Research Article
BibTex RIS Cite

Nanokristal selüloz takviyeli biyobazlı filmlerde nem ve sıcaklık koşullarının mekanik ve bariyer özelliklere etkisi

Year 2025, Volume: 11 Issue: 4, 301 - 317

Abstract

Bu çalışma, nanokristal selüloz (NKS) katkılı biyobazlı kompozit filmlerin, farklı nem ve sıcaklık koşullarına bağlı, mekanik ve su buhar bariyer özelliklerindeki değişimleri incelemektedir. Peynir altı suyu protein konsantresi (WPK) ve kitosan (KS) bazlı kompozit filmler, farklı bağıl nem (%50, %75, %100) ve sıcaklık (-18°C, 4°C, 25°C) koşullarında değerlendirilmiş, NKS katkısının filmin mekanik ve bariyer stabilitesi üzerindeki etkileri analiz edilmiştir. NKS eklenmiş WPK/KS/NKS filmlerde, NKS katkısının su buhar bariyer (1,04 mm m⁻² h⁻¹ kPa⁻¹) özelliklerini iyileştirdiğini ve film stabilitesini artırdığını gösterilmiştir. Depolama sıcaklığı arttıkça (4°C → 25°C) filmlerin uzama yüzdesinin azaldığı gözlemlenmiştir. Yüksek bağıl nemde (%100 RH) çekme dayanımı diğer filmler için %60’a varan oranda azalırken, NKS katkısının bu kaybı önlediği belirlenmiştir. NKS katkısı, film yüzey morfolojisini düzenleyerek su buharı geçişini sınırlamış, ancak antimikrobiyal aktivite üzerinde belirgin bir etki göstermemiştir. NKS katkısının, biyobazlı filmlerin su buhar bariyer ve mekanik özelliklerini geliştirerek gıda ambalajlarında kullanım potansiyelini artırabileceği görülmüştür.

Ethical Statement

Yazarlar bu çalışmada insan veya hayvan denekleri üzerinde herhangi bir deney yapılmadığını ve bu nedenle etik kurul onayı gerekmediğini beyan etmektedirler.

Supporting Institution

Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilimsel Araştırma Projeleri Ofisi

Project Number

20103006

Thanks

Dr. Dıblan, çalışmanın tamamlanmasında aldığı değerli yardımlardan dolayı Dr. Levent Yurdaer Aydemir’e teşekkür eder.

