Redirecting to http://dergipark.org.tr/_fragment?_hash=R4ISqiofPOLWeqxDjk6XbMvdxgPfvcOl1YLj_6w36DE&_path=id%3D1661179%26_format%3Dhtml%26_locale%3Den%26_controller%3DApp%255CController%255CSite%255CArticleController%253A%253AesiArticleStats.
Research Article
BibTex RIS Cite

Year 2025, Volume: 11 Issue: 4, 330 - 341

Abstract

References

  • Anand, S., Singh, D., Avadhanula, M., & Marka, S. (2014). Development and control of bacterial biofilms on dairy processing membranes. Comprehensive Reviews in Food Science and Food Safety, 13(1), 18-33. https://doi.org/10.1111/1541-4337.12048
  • Arya, S.S., Rookes, J.E., Cahill, D.M., & Lenka, S.K. (2021). Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Advances in traditional medicine, 1-17. https://doi.org/10.1007/s13596-020-00531-w
  • Banerjee, G., & Chattopadhyay, P. (2019). Vanillin biotechnology: the perspectives and future. Journal of the Science of Food and Agriculture, 99(2), 499-506. https://doi.org/10.1002/jsfa.9303
  • Cava-Roda, R.M., Taboada-Rodríguez, A., Valverde-Franco, M.T., & Marín-Iniesta, F. (2012). Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling Listeria monocytogenes and Escherichia coli O157: H7 in milk. Food and Bioprocess Technology, 5, 2120-2131. https://doi.org/10.1007/s11947-010-0484-4
  • Chen, P., Liu, Y., Li, C., Hua, S., Sun, C., & Huang, L. (2023). Antibacterial mechanism of vanillin against Escherichia coli O157: H7. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e19280
  • Choe, E., & Min, D.B. (2006). Chemistry and reactions of reactive oxygen species in foods. Critical reviews in food science and nutrition, 46(1), 1-22. https://doi.org/10.1080/10408390500455474
  • Clarke, G, Ting, K.N., Wiart, C, Fry, J. (2013). The high correlation between 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential, and total phenolic content indicates redundancy in the use of all three assays to screen for antioxidant activity in extracts of plants from the Malaysian rainforest. Antioxidants, 2, 1–10. https://doi.org/10.3390/antiox2010001
  • de Jager, L.S., Perfetti, G.A., & Diachenko, G.W. (2007). Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: liquid chromatography mass spectrometry method development and validation studies. Journal of chromatography A, 1145(1-2), 83-88. https://doi.org/10.1016/j.chroma.2007.01.039
  • Fache, M., Boutevin, B., & Caillol, S. (2016). Vanillin production from lignin and its use as a renewable chemical. ACS sustainable chemistry & engineering, 4(1), 35-46. https://doi.org/10.1021/acssuschemeng.5b01344
  • Fitzgerald, D.J., Stratford, M., Gasson, M.J., Ueckert, J., Bos, A., & Narbad, A. (2004). Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. Journal of applied microbiology, 97(1), 104-113. https://doi.org/10.1111/j.1365-2672.2004.02275.x
  • Future Market Insights (2024). Vanillin Report. Vanillin Market Snapshot from 2024 to 2034. https://www.futuremarketinsights.com/reports/vanillin-market Accessed December 23, 2024.
  • Grudlewska-Buda, K., Bauza-Kaszewska, J., Wiktor-czyk-Kapischke, N., Budzyńska, A., Gospodarek-Komkowska, E., & Skowron, K. (2023). Antibiotic Resistance in selected emerging bacterial foodborne Pathogens—An issue of concern?. Antibiotics, 12(5), 880. https://doi.org/10.3390/antibiotics12050880
  • Hassanain, N.A., Hassanain, M.A., Ahmed, W.M., Shaapan, R.M., Barakat, A.M., & El-Fadaly, H.A. (2013). Public health importance of foodborne pathogens. World Journal of Medical Sciences 9(4), 208-222.
  • Huang, Y., Flint, S. H., & Palmer, J.S. (2020). Bacillus cereus spores and toxins–The potential role of biofilms. Food microbiology, 90, 103493. https://doi.org/10.1016/j.fm.2020.103493
  • Kadir, N.A., Naher, L., & Sidek, N. (2019). Economical important phytopathogenic diseases in Vanilla planifolia: A review paper. Journal of Tropical Resources and Sustainable Science (JTRSS), 7(2), 77-82. https://doi.org/10.47253/jtrss.v7i2.513
  • Karameşe, M., & Dicle, Y. (2022). The antibacterial and antibiofilm activities of resveratrol on Gram-positive and Gram-negative bacteria. Kafkas Journal of Medical Sciences, 12(3), 201-206. https://doi.org/10.5505/kjms.2022.76743
  • Kumar, R., Sharma, P.K., & Mishra, P.S. (2012). Vanillin derivatives showing various biological activities. ChemInform, 43(28).
  • Li, T., He, B., Mei, Y., Wang, D., Sun, X., & Li, J. (2019). Inhibitory effect of vanillin on the virulence factors and biofilm formation of Hafnia alvei. LWT, 102, 223-229. https://doi.org/10.1016/j.lwt.2018.12.038
  • Liu, X., Yao, H., Zhao, X., & Ge, C. (2023). Biofilm formation and control of foodborne pathogenic bacteria. Molecules, 28(6), 2432. https://doi.org/10.3390/molecules28062432
  • Lu, J., Hu, X., & Ren, L. (2022). Biofilm control strategies in food industry: Inhibition and utilization. Trends in Food Science & Technology, 123, 103-113. https://doi.org/10.1016/j.tifs.2022.03.007
  • Mogana, R., Adhikari, A., Tzar, M.N., Ramliza, R., & Wiart, C.J.B.C M. (2020). Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complementary Medicine and Therapies, 20, 1-11. https://doi.org/10.1186/s12906-020-2837-5
