İnceleme Makalesi
BibTex RIS Kaynak Göster

Akkermansia muciniphila and Faecalibacterium prausnitzii as next generation probiotic: Implications for health

Yıl 2025, Cilt: 11 Sayı: 1, 77 - 90, 10.01.2025
https://doi.org/10.3153/FH25007

Öz

In the last decade, research in the field of probiotic microbiology has advanced significantly. Studies on the selection, characterization and validation of health claims of probiotic cultures have made significant progress, and molecular-genetic research has helped us understand the mechanistic basis of the beneficial effects of probiotics. These developments have been an important step forward in understanding the positive effects of probiotics on human health. Probiotic foods are usually found in fermented dairy products and contain microorganisms that are beneficial for health. However, while their use in other food types has increased, the use of probiotics is not yet widespread in composite foods. More research is needed to better understand and optimize the health benefits of probiotic composite foods, with an emphasis on issues such as stability, efficacy and digestibility of the probiotic ingredient. In this review, we specifically focus on two emerging new generations of probiotic bacteria, Faecalibacterium prausnitzii and Akkermansia muciniphila, as their presence in the digestive tract may have an impact on cancer incidence. The properties of these new generation probiotics, such as enhancing gastrointestinal immunity, maintaining intestinal barrier integrity, producing beneficial metabolites and enhancing immunotherapy efficacy, were examined. In addition, safety and efficacy studies on the use of new generation probiotics in cancer patients were evaluated.