References

  • Aguirre-Loredo, R.Y., Rodríguez-Hernández, A.I., Morales-Sánchez, E., Gómez-Aldapa, C.A., & Velazquez, G. (2016). Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chemistry, 196, 560-566. https://doi.org/10.1016/j.foodchem.2015.09.065
  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43(6), 837-842. https://doi.org/10.1016/j.lwt.2010.01.021
  • Al-Hilifi, S.A., Al-Ibresam, O.T., Al-Hatim, R.R., Al-Ali, R.M., Maslekar, N., Yao, Y., & Agarwal, V. (2023). Development of chitosan/whey protein hydrolysate composite films for food packaging application. Journal of Composites Science, 7(3), 94. https://doi.org/10.3390/jcs7030094 AOAC (1995). Official methods of analysis of AOAC international. Arlington, Va.: AOAC Intl. pv (loose-leaf).
  • Bartczyk, N., Robak, M., & Galińska, B. (2019). Intelligent aspects of packaging in food industry. Wydawnictwo Politechniki Łódzkiej, 34.
  • Bauer, A., Jesús, F., Gómez Ramos, M.J., Lozano, A., & Fernández-Alba, A.R. (2019). Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry. Food Chemistry, 295, 274-288. https://doi.org/10.1016/j.foodchem.2019.05.105
  • Becker, J.M., Pounder, R.J., & Dove, A.P. (2010). Synthesis of poly(lactide)s with modified thermal and mechanical properties. Macromolecular Rapid Communica-tions, 31(22), 1923-1937. https://doi.org/10.1002/marc.201000088
  • Bernhardt, D. C., Perez, C. D., Fissore, E. N., De'Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13-22. https://doi.org/10.1016/j.carbpol.2017.01.031
  • Bhatia, S., Jawad, M., Chinnam, S., Al-Harrasi, A., Shah, Y. A., Khan, T. S., Koca, E., Aydemir, L. Y., Dıblan, S., & Thekkuden, D. T. (2025). Origanum majorana essential oil-enriched collagen/k-carrageenan films with enhanced thermal, hydrophobic, anti-oxidant and anti-microbial properties for active packaging. LWT - Food Science and Technology, 117646. https://doi.org/10.1016/j.lwt.2025.117646
  • Bilbao-Sáinz, C., Avena-Bustillos, R.J., Wood, D.F., Williams, T.G., & McHugh, T.H. (2010). Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. Journal of Agricultural and Food Chemistry, 58(6), 3753-3760. https://doi.org/10.1021/jf9033128
  • Caner, C., Vergano, P., & Wiles, J. (1998). Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. Journal of Food Science, 63(6), 1049-1053. https://doi.org/10.1111/j.1365-2621.1998.tb15852.x
  • Chen, J., Chai, J., Chen, X., Huang, M., Zeng, X., & Xu, X. (2023). Development of edible films by incorporating nanocrystalline cellulose and anthocyanins into modified myofibrillar proteins. Food Chemistry, 417, 135820. https://doi.org/10.1016/j.foodchem.2023.135820
  • de Andrade, M. R., Nery, T.B.R., de Santana, E.S.T.I., Leal, I.L., Rodrigues, L.A.P., de Oliveira Reis, J.H., Druzian, J.I., & Machado, B.A.S. (2019). Effect of cellulose nanocrystals from different lignocellulosic residues to chitosan/glycerol films. Polymers (Basel), 11(4). https://doi.org/10.3390/polym11040658
  • Dıblan, S. (2013). Kalecik karası üzümlerden (vitis vinifera l.) üretilen kırmızı üzüm suyunun çeşitli durultma yardımcı maddeleri ile durultulması ve durultmanın üzüm suyu rengi üzerine etkisi. Ankara Üniversitesi Fen Bilimleri.
  • Diblan, S., Gökkaya Erdem, B., & Kaya, S. (2020). Sorption, diffusivity, permeability and mechanical properties of chitosan, potassium sorbate, or nisin incorporated active polymer films. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-020-04403-8
  • Ertan, K., Celebioglu, A., Chowdhury, R., Sumnu, G., Sahin, S., Altier, C., & Uyar, T. (2023). Carvacrol/cyclodextrin inclusion complex loaded gelatin/pullulan nanofibers for active food packaging applications. Food Hydrocolloids, 142, 108864. https://doi.org/10.1016/j.foodhyd.2023.108864
  • Fitriani, F., Aprilia, S., Bilad, M. R., Arahman, N., Usman, A., Huda, N., & Kobun, R. (2022). Optimization of biocomposite film based on whey protein isolate and nanocrystalline cellulose from pineapple crown leaf using response surface methodology. Polymers, 14(15), 3006. https://doi.org/10.3390/polym14153006
  • U.S. Food and Drug Administration (2016). Gras notice no. 633: Whey protein. Retrieved from Silver Spring, MD: https://www.fda.gov/media/99881/download
  • U.S. Food and Drug Administration (2021). Amendment to grn 997: Gras status of fiber extracted from white button mushrooms (agaricus bisporus). Retrieved from Silver Spring, MD: https://www.fda.gov/media/159513/download
  • Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J. M., & Torre, L. (2013). Binary pva bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part i. Carbohydrate Polymers, 97(2), 825-836. https://doi.org/10.1016/j.carbpol.2013.03.075
  • Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., Kenny, J.M., & Torre, L. (2012). Extraction of cellulose nanocrystals from phormium tenax fibres. Journal of Polymers and the Environment, 21(2), 319-328. https://doi.org/10.1007/s10924-012-0543-1
  • Gökkaya Erdem, B., Dıblan, S., & Kaya, S. (2019). Development and structural assessment of whey protein isolate/sunflower seed oil biocomposite film. Food and Bioproducts Processing, 118, 270-280. https://doi.org/10.1016/j.fbp.2019.09.015
  • Gökkaya Erdem, B., Dıblan, S., & Kaya, S. (2021). A comprehensive study on sorption, water barrier, and physicochemical properties of some protein-and carbohydrate-based edible films. Food and Bioprocess Technology, 14(11), 2161-2179. https://doi.org/10.1007/s11947-021-02712-0 Guo, Y., Zhang, Y., Zheng, D., Li, M., & Yue, J. (2020). Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk. International Journal of Biological Macromolecules, 163, 927-933. https://doi.org/10.1016/j.ijbiomac.2020.07.009