  • Morlock, G.E., Busso, M., Tomeba, S., & Sighicelli, A. (2021). Effect-directed profiling of 32 vanilla products, characterization of multi-potent compounds and quantification of vanillin and ethylvanillin. Journal of Chromatography A, 1652, 462377. https://doi.org/10.1016/j.chroma.2021.462377
  • Nan, Y., Rodas-Gonzalez, A., Stanford, K., Nadon, C., Yang, X., McAllister, T., & Narváez-Bravo, C. (2022). Formation and transfer of multi-species biofilms containing E. coli O103: H2 on food contact surfaces to beef. Frontiers in Microbiology, 13, 863778. https://doi.org/10.3389/fmicb.2022.863778
  • Ngarmsak, M., Delaquis, P., Toivonen, P., Ngarmsak, T., Ooraikul, B., & Mazza, G. (2006). Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes. Journal of Food Protection, 69(7), 1724-1727. https://doi.org/10.4315/0362-028X-69.7.1724
  • Olaimat, A.N., Ababneh, A.M., Al-Holy, M., Al-Nabulsi, A., Osaili, T., Abughoush, M., ... & Holley, R.A. (2024). A Review of Bacterial Biofilm Components and Formation, Detection Methods, and Their Prevention and Control on Food Contact Surfaces. Microbiology Research, 15(4), 1973-1992. https://doi.org/10.3390/microbiolres15040132
  • Oluwarinde, B.O., Ajose, D.J., Abolarinwa, T.O., Montso, P.K., Du Preez, I., Njom, H.A., & Ateba, C.N. (2023). Safety properties of Escherichia coli O157:H7 specific bacteriophages: recent advances for Food Safety. Foods, 12(21), 3989. https://doi.org/10.3390/foods12213989.
  • Ombarak, R.A., Hinenoya, A., Awasthi, S.P., Iguchi, A., Shima, A., Elbagory, A.R.M., et al. (2016). Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. International Journal of Food Microbiology, 221, 69-76. https://doi.org/10.1016/j.ijfoodmicro.2016.01.009
  • Ooka, M., Sakamuru, S., Zhao, J., Qu, Y., Fang, Y., Tao, D., ... & Xia, M. (2024). Use of Tox21 screening data to profile PFAS bioactivities on nuclear receptors, cellular stress pathways, and cytochrome P450 enzymes. Journal of Hazardous Materials, 473, 134642. https://doi.org/10.1016/j.jhazmat.2024.134642
  • Orhan-Yanıkan, E., da Silva-Janeiro, S., Ruiz-Rico, M., Jiménez-Belenguer, A.I., Ayhan, K., & Barat, J.M. (2019). Essential oils compounds as antimicrobial and antibiofilm agents against strains present in the meat industry. Food Control, 101, 29-38. https://doi.org/10.1016/j.foodcont.2019.02.035
  • Öztürk, F.Y., Darcan, C., & Kariptaş, E. (2023). The determination, monitoring, molecular mechanisms and formation of biofilm in E. coli. Brazilian Journal of Microbiology, 54(1), 259-277. https://doi.org/10.1007/s42770-022-00895-y
  • Peng, J., Wei, M., Hu, Y., Yang, Y., Guo, Y., & Zhang, F. (2019). Simultaneous determination of maltol, ethyl maltol, vanillin, and ethyl vanillin in foods by isotope dilution headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Analytical Methods, 12, 1725-1735. https://doi.org/10.1007/s12161-019-01518-3
  • Ponnusamy, K., Paul, D., & Kweon, J.H. (2009). Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Environmental Engineering Science, 26(8), 1359-1363. https://doi.org/10.1089/ees.2008.0415
  • Retnosari, R., Rachman, I.B., Sutrisno, S, Sari, M.E., Sukarianingsih, D., Rukayadi, Y. (2021). The antibacterial activity of vanillin derivative compounds. In: AIP Conference Proceedings, Vol. 2349, Surabaya, Indonesia. https://doi.org/10.1063/5.0051523
  • Tai, A., Sawano, T., & Yazama, F. (2011). Antioxidant properties of ethyl vanillin in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry, 75(12), 2346-2350. https://doi.org/10.1271/bbb.110524
  • Tai, A., Sawano, T., Yazama, F., & Ito, H. (2011). Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810(2), 170-177. https://doi.org/10.1016/j.bbagen.2010.11.004 Thaweboon, S., Thaweboon, B., & Kaypetch, R. (2017). In vitro inhibitory effect of vanillin on Candida biofilm. In Materials Science Forum (Vol. 909, pp. 177-181). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.909.177 Vaghasiya, Y. K., Nair, R., Soni, M., Baluja, S., & Shanda, S. (2004). Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. Journal of the Serbian Chemical Society, 69(12), 991-998. https://doi.org/10.2298/JSC0412991V
  • Wang, Z., Zeng, G., Wei, X., Ding, B., Huang, C., & Xu, B. (2016). Determination of vanillin and ethyl-vanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Analytical Methods, 9, 3360-3366. https://doi.org/10.1007/s12161-016-0520-8
  • WHO (2022). Food safety. https://www.who.int/news-room/fact-sheets/detail/food-safety (Accessed 21 December 2024)
  • Yang, H., Dong, Y., Du, H., Shi, H., Peng, Y., & Li, X. (2011). Antioxidant compounds from propolis collected in Anhui, China. Molecules, 16(4), 3444-3455. https://doi.org/10.3390/molecules16043444
  • Yemis, G.P., Pagotto, F., Bach, S., & Delaquis, P. (2011). Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. Journal of Food Protection, 74(12), 2062-2069. https://doi.org/10.4315/0362-028X.JFP-11-230
  • Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: the microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences, 20(14), 3423. https://doi.org/10.3390/ijms20143423

