Year 2025,
Issue: Advanced Online Publication, 1 - 14
Zuhal Şahin
,
Fatih Sönmez
,
Tulay Duran
,
Hüseyin Duran
References
-
Agourram, A., Ghirardello, D., Rantsiou, K., Zeppa, G., Belviso, S., Romane, A. (2013). Giordano, M., Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. International Journal of Food Properties, 16(5), 1092–1104. https://doi.org/10.1080/10942912.2011.576446
-
Ahmed, M.M., Samir, E.S.A., El-Shehawi, A.M. et al. (2015). Anti-obesity effects of taif and Egyptian pomegranates: Molecular study. Bioscience, Biotechnology and Biochemistry, 79,598-609. https://doi.org/10.1080/09168451.2014.982505
-
Aksoy, M. (2020). Prevention of enzymatic browning by inhibiting polyphenol oxidase with some natural compounds and benzenethiol. Avrupa Bilim ve Teknoloji Dergisi, 20, 723-727.
-
Ashoush, I.S. and Gadallah, M.G.E., (2011). Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World Journal of Dairy & Food Sciences, 6(1), 35–42.
-
Bhargava, N., Sharanagat, V. S., Mor, R. S., Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385–401. https://doi.org/10.1016/j.tifs.2020.09.015
-
Bielsa, F. J., Grimplet, J., Irisarri, P., Miranda, C., Errea, P., Pina, A. (2025). Comparative transcriptomic analysis of enzymatic browning in three apple cultivars reveals a conserved regulatory network underlying stress responses. BMC Plant Biology, 25(1), 467. https://doi.org/10.1186/s12870-025-06445-6
-
Cadi, H.E., Cadi, A.E., Kounnoun, A. et al. (2020). Wild strawberry (Arbutus unedo): Phytochemical screening and antioxidant properties of fruits collected in northern Morocco. Arabian Journal of Chemistry, 13, 6299–6311. https://doi.org/10.1016/j.arabjc.2020.05.022
-
CLSI (2024a). Performance standards for antimicrobial disk susceptibility tests. 14th ed. CLSI standard M02. Clinical and Laboratory Standards Institute.
-
CLSI (2024b). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 12th ed. CLSI standard M07. Clinical and Laboratory Standards Institute.
-
Demir, T., Sonmez, F., Bilen, C. et al. (2013). Extraction and biological activity of total anthocyanins from sweet cherry cultivars as polyphenol oxidase inhibitors. Journal of Food Agriculture and Environment,11, 572–575.
-
Espinosa-Acosta, G., Ramos-Jacques, L.A., Molina, A.G. et al. (2018). Stability analysis of anthocyanins using alcoholic extracts from black carrot (Daucus carota ssp. Sativus var. Atrorubens alef.). Molecules, 23, 2744. https://doi.org/10.3390/molecules23112744
-
George, B., Kaur, C., Khurdiya, D.S., Kapoor, H.C. (2004). Antioxidants in tomato (Lycopersicum esculentum) as a function of genotype. Food Chemistry, 84, 45–51. https://doi.org/10.1016/S0308-8146(03)00165-1
-
Güzel, M. and Akpınar, Ö., (2019). Meyve ve Sebze Kabuklarının Fitokimyasal ve Antioksidan Özelliklerinin İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(4), 768-780. https://doi.org/10.17714/gumusfenbil.542458
-
Gorinstein, S., Zachwieja, Z., Katrich, E., Pawelzik, E., Haruenkit, R., Trakhtenberg, S., Martin-Belloso, O., (2004). Comparison of the contents of the main antioxidant compounds and the antioxidant activity of white grapefruit and his new hybrid. LWT- Food Science and Technology, 37, 337–343. https://doi.org/10.1016/j.lwt.2003.10.005
-
Hernández-Ortega M., Kissangou G., Necoechea-Mondragon H., Sánchez-Pardo M.E., Ortiz-Moreno A. (2013). Microwave dried carrot pomace as a source of fiber and carotenoids. Food and Nutrition Sciences, 4(10), 10. ttps://doi.org/10.4236/fns.2013.410135
-
Jönsson, L. J. & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009
-
Kamkaen, N., Mulsri, N., Treesak, C. (2007). Screening of some tropical vegetables for anti-tyrosinase activity. Journal of Pharmaceutical Health Care and Science, 2, 15–19.