Kaynakça

  • Abuqwider, J. N., Mauriello, G., Altamimi, M. (2021). Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review. Microorganisms, 9(5), 1098. https://doi.org/10.3390/microorganisms9051098
  • Almeida, D., Machado, D., Andrade, J.C., Mendo, S., Gomes, A.M., Freitas, A.C. (2020). Evolving trends in next-generation probiotics: a 5W1H perspective. Critical Reviews in Food Science and Nutrition, 60(11), 1783-1796. https://doi.org/10.1080/10408398.2019.1599812
  • Arboleya, S., Sánchez, B., Solís, G., Fernández, N., Suárez, M., Hernández-Barranco, A. M., Milani, C., Margolles, A., de los Reyes-Gavilán, C. G. (2016). Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, 92(4), fiw054. https://doi.org/10.1111/j.1574-6941.2011.01261.x
  • Belzer, C., Chia, L. W., Aalvink, S., Chamlagain, B., Piironen, V., Knol, J., de Vos, W. M. (2017). Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and propionate production by intestinal microbiota. Cell Host and Microbe, 13(1), 123-134. https://doi.org/10.1128/mbio.00770-17
  • Brodmann, T., Endo, A., Gueimonde, M., Vinderola, G., Kneifel, W., de Vos, W.M., Salminen, S., Gómez-Gallego, C. (2017). Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Frontiers in Microbiology, 8, 1725. https://doi.org/10.3389/fmicb.2017.01725
  • Butel, M.J., Waligora-Dupriet, A.J., Wydau-Dematteis, S. (2018). The developing gut microbiota and its consequences for health. Journal of Developmental Origins of Health and Disease, 9(6), 590-597. https://doi.org/10.1017/S2040174418000119
  • Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772. https://doi.org/10.2337/db06-1491
  • Cani, P.D., de Vos, W.M. (2017). Next-generation beneficial microbes: the case of Akkermansia muciniphila. Frontiers in Microbiology, 8, 1765. https://doi.org/10.3389/fmicb.2017.01765
  • Chang, C. J., Lin, T. L., Tsai, Y. L., Wu, T. R., Lai, W. F., Lu, C. C., Lai, H. C. (2019). Next generation probiotics in disease amelioration. Journal of Food and Drug Analysis, 27(3), 615-622. https://doi.org/10.1016/j.jfda.2018.12.011
  • Chen, W., Zhang, S., Wu, J., Ye, T., Wang, S., Wang, P., Xing, D. (2020). Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clinica Chimica Acta, 507, 236-241. https://doi.org/10.1016/j.cca.2020.04.037
  • Chen, Z., Qian, X., Chen, S., Fu, X., Ma, G., Zhang, A. (2020). Akkermansia muciniphila enhances the antitumor effect of cisplatin in lewis lung cancer mice. Journal of Immunology Research, 2020. https://doi.org/10.1155/2020/2969287
  • Corb Aron, R.A., Abid, A., Vesa, C.M., Nechifor, A.C., Behl, T., Ghitea, T.C., Munteanu, M. A., Fratila, O., Andronie-Cioara, F.L., Toma, M.M., Bungau, S. (2021). Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of Akkermansia muciniphila as a key gut bacterium. Microorganisms, 9(3), 618. https://doi.org/10.3390/microorganisms9030618
  • Coutzac, C., Jouniaux, J. M., Paci, A., Schmidt, J., Mallardo, D., Seck, A., Asvatourian, V., Cassard, L., Saulnier, P., Lacroix, L., Woerther, P. L., Vozy, A., Naigeon, M., Nebot-Bral, L., Desbois, M., Simeone, E., Mateus, C., Boselli, L., Grivel, J., Soularue, E., Lepage, P., Carbonnel, F., Ascierto, P. A., Robert, C., Chaput, N. (2020). Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nature Communications, 11(1), 2168. https://doi.org/10.1038/s41467-020-16079-x
  • De Filippis, F., Esposito, A., Ercolini, D. (2022). Outlook on next-generation probiotics from the human gut. Cellular and Molecular Life Sciences, 79(2), 76. https://doi.org/10.1007/s00018-021-04080-6
  • Depommier, C., Van Hul, M., Everard, A., Delzenne, N. M., De Vos, W.M., Cani, P. D. (2020). Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 11(5), 1231-1245. https://doi.org/10.1080/19490976.2020.1737307
  • Derrien, M., Collado, M.C., Ben-Amor, K., Salminen, S., de Vos, W.M. (2008). The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology, 74(5), 1646-1648. https://doi.org/10.1128/AEM.01226-07
  • Derrien, M., Vaughan, E.E., Plugge, C.M., de Vos, W.M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1469-1476. https://doi.org/10.1099/ijs.0.02873-0
  • Doron, S., Gorbach, S. L. (2006). Probiotics: their role in the treatment and prevention of disease. Expert Review of Anti-İnfective Therapy, 4(2), 261-275. https://doi.org/10.1586/14787210.4.2.261
  • Druart, C., Plovier, H., Van Hul, M., Brient, A., Phipps, K.R., de Vos, W.M., Cani, P.D. (2021). Toxicological safety evaluation of pasteurized Akkermansia muciniphila. Journal of Applied Toxicology, 41(2), 276-290. https://doi.org/10.1002/jat.4044
  • Duncan, S.H., Hold, G.L., Harmsen, H.J., Stewart, C.S., Flint, H.J. (2002). Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 52(6), 2141-2146. https://doi.org/10.1099/00207713-52-6-2141
  • Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Druart, C., Bindels, L.B., Guiot, Y., Derrien, M., Muccioli, G.G., Delzenne, N.M., de Vos, W.M., Cani, P.D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of The National Academy of Sciences, 110(22), 9066-9071. https://doi.org/10.1073/pnas.1219451110
  • Fan, X., Alekseyenko, A. V., Wu, J., Peters, B. A., Jacobs, E. J., Gapstur, S. M., Purdue, M. P., Abnet, C. C., Stolzenberg-Solomon, R., Miller, G., Ravel, J., Hayes, R. B., Ahn, J. (2018). Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 67(1), 120-127. https://doi.org/10.1136/gutjnl-2016-312580
  • FAO/WHO (2002). Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada, April 30 and May 1. http://www.who.int/foodsafety/publications/fs_management/probiotics2/en/
  • Flemer, B., Lynch, D.B., Brown, J.M., Jeffery, I.B., Ryan, F.J., Claesson, M.J., O'Riordain, M., Shanahan, F., O'Toole, P.W. (2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 66(4), 633-643. https://doi.org/10.1136/gutjnl-2015-309595
  • Flores, R., Shi, J., Fuhrman, B., Xu, X., Veenstra, T. D., Gail, M. H., Gajer, P., Ravel, J., Goedert, J. J. (2012). Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. Journal of Translational Medicine, 10(1), 1-11. https://doi.org/10.1186/1479-5876-10-253
  • Foditsch, C., Pereira, R.V.V., Ganda, E.K., Gomez, M.S., Marques, E.C., Santin, T., Bicalho, R.C. (2014). Isolation and characterization of Faecalibacterium prausnitzii from calf feces and its implications for calf health and productivity. Frontiers in Microbiology, 5, 276. https://doi.org/10.1371/journal.pone.0116465
  • Frugé, A.D., Van der Pol, W., Rogers, L.Q., Morrow, C.D., Tsuruta, Y., Demark-Wahnefried, W. (2020). Fecal Akkermansia muciniphila is associated with body composition and microbiota diversity in overweight and obese women with breast cancer participating in a presurgical weight loss trial. Journal of The Academy of Nutrition and Dietetics, 120(4), 650-659. https://doi.org/10.1016/j.jand.2018.08.164
  • Fu, X., Liu, Z., Zhu, C., Mou, H., Kong, Q. (2019). Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Critical Reviews in Food Science and Nutrition, 59(sup1), S130-S152. https://doi.org/10.1080/10408398.2018.1542587
  • Fuhrman, B.J., Feigelson, H.S., Flores, R., Gail, M.H., Xu, X., Ravel, J., Goedert, J.J. (2014). Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. The Journal of Clinical Endocrinology and Metabolism, 99(12), 4632-4640. https://doi.org/10.1210/jc.2014-2222
  • Fuller, R. (1989). Probiotics in man and animals. The Journal of Applied Bacteriology, 66(5), 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  • Garrett, W. S. (2015). Cancer and the microbiota. Science, 348(6230), 80-86. https://doi.org/10.1126/science.aaa4972
  • Gautier, T., David-Le Gall, S., Sweidan, A., Tamanai-Shacoori, Z., Jolivet-Gougeon, A., Loréal, O., Bousarghin, L. (2021). Next-generation probiotics and their metabolites in COVID-19. Microorganisms, 9(5), 941. https://doi.org/10.3390/microorganisms9050941
  • Geerlings, S.Y., Kostopoulos, I., De Vos, W.M., Belzer, C. (2018). Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how?. Microorganisms, 6(3), 75. https://doi.org/10.3390/microorganisms6030075
  • Geirnaert, A., Calatayud, M., Grootaert, C., Laukens, D., Devriese, S., Smagghe, G., De Vos, M., Boon, N., Van de Wiele, T. (2017). Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Scientific reports, 7(1), 11450. http://doi:10.1038/s41598-017-11734-8
  • Getahun, L., Tesfaye, A., Muleta, D. (2017). Investigation of the Potential Benefits and Risks of Probiotics and Prebiotics and their Synergy in Fermented Foods. Singapore Journal of Chemical Biology. 6(1)-16. https://doi.org/10.3923/sjchbio.2017.1.16