  • Han, J.H. (2005). Innovations in food packaging. Elsevier, pp.
  • Huang, D., Li, X., Ouyang, Z., Zhao, X., Wu, R., Zhang, C., Lin, C., Li, Y., & Guo, X. (2021). The occurrence and abundance of microplastics in surface water and sediment of the west river downstream, in the south of china. Science of the Total Environment, 756, 143857. https://doi.org/10.1016/j.scitotenv.2020.143857
  • Jiang, S.-j., Zhang, T., Song, Y., Qian, F., Tuo, Y., & Mu, G. (2019). Mechanical properties of whey protein concentrate based film improved by the coexistence of nanocrystalline cellulose and transglutaminase. International Journal of Biological Macromolecules, 126, 1266-1272. https://doi.org/10.1016/j.ijbiomac.2018.12.254
  • Karbowiak, T., Gougeon, R.D., Rigolet, S., Delmotte, L., Debeaufort, F., & Voilley, A. (2008). Diffusion of small molecules in edible films: Effect of water and interactions between diffusant and biopolymer. Food Chemistry, 106(4), 1340-1349. https://doi.org/10.1016/j.foodchem.2007.03.076
  • Kerch, G., & Korkhov, V. (2011). Effect of storage time and temperature on structure, mechanical and barrier properties of chitosan-based films. European Food Research and Technology, 232, 17-22. https://doi.org/10.1007/s00217-010-1356-x
  • Khezerlou, A., Tavassoli, M., Alizadeh Sani, M., Ehsani, A., & McClements, D.J. (2023). Smart packaging for food spoilage assessment based on hibiscus sabdariffa l. Anthocyanin-loaded chitosan films. Journal of Composites Science, 7(10), 404. https://doi.org/10.3390/jcs7100404
  • Khosravi, A., Fereidoon, A., Khorasani, M.M., Naderi, G., Ganjali, M.R., Zarrintaj, P., Saeb, M.R., & Gutiérrez, T.J. (2020). Soft and hard sections from cellulose-reinforced poly(lactic acid)-based food packaging films: A critical review. Food Packaging and Shelf Life, 23, 100429. https://doi.org/10.1016/j.fpsl.2019.100429
  • Koç, B.E., & Özkan, M. (2011). Gida endüstrisinde kitosanin kullanimi. Gida/The Journal of Food, 36(3).
  • Li, L., Wang, W., Zheng, M., Sun, J., Chen, Z., Wang, J., & Ma, Q. (2023). Nanocellulose-enhanced smart film for the accurate monitoring of shrimp freshness via anthocyanin-induced color changes. Carbohydrate Polymers, 301, 120352. https://doi.org/10.1016/j.carbpol.2022.120352
  • Liu, Y., Aimutis, W. R., & Drake, M. (2024). Dairy, plant, and novel proteins: Scientific and technological aspects. Foods, 13(7), 1010. https://doi.org/10.3390/foods13071010
  • Mahardika, M., Masruchin, N., Amelia, D., Ilyas, R.A., Septevani, A.A., Syafri, E., Hastuti, N., Karina, M., Khan, M.A., & Jeon, B.-H. (2024). Nanocellulose reinforced polyvinyl alcohol-based bio-nanocomposite films: Improved mechanical, uv-light barrier, and thermal properties. RSC Advances, 14(32), 23232-23239. https://doi.org/10.1039/D4RA04205K
  • Mohamed, S.A., El-Sakhawy, M., & El-Sakhawy, M.A.-M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178
  • Otoni, C.G., Avena-Bustillos, R.J., Azeredo, H.M.C., Lorevice, M.V., Moura, M.R., Mattoso, L.H.C., & McHugh, T.H. (2017). Recent advances on edible films based on fruits and vegetables—a review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151-1169. https://doi.org/10.1111/1541-4337.12281
  • Özkaya, H. ( 1998). Analitik gıda kalite kontrolü. Ankara Üniversitesi Ziraat Fakültesi Yayınları, pp. 4-64. Ankara, Turkey.
  • Robertson, G.L. (2005). Food packaging: Principles and practice. CRC press, pp. 329-363. ISBN: 0429132891. https://doi.org/10.1201/9781420056150
  • Tavares, L., Souza, H. K., Gonçalves, M.P., & Rocha, C. M. (2021). Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocolloids, 113, 106471. https://doi.org/10.1016/j.foodhyd.2020.106471
  • Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., & Hussin, M.H. (2020). Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry, 8, 392. https://doi.org/10.3389/fchem.2020.00392
  • Wagner, M., & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: Total estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research, 16(3), 278-286. https://doi.org/10.1007/s11356-009-0107-7
  • Wang, L., Dong, Y., Men, H., Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32(1), 35-41. https://doi.org/10.1016/j.foodhyd.2012.11.034 Wang, Y., Wang, J., Lai, J., Zhang, X., Wang, Y., & Zhu, Y. (2022). Preparation and characterization of chitosan/whey isolate protein active film containing tio2 and white pepper essential oil. Frontiers in Nutrition, 9, 1047988. https://doi.org/10.3389/fnut.2022.1047988
  • Wu, H., Lei, Y., Zhu, R., Zhao, M., Lu, J., Xiao, D., Jiao, C., Zhang, Z., Shen, G., & Li, S. (2019). Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocolloids, 90, 41-49. https://doi.org/10.1016/j.foodhyd.2018.12.016
  • Xu, Y., Wu, Z., Li, A., Chen, N., Rao, J., & Zeng, Q. (2024). Nanocellulose composite films in food packaging materials: A review. Polymers, 16(3), 423. https://doi.org/10.3390/polym16030423 Yang, W., Zhang, S., Li, C., Li, M., Li, Y., Wu, P., Li, H., & Ai, S. (2025). Functionalized cellulose nanocrystals reinforced polysaccharide matrix for the preparation of active packaging for perishable fruits preservation. International Journal of Biological Macromolecules, 290, 138902. https://doi.org/10.1016/j.ijbiomac.2024.138902
  • Zhang, W., Zhang, Y., Cao, J., & Jiang, W. (2021). Improving the performance of edible food packaging films by using nanocellulose as an additive. International Journal of Biological Macromolecules, 166, 288-296. https://doi.org/10.1016/j.ijbiomac.2020.10.185

