-623.
  • Hinz, S.W.A., Doeswijk-Voragen, C.H.L., Schipperus, R., Broek, L.A.M., Vincken, J.P., Voragen, A.G.J. (2005). Increasing the transglycosylation activity of α-galactosidase from Bifidobacterium adolescentis DSM 20083 by site-directed mutagenesis. Biotechnology and Bioengineering, 93(1), 122-131.
  • Homann, A., Seibel, J. (2009). Towards tailor-made oligosaccharides-chemo-enzymatic approaches by enzyme and substrate engineering. Applied Microbiology and Biotechnology. 83, 209-216.
  • Honda, Y., Kitaoka, M. (2006). The first glycosynthase derived from an inverting glycoside hydrolase. Journal of Biological Chemistry, 281, 1426-1431.
  • Katrolia, P., Rajashekhara, E., Yan, Q., Jiang, Z. (2014). Biotechnological potential of microbial α-galactosidases. Critical Reviews in Biotechnology, 34, 307-317.
  • Kotwal, S.M., Gote, M.M., Sainkar, S.R., Khan, M.I. & Khire, J.M. (1998). Production of α-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soyamilk hydrolysis, Process Biochemistry, 33, 337-343.
  • Kurt, F., 2011. Biotransformations in Organic Chemistry: A Textbook, 6th Eddition, Springer, Berlin. ISBN 978-3-642-17393-6
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
  • Liebl, W., Wagner, B., Schellhase, J. (1998). Properties of an a-galactosidase, and structure of its gene, galA, within an a- and ß-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima. Systematic and Applied Microbiology, 21, 1-11.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265.
  • Mackenzie, L.F., Wan, Q.P., Warren, R.A.J., Withers, S.G. (1998). Glycosynthases: Mutant glycosidases for oligosaccharide synthesis. Journal of the American Chemical Society, 120, 5583-5584.
  • Mi, S., Meng, K., Wang, Y., Bai, Y., Yuan, T., Luo, H., Yao, B. (2007). Molecular cloning and characterization of a novel α-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme and Microbial Technology, 40, 1373-1380.
  • Miyasato, M., Ajisaka, K. (2004). Regioreselectivity in beta-galactosidase-catalyzed transglycosylation for the enzymatic assembly of D-galactosyl-D- mannose. Bioscience, Biotechnology, and Biochemistry, 68, 2086-2090.
  • Moracci, M., Trincone, A., Perugino, G., Ciaramella, M., Rossi, M. (1998). Restoration of the activity of active-site mutants of the hyperthermophilic beta-glycosidase from Sulfolobus solfataricus: dependence of the mechanism on the action of external nucleophiles. Biochemistry, 37, 17262-17270.
  • Neustroev, K.N., Krylov, A.S., Abroskina, O.N., Firsov, L.M., Nasonov, V.V., Khorlin, A.Y., (1991). Isolation and properties of α-galactosidase from Aspergillus awamori. Biochemistry USSR, 56, 288-296.
  • Perugino, G., Trincone, A., Rossi, M., Moracci, M. (2004). Oligosaccharide synthesis by glycosynthases. Trends in Biotechnology, 22, 31-37.
  • Puchart, V., Vrsanska, M., Bhat, M.K., Biely, P. (2000). Purification and characterization of α-galactosidase from a thermophilic fungus Thermomyces lanuginosus. Biochimica et Biophysica Acta, 1524, 27-37.
  • Puchart, V., Biely, P. (2005). Glycosylation of internal sugar residues of oligosaccharides catalyzed by α-galactosidase from Aspergillus fumigatus. Biochimica et Biophysica Acta, 1726, 206-216.
  • Rezessy-Szabó, J.M., Nguyen, Q.D., Hoschke, A., Braet, C., Hajós, G., Claeyssens, M. (2007). A novel thermostable α-galactosidase from the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b: Purification and characterization. Biochimica et Biophysica Acta, 1770, 55-62.
  • Shaikh, F.A., Withers, S.G., (2008). Teaching old enzymes new tricks: Engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochemistry and Cell Biology, 86, 169-177.
  • Usui, T., Morimoto, S., Hayakawa, Y., Kawaguchi, M., Murata, T., Matahira, Y. (1996). Regioselectivity of beta-D-galactosyl-disaccharide formation using the beta-D-galactosidase from Bacillus circulans. Carbohydrate Research, 285, 29-39.
  • Van Laere, K.M.J., Hartemink, R., Beldman, G., Pitson, S., Dijkema, C., Schols, H.A., Voragen A.G.J. (1999). Hydrolase and transglycosidase activity of Bifidobacterium adolescentis DSM 20083 α-galactosidase. Applied Microbiology and Biotechnology, 52(5), 681-688.
  • Wada, J., Honda, Y., Nagae, M., Kato, R., Wakatsuki, S., Katayama, T., Taniguchi, H., Kumagai, H., Kitaoka, M., Yamamoto, K. (2008). 1,2-alpha-l-Fucosynthase: a glycosynthase derived from an inverting alpha-glycosidase with an unusual reaction mechanism. FEBS Letters, 582(27), 3739-3743.
  • Wang, H., Ma, R., Shi, P., Xue, X., Luo, H., Huang, H., Bai, Y., Yang, P., Yao, B. (2014). A new α-galactosidase from thermoacidophilic Alicyclobacillus sp. A4 with wide acceptor specificity for transglycosylation. Applied Biochemistry and Biotechnology, 174, 328-338.
  • Yamashita, A., Hashimoto, H., Fujita, K., Okada, M., Mori, S., Kitahata S. (2005). Reverse reaction of Aspergillus niger APC-9319 α-galactosidase in a supersaturated substrate solution: production of α-linked galactooligosaccharide (α-GOS). Bioscience, Biotechnology, and Biochemistry, 69(7), 1381-1388.
  • Zapater, I.G., Ullah, A.H.J., Wodzinsky, R.J. (1990). Extracellular alpha-galactosidase (E.C. 3.2.1.22) from Aspergillus ficuum NRRL 3135 purification and characterization. Preparative Biochemistry, 20, 263-296.