  • Gibson, G.R., Rastall, R.A., Fuller, R. (2003). The health benefits of probiotics and prebiotics. Gut Flora, Nutrition, İmmunity and Health, 52-76. https://doi.org/10.1002/9780470774595.ch3
  • Goedert, J.J., Jones, G., Hua, X., Xu, X., Yu, G., Flores, R., Falk, R.T., Gail, M.H., Shi, J., Ravel, J., Feigelson, H.S. (2015). Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. Journal of The National Cancer Institute, 107(8), djv147. https://doi.org/10.1093/jnci/djv147
  • Gui, Q., Li, H., Wang, A., Zhao, X., Tan, Z., Chen, L., Xu, K., Xiao, C. (2020). The association between gut butyrate‐producing bacteria and non‐small‐cell lung cancer. Journal of Clinical Laboratory Analysis, 34(8), e23318. https://doi.org/10.1002/jcla.23318
  • Half, E., Keren, N., Reshef, L., Dorfman, T., Lachter, I., Kluger, Y., Reshef, N., Knobler, H., Maor, Y., Stein, A., Konikoff, F. M., Gophna, U. (2019). Fecal microbiome signatures of pancreatic cancer patients. Scientific Reports, 9(1), 16801. https://doi.org/10.1038/s41598-019-53041-4
  • Harish, K., Varghese, T. (2006). Probiotics in humans-evidence based review. Calicut Med J, 4(4), e3.
  • Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P., Sánchez, B., Margolles, A. (2017). Bifidobacteria and their health-promoting effects. Microorganisms, 5(4), 79. https://doi.org/10.1128/microbiolspec.BAD-0010-2016
  • Huang, Y., Adams, M. C. (2004). In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. International Journal of Food Microbiology, 91(3), 253-260. https://doi.org/10.1016/j.ijfoodmicro.2003.07.001
  • Huck, O., Mulhall, H., Rubin, G., Kizelnik, Z., Iyer, R., Perpich, J.D., Haque, N., Cani, P.D., de VOS, W.M., Amar, S. (2020). Akkermansia muciniphila reduces Porphyromonas gingivalis‐induced inflammation and periodontal bone destruction. Journal of Clinical Periodontology, 47(2), 202-212. https://doi.org/10.1111/jcpe.13214
  • Huo, R. X., Wang, Y. J., Hou, S. B., Wang, W., Zhang, C. Z., Wan, X. H. (2022). Gut mucosal microbiota profiles linked to colorectal cancer recurrence. World Journal of Gastroenterology, 28(18), 1946-1964. https://doi.org/10.3748/wjg.v28.i18.1946
  • Jacouton, E., Chain, F., Sokol, H., Langella, P., Bermudez-Humaran, L.G. (2017). Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Frontiers in İmmunology, 8, 1553. https://doi.org/10.3389/fimmu.2017.01553
  • Jayachandran, M., Chung, S.S.M., Xu, B. (2020). A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health. Critical Reviews in Food Science and Nutrition, 60(13), 2265-2276. https://doi.org/10.1080/10408398.2019.1632789
  • Johnson, L., Miller, H., Thompson, R. (2024). The role of probiotics and prebiotics in cancer therapy: A review of recent advancements. Cancer Treatment Reviews, 30(1), 123-134.
  • Kaźmierczak-Siedlecka, K., Daca, A., Fic, M., van de Wetering, T., Folwarski, M., Makarewicz, W. (2020a). Therapeutic methods of gut microbiota modification in colorectal cancer management–fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes, 11(6), 1518-1530. https://doi.org/10.1080/19490976.2020.1764309
  • Kaźmierczak-Siedlecka, K., Ruszkowski, J., Skonieczna-Żydecka, K., Jędrzejczak, J., Folwarski, M., Makarewicz, W. (2020). Gastrointestinal cancers: the role of microbiota in carcinogenesis and the role of probiotics and microbiota in anti-cancer therapy efficacy. Central European Journal of Immunology, 45(4), 476-487. https://doi.org/10.5114/ceji.2020.103353
  • Kaźmierczak-Siedlecka, K., Skonieczna-Żydecka, K., Hupp, T., Duchnowska, R., Marek-Trzonkowska, N., Połom, K. (2022). Next-generation probiotics–do they open new therapeutic strategies for cancer patients?. Gut Microbes, 14(1), 2035659. https://doi.org/10.1080/19490976.2022.2035659
  • Kisan, B.S., Kumar, R., Ashok, S.P., Sangita, G. (2019). Probiotic foods for human health: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 967-971.
  • Krishnan, K., Bassett, J.K., MacInnis, R.J., English, D. R., Hopper, J.L., McLean, C., Giles, G.G., Baglietto, L. (2013). Associations between weight in early adulthood, change in weight, and breast cancer risk in postmenopausal women. Cancer Epidemiology, Biomarkers and Prevention, 22(8), 1409-1416. https://doi.org/10.1158/1055-9965.EPI-13-0136
  • Lapiere, A., Geiger, M., Robert, V., Demarquay, C., Auger, S., Chadi, S., Benadjaoud, M., Fernandes, G., Milliat, F., Langella, P., Benderitter, M., Chatel, J.M., Sémont, A. (2020). Prophylactic Faecalibacterium prausnitzii treatment prevents the acute breakdown of colonic epithelial barrier in a preclinical model of pelvic radiation disease. Gut Microbes, 12(1), 1812867. https://doi.org/10.1080/19490976.2020.1812867
  • Lopez-Siles, M., Martinez-Medina, M., Surís-Valls, R., Aldeguer, X., Sabat-Mir, M., Duncan, S.H., Flint, H.J., Garcia-Gil, L.J. (2016). Changes in the abundance of Faecalibacterium prausnitzii phylogroups I and II in the intestinal mucosa of inflammatory bowel disease and patients with colorectal cancer. Inflammatory Bowel Diseases, 22(1), 28-41. https://doi.org/10.1097/MIB.0000000000000590
  • Louis, P., Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29-41. https://doi.org/10.1111/1462-2920.13589
  • Luu, T. H., Michel, C., Bard, J. M., Dravet, F., Nazih, H., Bobin-Dubigeon, C. (2017). Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutrition and Cancer, 69(2), 267-275. https://doi.org/10.1080/01635581.2017.1263750
  • Ma, J., Sun, L., Liu, Y., Ren, H., Shen, Y., Bi, F., Zhang, T., Wang, X. (2020). Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiology, 20, 1-19. https://doi.org/10.1186/s12866-020-01739-1
  • Macchione, I.G., Lopetuso, L.R., Ianiro, G., Napoli, M., Gibiino, G., Rizzatti, G., Petito, V., Gasbarrini, A., Scaldaferri, F. (2019). Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. European Review for Medical and Pharmacological Sciences, 23(18).
  • Martín, R., Chain, F., Miquel, S., Lu, J., Gratadoux, J.J., Sokol, H., Verdu, E.F., Bercik, P., Bermúdez-Humarán, L.G., Langella, P. (2014). The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflammatory Bowel Diseases, 20(3), 417-430. https://doi.org/10.1097/01.MIB.0000440815.76627.64
  • Martín, R., Langella, P. (2019). Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in Microbiology, 10, 1047. https://doi.org/10.3389/fmicb.2019.01047
  • Masco, L., Huys, G., De Brandt, E., Temmerman, R., Swings, J. (2005). Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. International Journal of Food Microbiology, 102(2), 221-230. https://doi.org/10.1016/j.ijfoodmicro.2004.11.018
  • Masco, L., Ventura, M., Zink, R., Huys, G., Swings, J. (2004). Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1137-1143. https://doi.org/10.1099/ijs.0.03011-0
  • Meng, X., Zhang, J., Wu, H., Yu, D., Fang, X. (2020). Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway. International Journal of Molecular Sciences, 21(9), 3385. https://doi.org/10.3390/ijms21093385
  • Meslier, V., Laiola, M., Roager, H.M., De Filippis, F., Roume, H., Quinquis, B., Giacco, R., Mennella, I., Ferracane, R., Pons, N., Pasolli, E., Rivellese, A., Dragsted, L. O., Vitaglione, P., Ehrlich, S.D., Ercolini, D. (2020). Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut, 69(7), 1258-1268. https://doi.org/10.1136/gutjnl-2019-320438
  • Metchnikoff, E. (1910). The Prolongation of Life, 2nd ed. Heinemann, London.
  • Miettinen, M., Vuopio-Varkila, J., Varkila, K. (1996). Enhancement of IFN-γ production by Lactobacillus rhamnosus. Clinical and Experimental Immunology, 103(2), 194-200.
  • Miquel, S., Martin, R., Rossi, O., Bermúdez-Humarán, L.G., Chatel, J.M., Sokol, H., Thomas, M., Wells, J.M., Langella, P. (2013). Faecalibacterium prausnitzii and human intestinal health. Current Opinion in Microbiology, 16(3), 255-261. https://doi.org/10.1016/j.mib.2013.06.003
  • Naito, Y., Uchiyama, K., Takagi, T. (2018). A next-generation beneficial microbe: Akkermansia muciniphila. Journal of Clinical Biochemistry and Nutrition, 63(1), 33-35. https://doi.org/10.3164/jcbn.18-57
  • Ottman, N., Reunanen, J., Meijerink, M., Pietilä, T. E., Kainulainen, V., Klievink, J., Huukonen, L., Aalvink, S., Skurnik, M., Boeren, S., Satokari, R., Mercenier, A., Palva, A., Smidt, H., de Vos, W. M., Belzer, C. (2017). Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PloS One, 12(3), e0173004. https://doi.org/10.1371/journal.pone.0173004