-
Karadeniz, F., Burdurlu, S.H., Koca, N. et al. (2005). Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29(4), 297–303.
-
Leja, M., Kaminska, I., Kramer, M. et al. (2013). The content of phenolic compounds and radical scavenging activity varies with carrot origin and root colour. Plant Foods for Human Nutrition, 68, 163–170. https://doi.org/10.1007/s11130-013-0351-3
-
Lima, M.D.C., De Sousa, C.P., Fernandez-Prada, C., Harel, J., Dubreuil, J.D., De Souza, E.L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 130, 259-270. https://doi.org/10.1016/j.micpath.2019.03.025
-
Liu, Z., Ding, H., Martuscelli, M., Sajid, S., Hang, H., Mohsin, A., Wang, Z. (2024). Polyphenol oxidase inhibition by Saccharomyces cerevisiae extracts: A promising approach to prevent enzymatic browning. LWT- Food Science and Technology, 193, 115768. https://doi.org/10.1016/j.lwt.2024.115768
-
Nicolle, C., Simon, G. et al., (2004). Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. Journal of American Society Horticultural Science, 129(4), 523–529. https://doi.org/10.21273/JASHS.129.4.523
-
Osawemi, O.M., Osunsanmi, O.F. et al. (2020). In vitro antioxidant and antidiabetic potential of crude extracts from the seed coat and fruit pulp of Strychnos madagascariensis. Pharmacognosy Journal, 2(6), 1504–1511. https://doi.org/10.5530/pj.2020.12.206
-
Shrikhande, A.J. (2000). Wine by products with health benefits. Food Research International, 33, 469–474. https://doi.org/10.1016/S0963-9969(00)00071-5
-
Singh, B., Suri, K., Shevkani, K., Kaur, A., Kaur, A., Singh, N. (2018). Enzymatic browning of fruit and vegetables: A review. Enzymes in Food Technology: Improvements and Innovations, 63–78. https://doi.org/10.1007/978-981-13-1933-4_4
-
Someya, S., Yoshiki, Y., Okubo, K. (2002). Antioxidant compounds from bananas (Musa cavendish). Journal of Food Chemistry, 79, 351–354. https://doi.org/10.1016/S0308-8146(02)00186-3
Sonmez, F., Gunesli, Z., Kurt, B.Z. et al. (2019). Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Molecular Diversity, 23, 829–844. https://doi.org/10.1007/s11030-018-09910-7
-
Sonmez, F. & Sahin, Z. (2023). Comparative study of total phenolic content, antioxidant activities, and polyphenol oxidase enzyme inhibition of quince leaf, peel, and seed extracts. Erwerbs-Obstbau, 65, 745–750. https://doi.org/10.1007/s10341-022-00696-5
-
Soong, Y.Y. & Barlow, P.J. (2004). Antioxidant activity and phenolic content of selected fruits. Food Chemistry, 88, 411–417. https://doi.org/10.1016/j.foodchem.2004.02.003
-
Tangüler H., Mert H., İlman F., Yücel B., Gentürk S. (2021). Elma atıklarından elma sirkesi üretimi üzerine bir araştırma. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10, 132–139. https://doi.org/10.28948/ngumuh.673508
-
Villanova, G.B., Calderón, C.J., Jaimes, C.L. et al. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. International Food Research Journal, 44(7), 2047-2053. https://doi.org/10.1016/j.foodres.2010.11.003
-
Vodnar, D.C., Călinoiu, L.F., Dulf, F.V., Ştefănescu, B.E., Crişan, G., Socaciu, C., (2017). Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry, 231, 131-140. https://doi.org/10.1016/j.foodchem.2017.03.131
-
Yalcın, H., Yıldız, H., Nergiz, C. (1997). Baharatların kimyasal bileşimi ve gıda sanayinde kullanımı. Ege Üniversitesi Mühendislik Fakültesi Dergisi Seri B., 15(1-2), 219-228.