Analysis of antibacterial and antibiofilm against foodborne pathogens and antioxidant activity of ethyl vanillin and characterisation of its ADMET profile

Year 2025, Volume: 11 Issue: 4, 330 - 341

Abstract

The number of outbreaks caused by foodborne pathogens is increasing annually due to poor hygiene practices in the food industry. Synthetic compounds are added to foods to extend shelf life and add flavour. Ethyl vanillin, a derivative of vanilla, is widely used as a flavouring agent. We aimed to determine the antibacterial and antibiofilm activities of ethyl vanillin on Bacillus cereus and Escherichia coli O157:H7, to determine its antioxidant potential (Folin-Ciocalteu and 1,1-diphenyl-2-picryl hydrazyl (DPPH)) and to analyse its chemical absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The antibacterial activity of ethyl vanillin against B. cereus and E. coli O157:H7 was remarkably high, with inhibition ratios of 94.74 ±0.3% and 94.52 ±0.2%, respectively, at a concentration of 6000 µg/mL. The antibiofilm activity of ethyl vanillin against B. cereus was also high, with inhibition ratios of 92.03 ±0.04 and 92.9 ±0.65% even at very low concentrations. In addition, DPPH inhibition and TPC activity were found to be high. In this study, ethyl vanillin exhibited high levels of antibacterial, antibiofilm, and antioxidant activity. Ethyl vanillin was found to be acceptable for many properties according to ADMET analysis.