  • Palmisano, S., Campisciano, G., Iacuzzo, C., Bonadio, L., Zucca, A., Cosola, D., Comar, M., de Manzini, N. (2020). Role of preoperative gut microbiota on colorectal anastomotic leakage: Preliminary results. Updates in Surgery, 72, 1013-1022. https://doi.org/10.1007/s13304-020-00720-x
  • Qi, Y.J., Jiao, Y.L., Chen, P., Kong, J.Y., Gu, B.L., Liu, K., Feng, D.D., Zhu, Y.F., Ruan, H.J., Lan, Z.J., Liu, Q.W., Mi, Y.J., Guo, X.Q., Wang, M., Liang, G.F., Lamont, R.J., Wang, H., Zhou, F.Y., Feng, X.S., Gao, S.G. (2020). Porphyromonas gingivalis promotes progression of esophageal squamous cell cancer via TGFβ-dependent Smad/YAP/TAZ signaling. PLoS Biology, 18(9), e3000825. https://doi.org/10.1371/journal.pbio.3000825
  • Quévrain, E., Maubert, M.A., Michon, C., Chain, F., Marquant, R., Tailhades, J., Miquel, S., Carlier, L., Bermúdez-Humarán, L.G., Pigneur, B., Lequin, O., Kharrat, P., Thomal, G., Rainteau, D., Aubry, C., Breyner, N., Afonso, C., Lavielle, S., Grill, J.P., Chassaing, G., Chatel, J.M., Trugnan, G., Xavier, R., Langella, P., Sokol, H., Seksik, P. (2016). Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut, 65(3), 415-425. https://doi.org/10.1136/gutjnl-2014-307649
  • Ren, Z., Li, A., Jiang, J., Zhou, L., Yu, Z., Lu, H., Xie, H., Chen, X., Shao, L., Zhang, R., Xu, S., Zhang, H., Cui, G., Chen, X., Sun, R., Wen, H., Lerut, J. P., Kan, Q., Li, L., Zheng, S. (2019). Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 68(6), 1014-1023. https://doi.org/10.1136/gutjnl-2017-315084
  • Renehan, A. G., Tyson, M., Egger, M., Heller, R. F., Zwahlen, M. (2008). Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. The Lancet, 371(9612), 569-578. https://doi.org/10.1016/S0140-6736(08)60269-X
  • Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P., Alou, M. T., Daillère, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M. P., Fidelle, M., Flament, C., Poirier-Colame, V., Opolon, P., Klein, C., Iribarren, K., Mondragón, L., Jacquelot, N., Qu, B., Ferrere, G., Clémenson, C., Mezquita, L., Masip, J.R., Naltet, C., Brosseau, S., Kaderbhai, C., Richard, C., Rivzi, H., Levenez, F., Galleron, N., Quinquis, B., Pons, N., Ryffel, B., Minard-Colin, V., Gonin, P., Soria, J.C., Deutsch, E., Loriot, Y., Ghiringhelli, F., Zalcman, G., Goldwasser, F., Escudier, B., Hellmann, M.D., Eggermont, A., Raoult, D., Albiges, L., Kroemer, G., Zitvogel, L. (2018). Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 359(6371), 91-97. https://doi.org/10.1126/science.aan3706
  • Roy, S., Trinchieri, G. (2017). Microbiota: a key orchestrator of cancer therapy. Nature Reviews Cancer, 17(5), 271-285. https://doi.org/10.1038/nrc.2017.13
  • Saarela, M. H. (2019). Safety aspects of next generation probiotics. Current Opinion in Food Science, 30, 8-13. https://doi.org/10.1016/j.cofs.2018.09.001
  • Sánchez, B., Delgado, S., Blanco‐Míguez, A., Lourenço, A., Gueimonde, M., Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 61(1), 1600240. https://doi.org/10.1002/mnfr.201600240
  • Satokari, R. (2019). Modulation of gut microbiota for health by current and next-generation probiotics. Nutrients, 11(8), 1921. https://doi.org/10.3390/nu11081921
  • Segers, M.E., Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG–host interactions. Microbial Cell Factories, 13(1), 7. https://doi.org/10.1186/1475-2859-13-S1-S7
  • Schroeder, F.A., Lin, C.L., Crusio, W.E., Akbarian, S. (2007). Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biological Psychiatry, 62(1), 55-64. https://doi.org/10.1016/j.biopsych.2006.06.036
  • Schwabe, R. F., Jobin, C. (2013). The microbiome and cancer. Nature Reviews Cancer, 13(11), 800-812. https://doi.org/10.1038/nrc3610
  • Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L.G., Gratadoux, J. J., Blugeon, S. B., Bridonneau, C., Furet, J., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottie` re, H.M., Dore´, J., Marteau, P., Seksik, P., Langella, P. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences, 105(43), 16731-16736. https://doi.org/10.1073/pnas.0804812105
  • Singh, A., Alexander, S.G., Martin, S. (2023). Gut microbiome homeostasis and the future of probiotics in cancer immunotherapy. Frontiers in Immunology, 14, 1114499. https://doi.org/10.3389/fimmu.2023.1114499
  • Smith, J., Brown, A., Williams, P. (2023). Gut microbiota modulation as a potential strategy for enhancing cancer treatment outcomes. Journal of Cancer Research and Therapeutics, 19(4), 245-257.
  • Szajewska, H., Kolodziej, M. (2015). Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children. Alimentary Pharmacology and Therapeutics, 42(12), 1149-1157. https://doi.org/10.1111/apt.13404
  • Thomas, R. M., Gharaibeh, R. Z., Gauthier, J., Beveridge, M., Pope, J. L., Guijarro, M. V., Yu, Q., He, Z., Ohland, C., Newsome, R., Trevino, J., Hughes, S. J., Reinhard, M., Winglee, K., Fodor, A. A., Zajac-Kaye, M., Jobin, C. (2018). Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis, 39(8), 1068-1078. https://doi.org/10.1093/carcin/bgy073
  • Touchefeu, Y., Montassier, E., Nieman, K., Gastinne, T., Potel, G., Bruley des Varannes, S., Le Vacon, F., de La Cochetière, M. F. (2014). Systematic review: the role of the gut microbiota in chemotherapy‐or radiation‐induced gastrointestinal mucositis–current evidence and potential clinical applications. Alimentary Pharmacology and Therapeutics, 40(5), 409-421. https://doi.org/10.1111/apt.12878
  • Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K.I., Maciuk, A., Mangelsdorf, I., McArdle, H.J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Marchelli, R., Neuhäuser-Berthold., M., Poulsen, M., Maradona, M.P., Schlatter, J.R., van Loveren, H., Ackerl, R., Knutsen, H.K. (2021). Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(9), e06780. https://doi.org/10.2903/j.efsa.2021.6780
  • Verhoog, S., Taneri, P.E., Roa Díaz, Z. M., Marques-Vidal, P., Troup, J.P., Bally, L., Franco, O.H., Glisic, M., Muka, T. (2019). Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review. Nutrients, 11(7), 1565. https://doi.org/10.3390/nu11071565
  • Vernocchi, P., Gili, T., Conte, F., Del Chierico, F., Conta, G., Miccheli, A., Botticelli, A., Paci, P., Caldarelli, G., Nuti, M., Marchetti, P., Putignani, L. (2020). Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer. International Journal of Molecular Sciences, 21(22), 8730. https://doi.org/10.3390/ijms21228730
  • Wei, M.Y., Shi, S., Liang, C., Meng, Q.C., Hua, J., Zhang, Y.Y., Liu, J., Zhang, B., Xu, J., Yu, X.J. (2019). The microbiota and microbiome in pancreatic cancer: more influential than expected. Molecular Cancer, 18(1), 1-15. https://doi.org/10.1186/s12943-019-1008-0
  • Wong, C.B., Iwabuchi, N., Xiao, J.Z., Fujiwara, S. (2019). Bifidobacterium longum BB536 supplementation improves immune responses and reduces the risk of acute infectious diseases in healthy elderly subjects. Journal of Nutritional Science, 8.
  • Yang, J., Li, Y., Wen, Z., Liu, W., Meng, L., Huang, H. (2021). Oscillospira-a candidate for the next-generation probiotics. Gut Microbes, 13(1), 1987783. https://doi.org/10.1080/19490976.2021.1987783
  • Yoon, H.S., Cho, C.H., Yun, M.S., Jang, S.J., You, H.J., Kim, J.H., Han, D., Cha, K.H., Moon, S.H., Lee, K., Kim, Y.J., Lee, S.J., Tae Wook, N., Ko, G. (2021). Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nature Microbiology, 6(5), 563-573. https://doi.org/10.1038/s41564-021-00880-5
  • Zhang, M., Qiu, X., Zhang, H., Yang, X., Hong, N., Yang, Y., Chen, H., Yu, C. (2014). Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PloS One, 9(10), e109146. https://doi.org/10.1371/journal.pone.0109146
  • Zhang, T., Li, Q., Cheng, L., Buch, H., Zhang, F. (2019). Akkermansia muciniphila is a promising probiotic. Microbial Biotechnology, 12(6), 1109-1125. https://doi.org/10.1111/1751-7915.13410
  • Zhou, L., Zhang, M., Wang, Y., Dorfman, R. G., Liu, H., Yu, T., Chen, X., Tang, D., Xu, L., Yin, Y., Pan, Y., Zhou, Q., Zhou, Y., Yu, C. (2018). Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflammatory Bowel Diseases, 24(9), 1926-1940. https://doi.org/10.1093/ibd/izy182
  • Zitvogel, L., Galluzzi, L., Viaud, S., Vétizou, M., Daillère, R., Merad, M., Kroemer, G. (2015). Cancer and The Gut Microbiota: An Unexpected Link. Science Translational Medicine, 7(271), 271ps1-271ps1. https://doi.org/10.1126/scitranslmed.3010473
  • Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G., Gajewski, T.F. (2018). The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science, 359(6382), 1366-1370. https://doi.org/10.1126/science.aar6918