Effect of humidity and temperature conditions on the mechanical and barri-er properties of nanocrys-talline cellulose-reinforced bio-based films

Year 2025, Volume: 11 Issue: 4, 301 - 317

Abstract

This study investigates the effects of nanocrystalline cellulose (NKS) incorporation on the mechanical and water vapor barrier properties of bio-based composite films under varying humidity and temperature conditions. Composite films based on whey protein concentrate (WPK) and chitosan (KS) were evaluated at different relative humidity levels (50%, 75%, 100%) and temperatures (−18°C, 4°C, 25°C), and the impact of NKS on film stability was analyzed in terms of both mechanical and barrier performance. NKS-reinforced WPK/KS/NKS films were compared with NKS-free films in terms of water vapor permeability (1.04 mm m⁻² h⁻¹ kPa⁻¹) and enhanced overall film stability. As temperature increased (from 4°C to 25°C), a reduction in elongation percentage was observed. While tensile strength decreased by up to 60% in other films under high humidity conditions (100% RH), this loss was prevented in NKS-reinforced films. NKS also contributed to limiting water vapor transmission by modifying the surface morphology of the films; however, it did not show a significant effect on antimicrobial activity. These findings indicate that NKS-reinforced biobased films can enhance water vapor barrier and mechanical properties, making them promising candidates for food packaging applications.

Ethical Statement

The authors declare that this study does not involve experiments with human or animal subjects, and therefore, ethics committee approval is not required.

Supporting Institution

Adana Alparslan Turkes Science and Technology University Scientific Research Projects Office

Project Number

20103006

Thanks

Dr. Dıblan acknowledges Dr. Levent Yurdaer Aydemir for his valuable contributions to the completion of this study.