-
Yeniceli, B., (2018). Atık sebze ve meyvelerden antosiyanin ekstraksiyonu ve bazı bakteriler üzerindeki antimikrobiyal etkisi. Ege Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Yüksek Lisans Tezi, İzmir, Türkiye.
-
Yıldırım, M., Benzer, F., Cimen, M. et al., (2019). Determination of antioxidant capacity of flesh fruit, around the apple seeds and peel apple in some apple varieties from Isparta. International Journal of Pure Applied Science, 5(1), 31-36. https://doi.org/10.29132/ijpas.476177
-
Xu, Y., Burton, S., Kim, C., Sismour, E. (2016). Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia‐grown grape varieties. Food Science & Nutrition, 4(1), 125–133. https://doi.org/10.1002/fsn3.264
Extraction of bioactive compounds from food processing industry by-products (apple, pomegranate, black carrot pulps): An examination of their biochemical and microbiological properties
Year 2025,
Issue: Advanced Online Publication, 1 - 14
Zuhal Şahin
,
Fatih Sönmez
,
Tulay Duran
,
Hüseyin Duran
Abstract
After food industrial utilisation of fruits and vegetables, by-products and/or wastes are formed; the aim is to recover these high-content by-products. In this study, the extraction of bioactive compounds from recycled waste food products (black carrot pulp, apple pulp, and pomegranate pulp) was investigated in terms of total phenolic content (TPC), ABTS and DPPH antioxidant activities, and polyphenol oxidase (PPO) inhibitory activity. The antimicrobial activity of these wastes against 9 different microorganisms (Staphylococcus aureus, Salmonella enteritidis, Salmonella typhimurium, Cronobacter sakazakii, Escherichia coli O157:H7, Escherichia coli Type 1, Listeria monocytogenes, Salmonella spp., Bacillus spp.) was established by applying the disc diffusion method and determining the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). According to the results, the extract obtained from pomegranate pulp exhibited the most powerful DPPH (IC50 = 55.40 µg/mL and I% = 48.5) and ABTS (IC50 = 39.54 µg/mL and I% = 73.75) activities. Moreover, pomegranate pulp extract showed the highest inhibition against S. typhimurium (12.75 ±0.1mm in 20 µL). PPO was effectively inhibited by apple pulp extract (IC50 = 27.76 µg/mL). Based on all the results, most extracts from food industry by-products can be used as inhibitors to prevent enzymatic browning and as natural antimicrobials against many microorganisms.
Ethical Statement
The authors declare that this study does not involve experiments with human or animal subjects, and therefore, ethics committee approval is not required.
Supporting Institution
Sakarya University of Applid Sciences by project number 143-2023.
Thanks
Thank you to Döhler Gıda A.Ş. for providing the raw materials.
References
-
Agourram, A., Ghirardello, D., Rantsiou, K., Zeppa, G., Belviso, S., Romane, A. (2013). Giordano, M., Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. International Journal of Food Properties, 16(5), 1092–1104. https://doi.org/10.1080/10942912.2011.576446
-
Ahmed, M.M., Samir, E.S.A., El-Shehawi, A.M. et al. (2015). Anti-obesity effects of taif and Egyptian pomegranates: Molecular study. Bioscience, Biotechnology and Biochemistry, 79,598-609. https://doi.org/10.1080/09168451.2014.982505
-
Aksoy, M. (2020). Prevention of enzymatic browning by inhibiting polyphenol oxidase with some natural compounds and benzenethiol. Avrupa Bilim ve Teknoloji Dergisi, 20, 723-727.
-
Ashoush, I.S. and Gadallah, M.G.E., (2011). Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World Journal of Dairy & Food Sciences, 6(1), 35–42.