TRANSGALACTOSYLATION FOR GALACTOOLIGOSACCHARIDE SYNTHESIS USING PURIFIED AND CHARACTERIZED RECOMBINANT α-GALACTOSIDASE FROM Aspergillus fumigatus IMI 385708 OVEREXPRESSED IN Aspergillus sojae

Year 2019, Volume: 5 Issue: 1, 64 - 76, 01.01.2019
https://doi.org/10.3153/FH19007

Abstract

Galactooligosaccharides are well-known
functional food ingredients with prebiotic properties. Recent trend for the use
of galactooligosaccharides in the food industry leads the search for new
enzymes for their production. α-Galactosidase from Aspergillus fumigatus
IMI 385708, possessing a highly efficient debranching ability on polymeric
substrates, is also able to perform transgalactosylation. In this study,
recombinant α-galactosidase produced by Aspergillus sojae Ta1 was
purified 18.7-fold using anion exchange and hydrophobic interaction
chromatography with an overall yield of 56% and 64.7 U/mg protein specific
activity. The Vmax and Km values for the hydrolysis of pNPGal
were 78 U/mg protein and 0.45 mM, respectively. Optimum pH (pH 4.5) and
temperatures (50-60°C) for recombinant α-galactosidase activity were
determined. For the synthesis of oligosaccharides, purified and characterized
recombinant α-galactosidase was used in the transgalactosylation of various
mono- and disaccharides using
pNPGal (p-nitrophenyl-α-D-galactopyranoside)
as galactose donor. Di- and trisaccharides obtained by transgalactosylation
were analysed by TLC, ESI-MS, and HPLC analysis. Among 12 acceptor candidates,
α-galactosidase transgalactosylated galactose, glucose, mannose, cellobiose,
lactose, maltose, and sucrose efficiently, however, did not transgalactosylate
xylose, arabinose, fucose, fructose, and melibiose.