References

  • Aguirre-Loredo, R.Y., Rodríguez-Hernández, A.I., Morales-Sánchez, E., Gómez-Aldapa, C.A., & Velazquez, G. (2016). Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chemistry, 196, 560-566. https://doi.org/10.1016/j.foodchem.2015.09.065
  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43(6), 837-842. https://doi.org/10.1016/j.lwt.2010.01.021
  • Al-Hilifi, S.A., Al-Ibresam, O.T., Al-Hatim, R.R., Al-Ali, R.M., Maslekar, N., Yao, Y., & Agarwal, V. (2023). Development of chitosan/whey protein hydrolysate composite films for food packaging application. Journal of Composites Science, 7(3), 94. https://doi.org/10.3390/jcs7030094 AOAC (1995). Official methods of analysis of AOAC international. Arlington, Va.: AOAC Intl. pv (loose-leaf).
  • Bartczyk, N., Robak, M., & Galińska, B. (2019). Intelligent aspects of packaging in food industry. Wydawnictwo Politechniki Łódzkiej, 34.
  • Bauer, A., Jesús, F., Gómez Ramos, M.J., Lozano, A., & Fernández-Alba, A.R. (2019). Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry. Food Chemistry, 295, 274-288. https://doi.org/10.1016/j.foodchem.2019.05.105
  • Becker, J.M., Pounder, R.J., & Dove, A.P. (2010). Synthesis of poly(lactide)s with modified thermal and mechanical properties. Macromolecular Rapid Communica-tions, 31(22), 1923-1937. https://doi.org/10.1002/marc.201000088
  • Bernhardt, D. C., Perez, C. D., Fissore, E. N., De'Nobili, M. D., & Rojas, A. M. (2017). Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydrate Polymers, 164, 13-22. https://doi.org/10.1016/j.carbpol.2017.01.031
  • Bhatia, S., Jawad, M., Chinnam, S., Al-Harrasi, A., Shah, Y. A., Khan, T. S., Koca, E., Aydemir, L. Y., Dıblan, S., & Thekkuden, D. T. (2025). Origanum majorana essential oil-enriched collagen/k-carrageenan films with enhanced thermal, hydrophobic, anti-oxidant and anti-microbial properties for active packaging. LWT - Food Science and Technology, 117646. https://doi.org/10.1016/j.lwt.2025.117646
  • Bilbao-Sáinz, C., Avena-Bustillos, R.J., Wood, D.F., Williams, T.G., & McHugh, T.H. (2010). Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. Journal of Agricultural and Food Chemistry, 58(6), 3753-3760. https://doi.org/10.1021/jf9033128
  • Caner, C., Vergano, P., & Wiles, J. (1998). Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. Journal of Food Science, 63(6), 1049-1053. https://doi.org/10.1111/j.1365-2621.1998.tb15852.x
  • Chen, J., Chai, J., Chen, X., Huang, M., Zeng, X., & Xu, X. (2023). Development of edible films by incorporating nanocrystalline cellulose and anthocyanins into modified myofibrillar proteins. Food Chemistry, 417, 135820. https://doi.org/10.1016/j.foodchem.2023.135820
  • de Andrade, M. R., Nery, T.B.R., de Santana, E.S.T.I., Leal, I.L., Rodrigues, L.A.P., de Oliveira Reis, J.H., Druzian, J.I., & Machado, B.A.S. (2019). Effect of cellulose nanocrystals from different lignocellulosic residues to chitosan/glycerol films. Polymers (Basel), 11(4). https://doi.org/10.3390/polym11040658
  • Dıblan, S. (2013). Kalecik karası üzümlerden (vitis vinifera l.) üretilen kırmızı üzüm suyunun çeşitli durultma yardımcı maddeleri ile durultulması ve durultmanın üzüm suyu rengi üzerine etkisi. Ankara Üniversitesi Fen Bilimleri.
  • Diblan, S., Gökkaya Erdem, B., & Kaya, S. (2020). Sorption, diffusivity, permeability and mechanical properties of chitosan, potassium sorbate, or nisin incorporated active polymer films. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-020-04403-8
  • Ertan, K., Celebioglu, A., Chowdhury, R., Sumnu, G., Sahin, S., Altier, C., & Uyar, T. (2023). Carvacrol/cyclodextrin inclusion complex loaded gelatin/pullulan nanofibers for active food packaging applications. Food Hydrocolloids, 142, 108864. https://doi.org/10.1016/j.foodhyd.2023.108864
  • Fitriani, F., Aprilia, S., Bilad, M. R., Arahman, N., Usman, A., Huda, N., & Kobun, R. (2022). Optimization of biocomposite film based on whey protein isolate and nanocrystalline cellulose from pineapple crown leaf using response surface methodology. Polymers, 14(15), 3006. https://doi.org/10.3390/polym14153006