Yeni nesil probiyotik olarak Akkermansia muciniphila ve Faecalibacterium prausnitzii: Sağlık üzerinde etkileri

Yıl 2025, Cilt: 11 Sayı: 1, 77 - 90, 10.01.2025
https://doi.org/10.3153/FH25007

Öz

Son on yılda, probiyotik mikrobiyoloji alanındaki araştırmalar önemli ölçüde ilerlemiştir. Probiyotik kültürlerin seçimi, karakterizasyonu ve sağlık iddialarının doğrulanması üzerine yapılan çalışmalar önemli bir ilerleme kaydetmiş ve moleküler-genetik araştırmalar, probiyotiklerin faydalı etkilerinin detaylarının temelini anlamamıza yardımcı olmuştur. Bu gelişmeler, probiyotiklerin insan sağlığı üzerinde olumlu etkilerinin anlaşılmasında önemli bir adımdır. Probiyotik mikroorganizmalar genellikle fermente süt ürünlerinde bulunur ve sağlık için faydalı mikroorganizmalar içermektedir. Ancak, diğer gıda türlerinde de kullanımı artmış olsa da probiyotik kullanımı kompozit gıdalarda henüz yaygın değildir. Probiyotik içeriğin stabilitesi, etkinliği ve sindirilebilirliği gibi konular üzerinde durularak, probiyotik kompozit gıdaların sağlık yararlarının daha iyi anlaşılması ve optimize edilmesi için daha fazla araştırmaya ihtiyaç vardır. Bu derlemede, sindirim sistemindeki varlıkları kanser insidansı üzerinde etkili olabileceğinden, özellikle Faecalibacterium prausnitzii ve Akkermansia muciniphila gibi yeni ortaya çıkan iki yeni nesil probiyotik bakterilerine odaklanılmıştır. Bu yeni nesil probiyotiklerin gastrointestinal bağışıklığı artırması, bağırsak bariyer bütünlüğünü koruması, faydalı metabolitler üretmesi ve immünoterapi etkinliğini artırması gibi özellikleri incelenmiştir. Ayrıca, yeni nesil probiyotiklerin kanser hastalarında kullanımı üzerine güvenlik ve etkinlikle ilgili çalışmalar değerlendirilmiştir.