Ethical Statement

The authors declare that this study does not involve experiments with human or animal subjects, and therefore, ethics committee approval is not required.

Thanks

We are grateful to Eurofins Scientific Food Analysis Laboratory for assistance in obtaining food pathogenic bacteria.

References

  • Anand, S., Singh, D., Avadhanula, M., & Marka, S. (2014). Development and control of bacterial biofilms on dairy processing membranes. Comprehensive Reviews in Food Science and Food Safety, 13(1), 18-33. https://doi.org/10.1111/1541-4337.12048
  • Arya, S.S., Rookes, J.E., Cahill, D.M., & Lenka, S.K. (2021). Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Advances in traditional medicine, 1-17. https://doi.org/10.1007/s13596-020-00531-w
  • Banerjee, G., & Chattopadhyay, P. (2019). Vanillin biotechnology: the perspectives and future. Journal of the Science of Food and Agriculture, 99(2), 499-506. https://doi.org/10.1002/jsfa.9303
  • Cava-Roda, R.M., Taboada-Rodríguez, A., Valverde-Franco, M.T., & Marín-Iniesta, F. (2012). Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling Listeria monocytogenes and Escherichia coli O157: H7 in milk. Food and Bioprocess Technology, 5, 2120-2131. https://doi.org/10.1007/s11947-010-0484-4
  • Chen, P., Liu, Y., Li, C., Hua, S., Sun, C., & Huang, L. (2023). Antibacterial mechanism of vanillin against Escherichia coli O157: H7. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e19280
  • Choe, E., & Min, D.B. (2006). Chemistry and reactions of reactive oxygen species in foods. Critical reviews in food science and nutrition, 46(1), 1-22. https://doi.org/10.1080/10408390500455474
  • Clarke, G, Ting, K.N., Wiart, C, Fry, J. (2013). The high correlation between 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential, and total phenolic content indicates redundancy in the use of all three assays to screen for antioxidant activity in extracts of plants from the Malaysian rainforest. Antioxidants, 2, 1–10. https://doi.org/10.3390/antiox2010001
  • de Jager, L.S., Perfetti, G.A., & Diachenko, G.W. (2007). Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: liquid chromatography mass spectrometry method development and validation studies. Journal of chromatography A, 1145(1-2), 83-88. https://doi.org/10.1016/j.chroma.2007.01.039
  • Fache, M., Boutevin, B., & Caillol, S. (2016). Vanillin production from lignin and its use as a renewable chemical. ACS sustainable chemistry & engineering, 4(1), 35-46. https://doi.org/10.1021/acssuschemeng.5b01344
  • Fitzgerald, D.J., Stratford, M., Gasson, M.J., Ueckert, J., Bos, A., & Narbad, A. (2004). Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. Journal of applied microbiology, 97(1), 104-113. https://doi.org/10.1111/j.1365-2672.2004.02275.x
  • Future Market Insights (2024). Vanillin Report. Vanillin Market Snapshot from 2024 to 2034. https://www.futuremarketinsights.com/reports/vanillin-market Accessed December 23, 2024.
  • Grudlewska-Buda, K., Bauza-Kaszewska, J., Wiktor-czyk-Kapischke, N., Budzyńska, A., Gospodarek-Komkowska, E., & Skowron, K. (2023). Antibiotic Resistance in selected emerging bacterial foodborne Pathogens—An issue of concern?. Antibiotics, 12(5), 880. https://doi.org/10.3390/antibiotics12050880
  • Hassanain, N.A., Hassanain, M.A., Ahmed, W.M., Shaapan, R.M., Barakat, A.M., & El-Fadaly, H.A. (2013). Public health importance of foodborne pathogens. World Journal of Medical Sciences 9(4), 208-222.
  • Huang, Y., Flint, S. H., & Palmer, J.S. (2020). Bacillus cereus spores and toxins–The potential role of biofilms. Food microbiology, 90, 103493. https://doi.org/10.1016/j.fm.2020.103493