  • U.S. Food and Drug Administration (2016). Gras notice no. 633: Whey protein. Retrieved from Silver Spring, MD: https://www.fda.gov/media/99881/download
  • U.S. Food and Drug Administration (2021). Amendment to grn 997: Gras status of fiber extracted from white button mushrooms (agaricus bisporus). Retrieved from Silver Spring, MD: https://www.fda.gov/media/159513/download
  • Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J. M., & Torre, L. (2013). Binary pva bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part i. Carbohydrate Polymers, 97(2), 825-836. https://doi.org/10.1016/j.carbpol.2013.03.075
  • Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., Kenny, J.M., & Torre, L. (2012). Extraction of cellulose nanocrystals from phormium tenax fibres. Journal of Polymers and the Environment, 21(2), 319-328. https://doi.org/10.1007/s10924-012-0543-1
  • Gökkaya Erdem, B., Dıblan, S., & Kaya, S. (2019). Development and structural assessment of whey protein isolate/sunflower seed oil biocomposite film. Food and Bioproducts Processing, 118, 270-280. https://doi.org/10.1016/j.fbp.2019.09.015
  • Gökkaya Erdem, B., Dıblan, S., & Kaya, S. (2021). A comprehensive study on sorption, water barrier, and physicochemical properties of some protein-and carbohydrate-based edible films. Food and Bioprocess Technology, 14(11), 2161-2179. https://doi.org/10.1007/s11947-021-02712-0 Guo, Y., Zhang, Y., Zheng, D., Li, M., & Yue, J. (2020). Isolation and characterization of nanocellulose crystals via acid hydrolysis from agricultural waste-tea stalk. International Journal of Biological Macromolecules, 163, 927-933. https://doi.org/10.1016/j.ijbiomac.2020.07.009
  • Han, J.H. (2005). Innovations in food packaging. Elsevier, pp.
  • Huang, D., Li, X., Ouyang, Z., Zhao, X., Wu, R., Zhang, C., Lin, C., Li, Y., & Guo, X. (2021). The occurrence and abundance of microplastics in surface water and sediment of the west river downstream, in the south of china. Science of the Total Environment, 756, 143857. https://doi.org/10.1016/j.scitotenv.2020.143857
  • Jiang, S.-j., Zhang, T., Song, Y., Qian, F., Tuo, Y., & Mu, G. (2019). Mechanical properties of whey protein concentrate based film improved by the coexistence of nanocrystalline cellulose and transglutaminase. International Journal of Biological Macromolecules, 126, 1266-1272. https://doi.org/10.1016/j.ijbiomac.2018.12.254
  • Karbowiak, T., Gougeon, R.D., Rigolet, S., Delmotte, L., Debeaufort, F., & Voilley, A. (2008). Diffusion of small molecules in edible films: Effect of water and interactions between diffusant and biopolymer. Food Chemistry, 106(4), 1340-1349. https://doi.org/10.1016/j.foodchem.2007.03.076
  • Kerch, G., & Korkhov, V. (2011). Effect of storage time and temperature on structure, mechanical and barrier properties of chitosan-based films. European Food Research and Technology, 232, 17-22. https://doi.org/10.1007/s00217-010-1356-x
  • Khezerlou, A., Tavassoli, M., Alizadeh Sani, M., Ehsani, A., & McClements, D.J. (2023). Smart packaging for food spoilage assessment based on hibiscus sabdariffa l. Anthocyanin-loaded chitosan films. Journal of Composites Science, 7(10), 404. https://doi.org/10.3390/jcs7100404
  • Khosravi, A., Fereidoon, A., Khorasani, M.M., Naderi, G., Ganjali, M.R., Zarrintaj, P., Saeb, M.R., & Gutiérrez, T.J. (2020). Soft and hard sections from cellulose-reinforced poly(lactic acid)-based food packaging films: A critical review. Food Packaging and Shelf Life, 23, 100429. https://doi.org/10.1016/j.fpsl.2019.100429
  • Koç, B.E., & Özkan, M. (2011). Gida endüstrisinde kitosanin kullanimi. Gida/The Journal of Food, 36(3).
  • Li, L., Wang, W., Zheng, M., Sun, J., Chen, Z., Wang, J., & Ma, Q. (2023). Nanocellulose-enhanced smart film for the accurate monitoring of shrimp freshness via anthocyanin-induced color changes. Carbohydrate Polymers, 301, 120352. https://doi.org/10.1016/j.carbpol.2022.120352
  • Liu, Y., Aimutis, W. R., & Drake, M. (2024). Dairy, plant, and novel proteins: Scientific and technological aspects. Foods, 13(7), 1010. https://doi.org/10.3390/foods13071010