Etik Beyan

Araştırma niteliği bakımından etik izne tabii değildir.

Kaynakça

  • Abuqwider, J. N., Mauriello, G., Altamimi, M. (2021). Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review. Microorganisms, 9(5), 1098. https://doi.org/10.3390/microorganisms9051098
  • Almeida, D., Machado, D., Andrade, J.C., Mendo, S., Gomes, A.M., Freitas, A.C. (2020). Evolving trends in next-generation probiotics: a 5W1H perspective. Critical Reviews in Food Science and Nutrition, 60(11), 1783-1796. https://doi.org/10.1080/10408398.2019.1599812
  • Arboleya, S., Sánchez, B., Solís, G., Fernández, N., Suárez, M., Hernández-Barranco, A. M., Milani, C., Margolles, A., de los Reyes-Gavilán, C. G. (2016). Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, 92(4), fiw054. https://doi.org/10.1111/j.1574-6941.2011.01261.x
  • Belzer, C., Chia, L. W., Aalvink, S., Chamlagain, B., Piironen, V., Knol, J., de Vos, W. M. (2017). Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and propionate production by intestinal microbiota. Cell Host and Microbe, 13(1), 123-134. https://doi.org/10.1128/mbio.00770-17
  • Brodmann, T., Endo, A., Gueimonde, M., Vinderola, G., Kneifel, W., de Vos, W.M., Salminen, S., Gómez-Gallego, C. (2017). Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Frontiers in Microbiology, 8, 1725. https://doi.org/10.3389/fmicb.2017.01725
  • Butel, M.J., Waligora-Dupriet, A.J., Wydau-Dematteis, S. (2018). The developing gut microbiota and its consequences for health. Journal of Developmental Origins of Health and Disease, 9(6), 590-597. https://doi.org/10.1017/S2040174418000119
  • Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., Burcelin, R. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772. https://doi.org/10.2337/db06-1491
  • Cani, P.D., de Vos, W.M. (2017). Next-generation beneficial microbes: the case of Akkermansia muciniphila. Frontiers in Microbiology, 8, 1765. https://doi.org/10.3389/fmicb.2017.01765
  • Chang, C. J., Lin, T. L., Tsai, Y. L., Wu, T. R., Lai, W. F., Lu, C. C., Lai, H. C. (2019). Next generation probiotics in disease amelioration. Journal of Food and Drug Analysis, 27(3), 615-622. https://doi.org/10.1016/j.jfda.2018.12.011
  • Chen, W., Zhang, S., Wu, J., Ye, T., Wang, S., Wang, P., Xing, D. (2020). Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clinica Chimica Acta, 507, 236-241. https://doi.org/10.1016/j.cca.2020.04.037
  • Chen, Z., Qian, X., Chen, S., Fu, X., Ma, G., Zhang, A. (2020). Akkermansia muciniphila enhances the antitumor effect of cisplatin in lewis lung cancer mice. Journal of Immunology Research, 2020. https://doi.org/10.1155/2020/2969287
  • Corb Aron, R.A., Abid, A., Vesa, C.M., Nechifor, A.C., Behl, T., Ghitea, T.C., Munteanu, M. A., Fratila, O., Andronie-Cioara, F.L., Toma, M.M., Bungau, S. (2021). Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of Akkermansia muciniphila as a key gut bacterium. Microorganisms, 9(3), 618. https://doi.org/10.3390/microorganisms9030618
  • Coutzac, C., Jouniaux, J. M., Paci, A., Schmidt, J., Mallardo, D., Seck, A., Asvatourian, V., Cassard, L., Saulnier, P., Lacroix, L., Woerther, P. L., Vozy, A., Naigeon, M., Nebot-Bral, L., Desbois, M., Simeone, E., Mateus, C., Boselli, L., Grivel, J., Soularue, E., Lepage, P., Carbonnel, F., Ascierto, P. A., Robert, C., Chaput, N. (2020). Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nature Communications, 11(1), 2168. https://doi.org/10.1038/s41467-020-16079-x
  • De Filippis, F., Esposito, A., Ercolini, D. (2022). Outlook on next-generation probiotics from the human gut. Cellular and Molecular Life Sciences, 79(2), 76. https://doi.org/10.1007/s00018-021-04080-6
  • Depommier, C., Van Hul, M., Everard, A., Delzenne, N. M., De Vos, W.M., Cani, P. D. (2020). Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 11(5), 1231-1245. https://doi.org/10.1080/19490976.2020.1737307
  • Derrien, M., Collado, M.C., Ben-Amor, K., Salminen, S., de Vos, W.M. (2008). The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Applied and Environmental Microbiology, 74(5), 1646-1648. https://doi.org/10.1128/AEM.01226-07
  • Derrien, M., Vaughan, E.E., Plugge, C.M., de Vos, W.M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1469-1476. https://doi.org/10.1099/ijs.0.02873-0
  • Doron, S., Gorbach, S. L. (2006). Probiotics: their role in the treatment and prevention of disease. Expert Review of Anti-İnfective Therapy, 4(2), 261-275. https://doi.org/10.1586/14787210.4.2.261
  • Druart, C., Plovier, H., Van Hul, M., Brient, A., Phipps, K.R., de Vos, W.M., Cani, P.D. (2021). Toxicological safety evaluation of pasteurized Akkermansia muciniphila. Journal of Applied Toxicology, 41(2), 276-290. https://doi.org/10.1002/jat.4044
  • Duncan, S.H., Hold, G.L., Harmsen, H.J., Stewart, C.S., Flint, H.J. (2002). Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 52(6), 2141-2146. https://doi.org/10.1099/00207713-52-6-2141
  • Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Druart, C., Bindels, L.B., Guiot, Y., Derrien, M., Muccioli, G.G., Delzenne, N.M., de Vos, W.M., Cani, P.D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of The National Academy of Sciences, 110(22), 9066-9071. https://doi.org/10.1073/pnas.1219451110
  • Fan, X., Alekseyenko, A. V., Wu, J., Peters, B. A., Jacobs, E. J., Gapstur, S. M., Purdue, M. P., Abnet, C. C., Stolzenberg-Solomon, R., Miller, G., Ravel, J., Hayes, R. B., Ahn, J. (2018). Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 67(1), 120-127. https://doi.org/10.1136/gutjnl-2016-312580
  • FAO/WHO (2002). Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada, April 30 and May 1. http://www.who.int/foodsafety/publications/fs_management/probiotics2/en/
  • Flemer, B., Lynch, D.B., Brown, J.M., Jeffery, I.B., Ryan, F.J., Claesson, M.J., O'Riordain, M., Shanahan, F., O'Toole, P.W. (2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut, 66(4), 633-643. https://doi.org/10.1136/gutjnl-2015-309595
  • Flores, R., Shi, J., Fuhrman, B., Xu, X., Veenstra, T. D., Gail, M. H., Gajer, P., Ravel, J., Goedert, J. J. (2012). Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. Journal of Translational Medicine, 10(1), 1-11. https://doi.org/10.1186/1479-5876-10-253
  • Foditsch, C., Pereira, R.V.V., Ganda, E.K., Gomez, M.S., Marques, E.C., Santin, T., Bicalho, R.C. (2014). Isolation and characterization of Faecalibacterium prausnitzii from calf feces and its implications for calf health and productivity. Frontiers in Microbiology, 5, 276. https://doi.org/10.1371/journal.pone.0116465
  • Frugé, A.D., Van der Pol, W., Rogers, L.Q., Morrow, C.D., Tsuruta, Y., Demark-Wahnefried, W. (2020). Fecal Akkermansia muciniphila is associated with body composition and microbiota diversity in overweight and obese women with breast cancer participating in a presurgical weight loss trial. Journal of The Academy of Nutrition and Dietetics, 120(4), 650-659. https://doi.org/10.1016/j.jand.2018.08.164
  • Fu, X., Liu, Z., Zhu, C., Mou, H., Kong, Q. (2019). Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Critical Reviews in Food Science and Nutrition, 59(sup1), S130-S152. https://doi.org/10.1080/10408398.2018.1542587
  • Fuhrman, B.J., Feigelson, H.S., Flores, R., Gail, M.H., Xu, X., Ravel, J., Goedert, J.J. (2014). Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. The Journal of Clinical Endocrinology and Metabolism, 99(12), 4632-4640. https://doi.org/10.1210/jc.2014-2222
  • Fuller, R. (1989). Probiotics in man and animals. The Journal of Applied Bacteriology, 66(5), 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  • Garrett, W. S. (2015). Cancer and the microbiota. Science, 348(6230), 80-86. https://doi.org/10.1126/science.aaa4972
  • Gautier, T., David-Le Gall, S., Sweidan, A., Tamanai-Shacoori, Z., Jolivet-Gougeon, A., Loréal, O., Bousarghin, L. (2021). Next-generation probiotics and their metabolites in COVID-19. Microorganisms, 9(5), 941. https://doi.org/10.3390/microorganisms9050941
  • Geerlings, S.Y., Kostopoulos, I., De Vos, W.M., Belzer, C. (2018). Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how?. Microorganisms, 6(3), 75. https://doi.org/10.3390/microorganisms6030075
  • Geirnaert, A., Calatayud, M., Grootaert, C., Laukens, D., Devriese, S., Smagghe, G., De Vos, M., Boon, N., Van de Wiele, T. (2017). Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Scientific reports, 7(1), 11450. http://doi:10.1038/s41598-017-11734-8
  • Getahun, L., Tesfaye, A., Muleta, D. (2017). Investigation of the Potential Benefits and Risks of Probiotics and Prebiotics and their Synergy in Fermented Foods. Singapore Journal of Chemical Biology. 6(1)-16. https://doi.org/10.3923/sjchbio.2017.1.16
  • Gibson, G.R., Rastall, R.A., Fuller, R. (2003). The health benefits of probiotics and prebiotics. Gut Flora, Nutrition, İmmunity and Health, 52-76. https://doi.org/10.1002/9780470774595.ch3