-
Bhargava, N., Sharanagat, V. S., Mor, R. S., Kumar, K. (2020). Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends in Food Science & Technology, 105, 385–401. https://doi.org/10.1016/j.tifs.2020.09.015
-
Bielsa, F. J., Grimplet, J., Irisarri, P., Miranda, C., Errea, P., Pina, A. (2025). Comparative transcriptomic analysis of enzymatic browning in three apple cultivars reveals a conserved regulatory network underlying stress responses. BMC Plant Biology, 25(1), 467. https://doi.org/10.1186/s12870-025-06445-6
-
Cadi, H.E., Cadi, A.E., Kounnoun, A. et al. (2020). Wild strawberry (Arbutus unedo): Phytochemical screening and antioxidant properties of fruits collected in northern Morocco. Arabian Journal of Chemistry, 13, 6299–6311. https://doi.org/10.1016/j.arabjc.2020.05.022
-
CLSI (2024a). Performance standards for antimicrobial disk susceptibility tests. 14th ed. CLSI standard M02. Clinical and Laboratory Standards Institute.
-
CLSI (2024b). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 12th ed. CLSI standard M07. Clinical and Laboratory Standards Institute.
-
Demir, T., Sonmez, F., Bilen, C. et al. (2013). Extraction and biological activity of total anthocyanins from sweet cherry cultivars as polyphenol oxidase inhibitors. Journal of Food Agriculture and Environment,11, 572–575.
-
Espinosa-Acosta, G., Ramos-Jacques, L.A., Molina, A.G. et al. (2018). Stability analysis of anthocyanins using alcoholic extracts from black carrot (Daucus carota ssp. Sativus var. Atrorubens alef.). Molecules, 23, 2744. https://doi.org/10.3390/molecules23112744
-
George, B., Kaur, C., Khurdiya, D.S., Kapoor, H.C. (2004). Antioxidants in tomato (Lycopersicum esculentum) as a function of genotype. Food Chemistry, 84, 45–51. https://doi.org/10.1016/S0308-8146(03)00165-1
-
Güzel, M. and Akpınar, Ö., (2019). Meyve ve Sebze Kabuklarının Fitokimyasal ve Antioksidan Özelliklerinin İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(4), 768-780. https://doi.org/10.17714/gumusfenbil.542458
-
Gorinstein, S., Zachwieja, Z., Katrich, E., Pawelzik, E., Haruenkit, R., Trakhtenberg, S., Martin-Belloso, O., (2004). Comparison of the contents of the main antioxidant compounds and the antioxidant activity of white grapefruit and his new hybrid. LWT- Food Science and Technology, 37, 337–343. https://doi.org/10.1016/j.lwt.2003.10.005
-
Hernández-Ortega M., Kissangou G., Necoechea-Mondragon H., Sánchez-Pardo M.E., Ortiz-Moreno A. (2013). Microwave dried carrot pomace as a source of fiber and carotenoids. Food and Nutrition Sciences, 4(10), 10. ttps://doi.org/10.4236/fns.2013.410135
-
Jönsson, L. J. & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009
-
Kamkaen, N., Mulsri, N., Treesak, C. (2007). Screening of some tropical vegetables for anti-tyrosinase activity. Journal of Pharmaceutical Health Care and Science, 2, 15–19.
-
Karadeniz, F., Burdurlu, S.H., Koca, N. et al. (2005). Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29(4), 297–303.