References

  • Cobucci-Ponzano, B., Conte, F., Bedini, E., Corsaro, M.M., Parrilli, M., Sulzenbacher, G., Lipski, A., Dal Piaz, F., Lepore, L., Rossi, M. (2009). β-Glycosyl azides as substrates for α-glycosynthases: Preparation of efficient α-L-fucosynthases. Chemistry & Biology, 16, 1097-1108.
  • Cobucci-Ponzano, B., Zorzetti, C., Strazzulli, A., Carillo, S., Bedini, E., Corsaro, M.M., Comfort, D.A., Kelly, R.M., Rossi, M., Moracci, M. (2011). A novel alpha-D-galactosynthase from Thermotoga maritima converts beta-D-galactopyranosyl azide to alpha-galacto-oligosaccharides. Glycobiology, 21, 448-456.
  • Crout, D.H.G., Vic, G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Current Opinion in Chemical Biology, 2, 96-111.
  • Dey, P.M., Pridham, J.B. (1972). Biochemistry of α-galactosidases. Advanced Enzymology, 36, 91-130.
  • Dey, P.M., Patel, S., Brownleader, M.D. (1993). Induction of alpha-galactosidase in Penicillium ochrochloron by guar (Cyamopsis tetragonobola) gum. Biotechnology and Applied Biochemistry, 17, 361-371.
  • Duffaud, G.D., McCutchen, C.M., Leduc, P., Parker, K.N., Kelly, R.M. (1997). Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Applied and Environmental Microbiology, 63, 169-177.
  • Gibson, G.R., Roberfroid, M.B. (1995). Dietary Modulation of the human colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition, 125, 1401-1412.
  • Gupta, R., Jung, E., Brunak, S. (2004). Prediction of N-glycosylation sites in human proteins.
  • Gurkok, S., Soyler, B., Biely, P., Ogel, Z.B. (2010). Cloning and heterologous expression of the extracellular alpha-galactosidase from Aspergillus fumigatus in Aspergillus sojae under the control of gpdA promoter. Journal of Molecular Catalysis B: Enzymatic, 64, 146-149.
  • Gurkok, S., Cekmecelioglu, D., Ogel, Z.B. (2011). Optimization of culture conditions for Aspergillus sojae expressing an Aspergillus fumigatus α-galactosidase. Bioresource Technology, 102, 4925-4929.
  • Hashimoto, H., Katayama, C., Goto, M., Okinaga, T., Kitahata, S. (1995). Transgalactosylation catalyzed by α-galactosidase from Candida guilliermondii H-404. Bioscience, Biotechnology, and Biochemistry, 59(4), 619-623.
  • Hinz, S.W.A., Doeswijk-Voragen, C.H.L., Schipperus, R., Broek, L.A.M., Vincken, J.P., Voragen, A.G.J. (2005). Increasing the transglycosylation activity of α-galactosidase from Bifidobacterium adolescentis DSM 20083 by site-directed mutagenesis. Biotechnology and Bioengineering, 93(1), 122-131.
  • Homann, A., Seibel, J. (2009). Towards tailor-made oligosaccharides-chemo-enzymatic approaches by enzyme and substrate engineering. Applied Microbiology and Biotechnology. 83, 209-216.
  • Honda, Y., Kitaoka, M. (2006). The first glycosynthase derived from an inverting glycoside hydrolase. Journal of Biological Chemistry, 281, 1426-1431.
  • Katrolia, P., Rajashekhara, E., Yan, Q., Jiang, Z. (2014). Biotechnological potential of microbial α-galactosidases. Critical Reviews in Biotechnology, 34, 307-317.
  • Kotwal, S.M., Gote, M.M., Sainkar, S.R., Khan, M.I. & Khire, J.M. (1998). Production of α-galactosidase by thermophilic fungus Humicola sp. in solid-state fermentation and its application in soyamilk hydrolysis, Process Biochemistry, 33, 337-343.
  • Kurt, F., 2011. Biotransformations in Organic Chemistry: A Textbook, 6th Eddition, Springer, Berlin. ISBN 978-3-642-17393-6
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
  • Liebl, W., Wagner, B., Schellhase, J. (1998). Properties of an a-galactosidase, and structure of its gene, galA, within an a- and ß-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima. Systematic and Applied Microbiology, 21, 1-11.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265.
  • Mackenzie, L.F., Wan, Q.P., Warren, R.A.J., Withers, S.G. (1998). Glycosynthases: Mutant glycosidases for oligosaccharide synthesis. Journal of the American Chemical Society, 120, 5583-5584.
  • Mi, S., Meng, K., Wang, Y., Bai, Y., Yuan, T., Luo, H., Yao, B. (2007). Molecular cloning and characterization of a novel α-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme and Microbial Technology, 40, 1373-1380.