  • Goedert, J.J., Jones, G., Hua, X., Xu, X., Yu, G., Flores, R., Falk, R.T., Gail, M.H., Shi, J., Ravel, J., Feigelson, H.S. (2015). Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. Journal of The National Cancer Institute, 107(8), djv147. https://doi.org/10.1093/jnci/djv147
  • Gui, Q., Li, H., Wang, A., Zhao, X., Tan, Z., Chen, L., Xu, K., Xiao, C. (2020). The association between gut butyrate‐producing bacteria and non‐small‐cell lung cancer. Journal of Clinical Laboratory Analysis, 34(8), e23318. https://doi.org/10.1002/jcla.23318
  • Half, E., Keren, N., Reshef, L., Dorfman, T., Lachter, I., Kluger, Y., Reshef, N., Knobler, H., Maor, Y., Stein, A., Konikoff, F. M., Gophna, U. (2019). Fecal microbiome signatures of pancreatic cancer patients. Scientific Reports, 9(1), 16801. https://doi.org/10.1038/s41598-019-53041-4
  • Harish, K., Varghese, T. (2006). Probiotics in humans-evidence based review. Calicut Med J, 4(4), e3.
  • Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P., Sánchez, B., Margolles, A. (2017). Bifidobacteria and their health-promoting effects. Microorganisms, 5(4), 79. https://doi.org/10.1128/microbiolspec.BAD-0010-2016
  • Huang, Y., Adams, M. C. (2004). In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. International Journal of Food Microbiology, 91(3), 253-260. https://doi.org/10.1016/j.ijfoodmicro.2003.07.001
  • Huck, O., Mulhall, H., Rubin, G., Kizelnik, Z., Iyer, R., Perpich, J.D., Haque, N., Cani, P.D., de VOS, W.M., Amar, S. (2020). Akkermansia muciniphila reduces Porphyromonas gingivalis‐induced inflammation and periodontal bone destruction. Journal of Clinical Periodontology, 47(2), 202-212. https://doi.org/10.1111/jcpe.13214
  • Huo, R. X., Wang, Y. J., Hou, S. B., Wang, W., Zhang, C. Z., Wan, X. H. (2022). Gut mucosal microbiota profiles linked to colorectal cancer recurrence. World Journal of Gastroenterology, 28(18), 1946-1964. https://doi.org/10.3748/wjg.v28.i18.1946
  • Jacouton, E., Chain, F., Sokol, H., Langella, P., Bermudez-Humaran, L.G. (2017). Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Frontiers in İmmunology, 8, 1553. https://doi.org/10.3389/fimmu.2017.01553
  • Jayachandran, M., Chung, S.S.M., Xu, B. (2020). A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health. Critical Reviews in Food Science and Nutrition, 60(13), 2265-2276. https://doi.org/10.1080/10408398.2019.1632789
  • Johnson, L., Miller, H., Thompson, R. (2024). The role of probiotics and prebiotics in cancer therapy: A review of recent advancements. Cancer Treatment Reviews, 30(1), 123-134.
  • Kaźmierczak-Siedlecka, K., Daca, A., Fic, M., van de Wetering, T., Folwarski, M., Makarewicz, W. (2020a). Therapeutic methods of gut microbiota modification in colorectal cancer management–fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes, 11(6), 1518-1530. https://doi.org/10.1080/19490976.2020.1764309
  • Kaźmierczak-Siedlecka, K., Ruszkowski, J., Skonieczna-Żydecka, K., Jędrzejczak, J., Folwarski, M., Makarewicz, W. (2020). Gastrointestinal cancers: the role of microbiota in carcinogenesis and the role of probiotics and microbiota in anti-cancer therapy efficacy. Central European Journal of Immunology, 45(4), 476-487. https://doi.org/10.5114/ceji.2020.103353
  • Kaźmierczak-Siedlecka, K., Skonieczna-Żydecka, K., Hupp, T., Duchnowska, R., Marek-Trzonkowska, N., Połom, K. (2022). Next-generation probiotics–do they open new therapeutic strategies for cancer patients?. Gut Microbes, 14(1), 2035659. https://doi.org/10.1080/19490976.2022.2035659
  • Kisan, B.S., Kumar, R., Ashok, S.P., Sangita, G. (2019). Probiotic foods for human health: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 967-971.
  • Krishnan, K., Bassett, J.K., MacInnis, R.J., English, D. R., Hopper, J.L., McLean, C., Giles, G.G., Baglietto, L. (2013). Associations between weight in early adulthood, change in weight, and breast cancer risk in postmenopausal women. Cancer Epidemiology, Biomarkers and Prevention, 22(8), 1409-1416. https://doi.org/10.1158/1055-9965.EPI-13-0136
  • Lapiere, A., Geiger, M., Robert, V., Demarquay, C., Auger, S., Chadi, S., Benadjaoud, M., Fernandes, G., Milliat, F., Langella, P., Benderitter, M., Chatel, J.M., Sémont, A. (2020). Prophylactic Faecalibacterium prausnitzii treatment prevents the acute breakdown of colonic epithelial barrier in a preclinical model of pelvic radiation disease. Gut Microbes, 12(1), 1812867. https://doi.org/10.1080/19490976.2020.1812867
  • Lopez-Siles, M., Martinez-Medina, M., Surís-Valls, R., Aldeguer, X., Sabat-Mir, M., Duncan, S.H., Flint, H.J., Garcia-Gil, L.J. (2016). Changes in the abundance of Faecalibacterium prausnitzii phylogroups I and II in the intestinal mucosa of inflammatory bowel disease and patients with colorectal cancer. Inflammatory Bowel Diseases, 22(1), 28-41. https://doi.org/10.1097/MIB.0000000000000590
  • Louis, P., Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29-41. https://doi.org/10.1111/1462-2920.13589
  • Luu, T. H., Michel, C., Bard, J. M., Dravet, F., Nazih, H., Bobin-Dubigeon, C. (2017). Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutrition and Cancer, 69(2), 267-275. https://doi.org/10.1080/01635581.2017.1263750
  • Ma, J., Sun, L., Liu, Y., Ren, H., Shen, Y., Bi, F., Zhang, T., Wang, X. (2020). Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiology, 20, 1-19. https://doi.org/10.1186/s12866-020-01739-1
  • Macchione, I.G., Lopetuso, L.R., Ianiro, G., Napoli, M., Gibiino, G., Rizzatti, G., Petito, V., Gasbarrini, A., Scaldaferri, F. (2019). Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. European Review for Medical and Pharmacological Sciences, 23(18).
  • Martín, R., Chain, F., Miquel, S., Lu, J., Gratadoux, J.J., Sokol, H., Verdu, E.F., Bercik, P., Bermúdez-Humarán, L.G., Langella, P. (2014). The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflammatory Bowel Diseases, 20(3), 417-430. https://doi.org/10.1097/01.MIB.0000440815.76627.64
  • Martín, R., Langella, P. (2019). Emerging health concepts in the probiotics field: streamlining the definitions. Frontiers in Microbiology, 10, 1047. https://doi.org/10.3389/fmicb.2019.01047
  • Masco, L., Huys, G., De Brandt, E., Temmerman, R., Swings, J. (2005). Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. International Journal of Food Microbiology, 102(2), 221-230. https://doi.org/10.1016/j.ijfoodmicro.2004.11.018
  • Masco, L., Ventura, M., Zink, R., Huys, G., Swings, J. (2004). Polyphasic taxonomic analysis of Bifidobacterium animalis and Bifidobacterium lactis reveals relatedness at the subspecies level: reclassification of Bifidobacterium animalis as Bifidobacterium animalis subsp. animalis subsp. nov. and Bifidobacterium lactis as Bifidobacterium animalis subsp. lactis subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 54(4), 1137-1143. https://doi.org/10.1099/ijs.0.03011-0
  • Meng, X., Zhang, J., Wu, H., Yu, D., Fang, X. (2020). Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway. International Journal of Molecular Sciences, 21(9), 3385. https://doi.org/10.3390/ijms21093385
  • Meslier, V., Laiola, M., Roager, H.M., De Filippis, F., Roume, H., Quinquis, B., Giacco, R., Mennella, I., Ferracane, R., Pons, N., Pasolli, E., Rivellese, A., Dragsted, L. O., Vitaglione, P., Ehrlich, S.D., Ercolini, D. (2020). Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut, 69(7), 1258-1268. https://doi.org/10.1136/gutjnl-2019-320438
  • Metchnikoff, E. (1910). The Prolongation of Life, 2nd ed. Heinemann, London.
  • Miettinen, M., Vuopio-Varkila, J., Varkila, K. (1996). Enhancement of IFN-γ production by Lactobacillus rhamnosus. Clinical and Experimental Immunology, 103(2), 194-200.
  • Miquel, S., Martin, R., Rossi, O., Bermúdez-Humarán, L.G., Chatel, J.M., Sokol, H., Thomas, M., Wells, J.M., Langella, P. (2013). Faecalibacterium prausnitzii and human intestinal health. Current Opinion in Microbiology, 16(3), 255-261. https://doi.org/10.1016/j.mib.2013.06.003
  • Naito, Y., Uchiyama, K., Takagi, T. (2018). A next-generation beneficial microbe: Akkermansia muciniphila. Journal of Clinical Biochemistry and Nutrition, 63(1), 33-35. https://doi.org/10.3164/jcbn.18-57
  • Ottman, N., Reunanen, J., Meijerink, M., Pietilä, T. E., Kainulainen, V., Klievink, J., Huukonen, L., Aalvink, S., Skurnik, M., Boeren, S., Satokari, R., Mercenier, A., Palva, A., Smidt, H., de Vos, W. M., Belzer, C. (2017). Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PloS One, 12(3), e0173004. https://doi.org/10.1371/journal.pone.0173004
  • Palmisano, S., Campisciano, G., Iacuzzo, C., Bonadio, L., Zucca, A., Cosola, D., Comar, M., de Manzini, N. (2020). Role of preoperative gut microbiota on colorectal anastomotic leakage: Preliminary results. Updates in Surgery, 72, 1013-1022. https://doi.org/10.1007/s13304-020-00720-x
  • Qi, Y.J., Jiao, Y.L., Chen, P., Kong, J.Y., Gu, B.L., Liu, K., Feng, D.D., Zhu, Y.F., Ruan, H.J., Lan, Z.J., Liu, Q.W., Mi, Y.J., Guo, X.Q., Wang, M., Liang, G.F., Lamont, R.J., Wang, H., Zhou, F.Y., Feng, X.S., Gao, S.G. (2020). Porphyromonas gingivalis promotes progression of esophageal squamous cell cancer via TGFβ-dependent Smad/YAP/TAZ signaling. PLoS Biology, 18(9), e3000825. https://doi.org/10.1371/journal.pbio.3000825