-
Leja, M., Kaminska, I., Kramer, M. et al. (2013). The content of phenolic compounds and radical scavenging activity varies with carrot origin and root colour. Plant Foods for Human Nutrition, 68, 163–170. https://doi.org/10.1007/s11130-013-0351-3
-
Lima, M.D.C., De Sousa, C.P., Fernandez-Prada, C., Harel, J., Dubreuil, J.D., De Souza, E.L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 130, 259-270. https://doi.org/10.1016/j.micpath.2019.03.025
-
Liu, Z., Ding, H., Martuscelli, M., Sajid, S., Hang, H., Mohsin, A., Wang, Z. (2024). Polyphenol oxidase inhibition by Saccharomyces cerevisiae extracts: A promising approach to prevent enzymatic browning. LWT- Food Science and Technology, 193, 115768. https://doi.org/10.1016/j.lwt.2024.115768
-
Nicolle, C., Simon, G. et al., (2004). Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. Journal of American Society Horticultural Science, 129(4), 523–529. https://doi.org/10.21273/JASHS.129.4.523
-
Osawemi, O.M., Osunsanmi, O.F. et al. (2020). In vitro antioxidant and antidiabetic potential of crude extracts from the seed coat and fruit pulp of Strychnos madagascariensis. Pharmacognosy Journal, 2(6), 1504–1511. https://doi.org/10.5530/pj.2020.12.206
-
Shrikhande, A.J. (2000). Wine by products with health benefits. Food Research International, 33, 469–474. https://doi.org/10.1016/S0963-9969(00)00071-5
-
Singh, B., Suri, K., Shevkani, K., Kaur, A., Kaur, A., Singh, N. (2018). Enzymatic browning of fruit and vegetables: A review. Enzymes in Food Technology: Improvements and Innovations, 63–78. https://doi.org/10.1007/978-981-13-1933-4_4
-
Someya, S., Yoshiki, Y., Okubo, K. (2002). Antioxidant compounds from bananas (Musa cavendish). Journal of Food Chemistry, 79, 351–354. https://doi.org/10.1016/S0308-8146(02)00186-3
Sonmez, F., Gunesli, Z., Kurt, B.Z. et al. (2019). Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Molecular Diversity, 23, 829–844. https://doi.org/10.1007/s11030-018-09910-7
-
Sonmez, F. & Sahin, Z. (2023). Comparative study of total phenolic content, antioxidant activities, and polyphenol oxidase enzyme inhibition of quince leaf, peel, and seed extracts. Erwerbs-Obstbau, 65, 745–750. https://doi.org/10.1007/s10341-022-00696-5
-
Soong, Y.Y. & Barlow, P.J. (2004). Antioxidant activity and phenolic content of selected fruits. Food Chemistry, 88, 411–417. https://doi.org/10.1016/j.foodchem.2004.02.003
-
Tangüler H., Mert H., İlman F., Yücel B., Gentürk S. (2021). Elma atıklarından elma sirkesi üretimi üzerine bir araştırma. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10, 132–139. https://doi.org/10.28948/ngumuh.673508
-
Villanova, G.B., Calderón, C.J., Jaimes, C.L. et al. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. International Food Research Journal, 44(7), 2047-2053. https://doi.org/10.1016/j.foodres.2010.11.003
-
Vodnar, D.C., Călinoiu, L.F., Dulf, F.V., Ştefănescu, B.E., Crişan, G., Socaciu, C., (2017). Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry, 231, 131-140. https://doi.org/10.1016/j.foodchem.2017.03.131
-
Yalcın, H., Yıldız, H., Nergiz, C. (1997). Baharatların kimyasal bileşimi ve gıda sanayinde kullanımı. Ege Üniversitesi Mühendislik Fakültesi Dergisi Seri B., 15(1-2), 219-228.
-
Yeniceli, B., (2018). Atık sebze ve meyvelerden antosiyanin ekstraksiyonu ve bazı bakteriler üzerindeki antimikrobiyal etkisi. Ege Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Yüksek Lisans Tezi, İzmir, Türkiye.
-
Yıldırım, M., Benzer, F., Cimen, M. et al., (2019). Determination of antioxidant capacity of flesh fruit, around the apple seeds and peel apple in some apple varieties from Isparta. International Journal of Pure Applied Science, 5(1), 31-36. https://doi.org/10.29132/ijpas.476177
-
Xu, Y., Burton, S., Kim, C., Sismour, E. (2016). Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia‐grown grape varieties. Food Science & Nutrition, 4(1), 125–133. https://doi.org/10.1002/fsn3.264