  • Mahardika, M., Masruchin, N., Amelia, D., Ilyas, R.A., Septevani, A.A., Syafri, E., Hastuti, N., Karina, M., Khan, M.A., & Jeon, B.-H. (2024). Nanocellulose reinforced polyvinyl alcohol-based bio-nanocomposite films: Improved mechanical, uv-light barrier, and thermal properties. RSC Advances, 14(32), 23232-23239. https://doi.org/10.1039/D4RA04205K
  • Mohamed, S.A., El-Sakhawy, M., & El-Sakhawy, M.A.-M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178. https://doi.org/10.1016/j.carbpol.2020.116178
  • Otoni, C.G., Avena-Bustillos, R.J., Azeredo, H.M.C., Lorevice, M.V., Moura, M.R., Mattoso, L.H.C., & McHugh, T.H. (2017). Recent advances on edible films based on fruits and vegetables—a review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151-1169. https://doi.org/10.1111/1541-4337.12281
  • Özkaya, H. ( 1998). Analitik gıda kalite kontrolü. Ankara Üniversitesi Ziraat Fakültesi Yayınları, pp. 4-64. Ankara, Turkey.
  • Robertson, G.L. (2005). Food packaging: Principles and practice. CRC press, pp. 329-363. ISBN: 0429132891. https://doi.org/10.1201/9781420056150
  • Tavares, L., Souza, H. K., Gonçalves, M.P., & Rocha, C. M. (2021). Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocolloids, 113, 106471. https://doi.org/10.1016/j.foodhyd.2020.106471
  • Trache, D., Tarchoun, A.F., Derradji, M., Hamidon, T.S., Masruchin, N., Brosse, N., & Hussin, M.H. (2020). Nanocellulose: From fundamentals to advanced applications. Frontiers in Chemistry, 8, 392. https://doi.org/10.3389/fchem.2020.00392
  • Wagner, M., & Oehlmann, J. (2009). Endocrine disruptors in bottled mineral water: Total estrogenic burden and migration from plastic bottles. Environmental Science and Pollution Research, 16(3), 278-286. https://doi.org/10.1007/s11356-009-0107-7
  • Wang, L., Dong, Y., Men, H., Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32(1), 35-41. https://doi.org/10.1016/j.foodhyd.2012.11.034 Wang, Y., Wang, J., Lai, J., Zhang, X., Wang, Y., & Zhu, Y. (2022). Preparation and characterization of chitosan/whey isolate protein active film containing tio2 and white pepper essential oil. Frontiers in Nutrition, 9, 1047988. https://doi.org/10.3389/fnut.2022.1047988
  • Wu, H., Lei, Y., Zhu, R., Zhao, M., Lu, J., Xiao, D., Jiao, C., Zhang, Z., Shen, G., & Li, S. (2019). Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocolloids, 90, 41-49. https://doi.org/10.1016/j.foodhyd.2018.12.016
  • Xu, Y., Wu, Z., Li, A., Chen, N., Rao, J., & Zeng, Q. (2024). Nanocellulose composite films in food packaging materials: A review. Polymers, 16(3), 423. https://doi.org/10.3390/polym16030423 Yang, W., Zhang, S., Li, C., Li, M., Li, Y., Wu, P., Li, H., & Ai, S. (2025). Functionalized cellulose nanocrystals reinforced polysaccharide matrix for the preparation of active packaging for perishable fruits preservation. International Journal of Biological Macromolecules, 290, 138902. https://doi.org/10.1016/j.ijbiomac.2024.138902
  • Zhang, W., Zhang, Y., Cao, J., & Jiang, W. (2021). Improving the performance of edible food packaging films by using nanocellulose as an additive. International Journal of Biological Macromolecules, 166, 288-296. https://doi.org/10.1016/j.ijbiomac.2020.10.185
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Food Packaging, Preservation and Processing
Journal Section Research Articles
Authors

Sevgin Dıblan 0000-0002-7998-4801

Project Number 20103006
Early Pub Date August 13, 2025
Publication Date
Submission Date February 8, 2025
Acceptance Date May 15, 2025
Published in Issue Year 2025Volume: 11 Issue: 4

Cite

APA Dıblan, S. (2025). Nanokristal selüloz takviyeli biyobazlı filmlerde nem ve sıcaklık koşullarının mekanik ve bariyer özelliklere etkisi. Food and Health, 11(4), 301-317.

16339

Journal is licensed under a

CreativeCommons Attribtion-ShareAlike 4.0 International Licence  14627 1331027042
Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

27222

Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).