  • Kadir, N.A., Naher, L., & Sidek, N. (2019). Economical important phytopathogenic diseases in Vanilla planifolia: A review paper. Journal of Tropical Resources and Sustainable Science (JTRSS), 7(2), 77-82. https://doi.org/10.47253/jtrss.v7i2.513
  • Karameşe, M., & Dicle, Y. (2022). The antibacterial and antibiofilm activities of resveratrol on Gram-positive and Gram-negative bacteria. Kafkas Journal of Medical Sciences, 12(3), 201-206. https://doi.org/10.5505/kjms.2022.76743
  • Kumar, R., Sharma, P.K., & Mishra, P.S. (2012). Vanillin derivatives showing various biological activities. ChemInform, 43(28).
  • Li, T., He, B., Mei, Y., Wang, D., Sun, X., & Li, J. (2019). Inhibitory effect of vanillin on the virulence factors and biofilm formation of Hafnia alvei. LWT, 102, 223-229. https://doi.org/10.1016/j.lwt.2018.12.038
  • Liu, X., Yao, H., Zhao, X., & Ge, C. (2023). Biofilm formation and control of foodborne pathogenic bacteria. Molecules, 28(6), 2432. https://doi.org/10.3390/molecules28062432
  • Lu, J., Hu, X., & Ren, L. (2022). Biofilm control strategies in food industry: Inhibition and utilization. Trends in Food Science & Technology, 123, 103-113. https://doi.org/10.1016/j.tifs.2022.03.007
  • Mogana, R., Adhikari, A., Tzar, M.N., Ramliza, R., & Wiart, C.J.B.C M. (2020). Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complementary Medicine and Therapies, 20, 1-11. https://doi.org/10.1186/s12906-020-2837-5
  • Morlock, G.E., Busso, M., Tomeba, S., & Sighicelli, A. (2021). Effect-directed profiling of 32 vanilla products, characterization of multi-potent compounds and quantification of vanillin and ethylvanillin. Journal of Chromatography A, 1652, 462377. https://doi.org/10.1016/j.chroma.2021.462377
  • Nan, Y., Rodas-Gonzalez, A., Stanford, K., Nadon, C., Yang, X., McAllister, T., & Narváez-Bravo, C. (2022). Formation and transfer of multi-species biofilms containing E. coli O103: H2 on food contact surfaces to beef. Frontiers in Microbiology, 13, 863778. https://doi.org/10.3389/fmicb.2022.863778
  • Ngarmsak, M., Delaquis, P., Toivonen, P., Ngarmsak, T., Ooraikul, B., & Mazza, G. (2006). Antimicrobial activity of vanillin against spoilage microorganisms in stored fresh-cut mangoes. Journal of Food Protection, 69(7), 1724-1727. https://doi.org/10.4315/0362-028X-69.7.1724
  • Olaimat, A.N., Ababneh, A.M., Al-Holy, M., Al-Nabulsi, A., Osaili, T., Abughoush, M., ... & Holley, R.A. (2024). A Review of Bacterial Biofilm Components and Formation, Detection Methods, and Their Prevention and Control on Food Contact Surfaces. Microbiology Research, 15(4), 1973-1992. https://doi.org/10.3390/microbiolres15040132
  • Oluwarinde, B.O., Ajose, D.J., Abolarinwa, T.O., Montso, P.K., Du Preez, I., Njom, H.A., & Ateba, C.N. (2023). Safety properties of Escherichia coli O157:H7 specific bacteriophages: recent advances for Food Safety. Foods, 12(21), 3989. https://doi.org/10.3390/foods12213989.
  • Ombarak, R.A., Hinenoya, A., Awasthi, S.P., Iguchi, A., Shima, A., Elbagory, A.R.M., et al. (2016). Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. International Journal of Food Microbiology, 221, 69-76. https://doi.org/10.1016/j.ijfoodmicro.2016.01.009
  • Ooka, M., Sakamuru, S., Zhao, J., Qu, Y., Fang, Y., Tao, D., ... & Xia, M. (2024). Use of Tox21 screening data to profile PFAS bioactivities on nuclear receptors, cellular stress pathways, and cytochrome P450 enzymes. Journal of Hazardous Materials, 473, 134642. https://doi.org/10.1016/j.jhazmat.2024.134642
  • Orhan-Yanıkan, E., da Silva-Janeiro, S., Ruiz-Rico, M., Jiménez-Belenguer, A.I., Ayhan, K., & Barat, J.M. (2019). Essential oils compounds as antimicrobial and antibiofilm agents against strains present in the meat industry. Food Control, 101, 29-38. https://doi.org/10.1016/j.foodcont.2019.02.035