  • Quévrain, E., Maubert, M.A., Michon, C., Chain, F., Marquant, R., Tailhades, J., Miquel, S., Carlier, L., Bermúdez-Humarán, L.G., Pigneur, B., Lequin, O., Kharrat, P., Thomal, G., Rainteau, D., Aubry, C., Breyner, N., Afonso, C., Lavielle, S., Grill, J.P., Chassaing, G., Chatel, J.M., Trugnan, G., Xavier, R., Langella, P., Sokol, H., Seksik, P. (2016). Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut, 65(3), 415-425. https://doi.org/10.1136/gutjnl-2014-307649
  • Ren, Z., Li, A., Jiang, J., Zhou, L., Yu, Z., Lu, H., Xie, H., Chen, X., Shao, L., Zhang, R., Xu, S., Zhang, H., Cui, G., Chen, X., Sun, R., Wen, H., Lerut, J. P., Kan, Q., Li, L., Zheng, S. (2019). Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut, 68(6), 1014-1023. https://doi.org/10.1136/gutjnl-2017-315084
  • Renehan, A. G., Tyson, M., Egger, M., Heller, R. F., Zwahlen, M. (2008). Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. The Lancet, 371(9612), 569-578. https://doi.org/10.1016/S0140-6736(08)60269-X
  • Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P., Alou, M. T., Daillère, R., Fluckiger, A., Messaoudene, M., Rauber, C., Roberti, M. P., Fidelle, M., Flament, C., Poirier-Colame, V., Opolon, P., Klein, C., Iribarren, K., Mondragón, L., Jacquelot, N., Qu, B., Ferrere, G., Clémenson, C., Mezquita, L., Masip, J.R., Naltet, C., Brosseau, S., Kaderbhai, C., Richard, C., Rivzi, H., Levenez, F., Galleron, N., Quinquis, B., Pons, N., Ryffel, B., Minard-Colin, V., Gonin, P., Soria, J.C., Deutsch, E., Loriot, Y., Ghiringhelli, F., Zalcman, G., Goldwasser, F., Escudier, B., Hellmann, M.D., Eggermont, A., Raoult, D., Albiges, L., Kroemer, G., Zitvogel, L. (2018). Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science, 359(6371), 91-97. https://doi.org/10.1126/science.aan3706
  • Roy, S., Trinchieri, G. (2017). Microbiota: a key orchestrator of cancer therapy. Nature Reviews Cancer, 17(5), 271-285. https://doi.org/10.1038/nrc.2017.13
  • Saarela, M. H. (2019). Safety aspects of next generation probiotics. Current Opinion in Food Science, 30, 8-13. https://doi.org/10.1016/j.cofs.2018.09.001
  • Sánchez, B., Delgado, S., Blanco‐Míguez, A., Lourenço, A., Gueimonde, M., Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 61(1), 1600240. https://doi.org/10.1002/mnfr.201600240
  • Satokari, R. (2019). Modulation of gut microbiota for health by current and next-generation probiotics. Nutrients, 11(8), 1921. https://doi.org/10.3390/nu11081921
  • Segers, M.E., Lebeer, S. (2014). Towards a better understanding of Lactobacillus rhamnosus GG–host interactions. Microbial Cell Factories, 13(1), 7. https://doi.org/10.1186/1475-2859-13-S1-S7
  • Schroeder, F.A., Lin, C.L., Crusio, W.E., Akbarian, S. (2007). Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biological Psychiatry, 62(1), 55-64. https://doi.org/10.1016/j.biopsych.2006.06.036
  • Schwabe, R. F., Jobin, C. (2013). The microbiome and cancer. Nature Reviews Cancer, 13(11), 800-812. https://doi.org/10.1038/nrc3610
  • Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L.G., Gratadoux, J. J., Blugeon, S. B., Bridonneau, C., Furet, J., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottie` re, H.M., Dore´, J., Marteau, P., Seksik, P., Langella, P. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences, 105(43), 16731-16736. https://doi.org/10.1073/pnas.0804812105
  • Singh, A., Alexander, S.G., Martin, S. (2023). Gut microbiome homeostasis and the future of probiotics in cancer immunotherapy. Frontiers in Immunology, 14, 1114499. https://doi.org/10.3389/fimmu.2023.1114499
  • Smith, J., Brown, A., Williams, P. (2023). Gut microbiota modulation as a potential strategy for enhancing cancer treatment outcomes. Journal of Cancer Research and Therapeutics, 19(4), 245-257.
  • Szajewska, H., Kolodziej, M. (2015). Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children. Alimentary Pharmacology and Therapeutics, 42(12), 1149-1157. https://doi.org/10.1111/apt.13404
  • Thomas, R. M., Gharaibeh, R. Z., Gauthier, J., Beveridge, M., Pope, J. L., Guijarro, M. V., Yu, Q., He, Z., Ohland, C., Newsome, R., Trevino, J., Hughes, S. J., Reinhard, M., Winglee, K., Fodor, A. A., Zajac-Kaye, M., Jobin, C. (2018). Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis, 39(8), 1068-1078. https://doi.org/10.1093/carcin/bgy073
  • Touchefeu, Y., Montassier, E., Nieman, K., Gastinne, T., Potel, G., Bruley des Varannes, S., Le Vacon, F., de La Cochetière, M. F. (2014). Systematic review: the role of the gut microbiota in chemotherapy‐or radiation‐induced gastrointestinal mucositis–current evidence and potential clinical applications. Alimentary Pharmacology and Therapeutics, 40(5), 409-421. https://doi.org/10.1111/apt.12878
  • Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K.I., Maciuk, A., Mangelsdorf, I., McArdle, H.J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Marchelli, R., Neuhäuser-Berthold., M., Poulsen, M., Maradona, M.P., Schlatter, J.R., van Loveren, H., Ackerl, R., Knutsen, H.K. (2021). Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(9), e06780. https://doi.org/10.2903/j.efsa.2021.6780
  • Verhoog, S., Taneri, P.E., Roa Díaz, Z. M., Marques-Vidal, P., Troup, J.P., Bally, L., Franco, O.H., Glisic, M., Muka, T. (2019). Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review. Nutrients, 11(7), 1565. https://doi.org/10.3390/nu11071565
  • Vernocchi, P., Gili, T., Conte, F., Del Chierico, F., Conta, G., Miccheli, A., Botticelli, A., Paci, P., Caldarelli, G., Nuti, M., Marchetti, P., Putignani, L. (2020). Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer. International Journal of Molecular Sciences, 21(22), 8730. https://doi.org/10.3390/ijms21228730
  • Wei, M.Y., Shi, S., Liang, C., Meng, Q.C., Hua, J., Zhang, Y.Y., Liu, J., Zhang, B., Xu, J., Yu, X.J. (2019). The microbiota and microbiome in pancreatic cancer: more influential than expected. Molecular Cancer, 18(1), 1-15. https://doi.org/10.1186/s12943-019-1008-0
  • Wong, C.B., Iwabuchi, N., Xiao, J.Z., Fujiwara, S. (2019). Bifidobacterium longum BB536 supplementation improves immune responses and reduces the risk of acute infectious diseases in healthy elderly subjects. Journal of Nutritional Science, 8.
  • Yang, J., Li, Y., Wen, Z., Liu, W., Meng, L., Huang, H. (2021). Oscillospira-a candidate for the next-generation probiotics. Gut Microbes, 13(1), 1987783. https://doi.org/10.1080/19490976.2021.1987783
  • Yoon, H.S., Cho, C.H., Yun, M.S., Jang, S.J., You, H.J., Kim, J.H., Han, D., Cha, K.H., Moon, S.H., Lee, K., Kim, Y.J., Lee, S.J., Tae Wook, N., Ko, G. (2021). Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nature Microbiology, 6(5), 563-573. https://doi.org/10.1038/s41564-021-00880-5
  • Zhang, M., Qiu, X., Zhang, H., Yang, X., Hong, N., Yang, Y., Chen, H., Yu, C. (2014). Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PloS One, 9(10), e109146. https://doi.org/10.1371/journal.pone.0109146
  • Zhang, T., Li, Q., Cheng, L., Buch, H., Zhang, F. (2019). Akkermansia muciniphila is a promising probiotic. Microbial Biotechnology, 12(6), 1109-1125. https://doi.org/10.1111/1751-7915.13410
  • Zhou, L., Zhang, M., Wang, Y., Dorfman, R. G., Liu, H., Yu, T., Chen, X., Tang, D., Xu, L., Yin, Y., Pan, Y., Zhou, Q., Zhou, Y., Yu, C. (2018). Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflammatory Bowel Diseases, 24(9), 1926-1940. https://doi.org/10.1093/ibd/izy182
  • Zitvogel, L., Galluzzi, L., Viaud, S., Vétizou, M., Daillère, R., Merad, M., Kroemer, G. (2015). Cancer and The Gut Microbiota: An Unexpected Link. Science Translational Medicine, 7(271), 271ps1-271ps1. https://doi.org/10.1126/scitranslmed.3010473
  • Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G., Gajewski, T.F. (2018). The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science, 359(6382), 1366-1370. https://doi.org/10.1126/science.aar6918
Toplam 100 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Halk Sağlığı Beslenmesi, Beslenme ve Diyetetik (Diğer), Gıda Mühendisliği, Gıda Mikrobiyolojisi
Bölüm Review Articles
Yazarlar

Damla Özışık 0009-0006-9406-1518

Nihat Akın 0000-0002-0966-1126

Erken Görünüm Tarihi 2 Ocak 2025
Yayımlanma Tarihi 10 Ocak 2025
Gönderilme Tarihi 7 Mart 2024
Kabul Tarihi 13 Ağustos 2024
Yayımlandığı Sayı Yıl 2025Cilt: 11 Sayı: 1

Kaynak Göster

APA Özışık, D., & Akın, N. (2025). Yeni nesil probiyotik olarak Akkermansia muciniphila ve Faecalibacterium prausnitzii: Sağlık üzerinde etkileri. Food and Health, 11(1), 77-90. https://doi.org/10.3153/FH25007

ustresim_2021_1.png

Journal is licensed under a 

CreativeCommons Attribtion-ShareAlike 4.0 International Licence 146271331027042

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:


Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).