  • Miyasato, M., Ajisaka, K. (2004). Regioreselectivity in beta-galactosidase-catalyzed transglycosylation for the enzymatic assembly of D-galactosyl-D- mannose. Bioscience, Biotechnology, and Biochemistry, 68, 2086-2090.
  • Moracci, M., Trincone, A., Perugino, G., Ciaramella, M., Rossi, M. (1998). Restoration of the activity of active-site mutants of the hyperthermophilic beta-glycosidase from Sulfolobus solfataricus: dependence of the mechanism on the action of external nucleophiles. Biochemistry, 37, 17262-17270.
  • Neustroev, K.N., Krylov, A.S., Abroskina, O.N., Firsov, L.M., Nasonov, V.V., Khorlin, A.Y., (1991). Isolation and properties of α-galactosidase from Aspergillus awamori. Biochemistry USSR, 56, 288-296.
  • Perugino, G., Trincone, A., Rossi, M., Moracci, M. (2004). Oligosaccharide synthesis by glycosynthases. Trends in Biotechnology, 22, 31-37.
  • Puchart, V., Vrsanska, M., Bhat, M.K., Biely, P. (2000). Purification and characterization of α-galactosidase from a thermophilic fungus Thermomyces lanuginosus. Biochimica et Biophysica Acta, 1524, 27-37.
  • Puchart, V., Biely, P. (2005). Glycosylation of internal sugar residues of oligosaccharides catalyzed by α-galactosidase from Aspergillus fumigatus. Biochimica et Biophysica Acta, 1726, 206-216.
  • Rezessy-Szabó, J.M., Nguyen, Q.D., Hoschke, A., Braet, C., Hajós, G., Claeyssens, M. (2007). A novel thermostable α-galactosidase from the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b: Purification and characterization. Biochimica et Biophysica Acta, 1770, 55-62.
  • Shaikh, F.A., Withers, S.G., (2008). Teaching old enzymes new tricks: Engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochemistry and Cell Biology, 86, 169-177.
  • Usui, T., Morimoto, S., Hayakawa, Y., Kawaguchi, M., Murata, T., Matahira, Y. (1996). Regioselectivity of beta-D-galactosyl-disaccharide formation using the beta-D-galactosidase from Bacillus circulans. Carbohydrate Research, 285, 29-39.
  • Van Laere, K.M.J., Hartemink, R., Beldman, G., Pitson, S., Dijkema, C., Schols, H.A., Voragen A.G.J. (1999). Hydrolase and transglycosidase activity of Bifidobacterium adolescentis DSM 20083 α-galactosidase. Applied Microbiology and Biotechnology, 52(5), 681-688.
  • Wada, J., Honda, Y., Nagae, M., Kato, R., Wakatsuki, S., Katayama, T., Taniguchi, H., Kumagai, H., Kitaoka, M., Yamamoto, K. (2008). 1,2-alpha-l-Fucosynthase: a glycosynthase derived from an inverting alpha-glycosidase with an unusual reaction mechanism. FEBS Letters, 582(27), 3739-3743.
  • Wang, H., Ma, R., Shi, P., Xue, X., Luo, H., Huang, H., Bai, Y., Yang, P., Yao, B. (2014). A new α-galactosidase from thermoacidophilic Alicyclobacillus sp. A4 with wide acceptor specificity for transglycosylation. Applied Biochemistry and Biotechnology, 174, 328-338.
  • Yamashita, A., Hashimoto, H., Fujita, K., Okada, M., Mori, S., Kitahata S. (2005). Reverse reaction of Aspergillus niger APC-9319 α-galactosidase in a supersaturated substrate solution: production of α-linked galactooligosaccharide (α-GOS). Bioscience, Biotechnology, and Biochemistry, 69(7), 1381-1388.
  • Zapater, I.G., Ullah, A.H.J., Wodzinsky, R.J. (1990). Extracellular alpha-galactosidase (E.C. 3.2.1.22) from Aspergillus ficuum NRRL 3135 purification and characterization. Preparative Biochemistry, 20, 263-296.
There are 36 citations in total.

Details

Primary Language English
Subjects Structural Biology, Food Engineering
Journal Section Research Articles
Authors

Sümeyra Gürkök 0000-0002-2707-4371

Zümrüt Ögel 0000-0001-8639-2647

Publication Date January 1, 2019
Submission Date March 15, 2018
Published in Issue Year 2019Volume: 5 Issue: 1

Cite

APA Gürkök, S., & Ögel, Z. (2019). TRANSGALACTOSYLATION FOR GALACTOOLIGOSACCHARIDE SYNTHESIS USING PURIFIED AND CHARACTERIZED RECOMBINANT α-GALACTOSIDASE FROM Aspergillus fumigatus IMI 385708 OVEREXPRESSED IN Aspergillus sojae. Food and Health, 5(1), 64-76. https://doi.org/10.3153/FH19007

16339

Journal is licensed under a

CreativeCommons Attribtion-ShareAlike 4.0 International Licence  14627 1331027042
Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

27222

Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).