  • Öztürk, F.Y., Darcan, C., & Kariptaş, E. (2023). The determination, monitoring, molecular mechanisms and formation of biofilm in E. coli. Brazilian Journal of Microbiology, 54(1), 259-277. https://doi.org/10.1007/s42770-022-00895-y
  • Peng, J., Wei, M., Hu, Y., Yang, Y., Guo, Y., & Zhang, F. (2019). Simultaneous determination of maltol, ethyl maltol, vanillin, and ethyl vanillin in foods by isotope dilution headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Analytical Methods, 12, 1725-1735. https://doi.org/10.1007/s12161-019-01518-3
  • Ponnusamy, K., Paul, D., & Kweon, J.H. (2009). Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Environmental Engineering Science, 26(8), 1359-1363. https://doi.org/10.1089/ees.2008.0415
  • Retnosari, R., Rachman, I.B., Sutrisno, S, Sari, M.E., Sukarianingsih, D., Rukayadi, Y. (2021). The antibacterial activity of vanillin derivative compounds. In: AIP Conference Proceedings, Vol. 2349, Surabaya, Indonesia. https://doi.org/10.1063/5.0051523
  • Tai, A., Sawano, T., & Yazama, F. (2011). Antioxidant properties of ethyl vanillin in vitro and in vivo. Bioscience, Biotechnology, and Biochemistry, 75(12), 2346-2350. https://doi.org/10.1271/bbb.110524
  • Tai, A., Sawano, T., Yazama, F., & Ito, H. (2011). Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta (BBA)-General Subjects, 1810(2), 170-177. https://doi.org/10.1016/j.bbagen.2010.11.004 Thaweboon, S., Thaweboon, B., & Kaypetch, R. (2017). In vitro inhibitory effect of vanillin on Candida biofilm. In Materials Science Forum (Vol. 909, pp. 177-181). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.909.177 Vaghasiya, Y. K., Nair, R., Soni, M., Baluja, S., & Shanda, S. (2004). Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. Journal of the Serbian Chemical Society, 69(12), 991-998. https://doi.org/10.2298/JSC0412991V
  • Wang, Z., Zeng, G., Wei, X., Ding, B., Huang, C., & Xu, B. (2016). Determination of vanillin and ethyl-vanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Analytical Methods, 9, 3360-3366. https://doi.org/10.1007/s12161-016-0520-8
  • WHO (2022). Food safety. https://www.who.int/news-room/fact-sheets/detail/food-safety (Accessed 21 December 2024)
  • Yang, H., Dong, Y., Du, H., Shi, H., Peng, Y., & Li, X. (2011). Antioxidant compounds from propolis collected in Anhui, China. Molecules, 16(4), 3444-3455. https://doi.org/10.3390/molecules16043444
  • Yemis, G.P., Pagotto, F., Bach, S., & Delaquis, P. (2011). Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. Journal of Food Protection, 74(12), 2062-2069. https://doi.org/10.4315/0362-028X.JFP-11-230
  • Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: the microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences, 20(14), 3423. https://doi.org/10.3390/ijms20143423
There are 40 citations in total.

Details

Primary Language English
Subjects Food Microbiology
Journal Section Research Articles
Authors

Orçun Toksöz 0000-0002-4863-3232

Dença Toker 0009-0003-1805-3063

Didem Berber 0000-0001-5813-160X

Cenk Sesal 0000-0002-0737-0122

Early Pub Date August 29, 2025
Publication Date August 30, 2025
Submission Date March 19, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 11 Issue: 4

Cite

APA Toksöz, O., Toker, D., Berber, D., Sesal, C. (2025). Analysis of antibacterial and antibiofilm against foodborne pathogens and antioxidant activity of ethyl vanillin and characterisation of its ADMET profile. Food and Health, 11(4), 330-341.

16339

Journal is licensed under a

CreativeCommons Attribtion-ShareAlike 4.0 International Licence  14627 1331027042
Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

27222

Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).