Araştırma Makalesi
BibTex RIS Kaynak Göster

Quick-dissolvable heat-sealable edible films made from orange peel powder and guar gum for instant beverage packaging

Yıl 2024, Cilt: 10 Sayı: 2, 115 - 128, 03.04.2024
https://doi.org/10.3153/FH24011

Öz

Water-soluble films provide convenience, notably in scenarios requiring single-dose or on-the-go packaging, such as dissolvable sachets for individual servings of beverages, effectively minimising excess packaging waste. The main aim of this study was to create edible films that are water-soluble and heat-sealable by utilising a blend of guar gum and orange peel powder.
The study investigated the impact of varying orange peel powder content on guar gum edible films’ properties. Physical (thickness, moisture content, swelling index, density, solubility), optical (colour, opacity, light transmittance), and barrier (water vapour transmission rate, water vapour permeability) properties of the films with different concentrations of orange peel powder were evaluated. Moreover, within the scope of utilising these films for packaging dry instant beverages, they were heat-sealed to form pouches and then filled with dry orange peel powder to evaluate their ability to dissolve instantly.
As the orange peel powder content in the films increased, thickness, density, and colour parameters such as redness, yellowness, ΔE, chroma, hue angle, and browning index also increased, resulting in more thick, vivid colours and significant colour changes. Conversely, moisture content, swelling index, and light transmittance decreased with higher orange peel levels, impacting the films' textural properties and rendering them more opaque for better protection against light, oxygen, and heat, essential for extending food product shelf life. Moreover, solubility increased as the orange peel content increased, indicating greater water interaction facilitated by the extract's potential plasticising effect.

Etik Beyan

No human and animal subjects used in this study.

Destekleyen Kurum

No funding received.

Kaynakça

  • Association of Analytical Chemists (AOAC) (1984). Standard Official Methods of Analysis of the Association of Analytical Chemists. 14th edition, S.W Williams (Ed), Washington, DC., p. 12.
  • Adilah, A. N., Jamilah, B., Noranizan, M. A., & Nur Hanani, Z. A. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006
  • Akbaba, G., (2006). Yenilebilir ambalajlar, Bilim ve Teknik Dergisi, 30-32.
  • Akşehir, K. (2013). Ak dut (Morus alba) ve kara dut (Morus nigra) meyvelerinden üretilen yenilebilir filmlerin karakterizasyonu. Master's thesis. On Dokuz Mayıs University. Graduate School of Natural Sciences.
  • Amado, L.R., Silva, K.D.S., & Mauro, M.A. (2020). Effects of interactions between soy protein isolate and pectin on properties of soy protein‐based films. Journal of Applied Polymer Science, 137(21), 48732. https://doi.org/10.1002/app.48732
  • Amin, U., Khan, M.A., Akram, M.E., Said Al-Tawaha, A. R.M., Laishevtcev, A., & Shariati, M.A. (2019). Characterızatıon of composite edible films from aloe vera gel, beeswax and chitosan. Potravinarstvo, 13(1). https://doi.org/10.5219/1177
  • Athmaselvi, K.A., Sumitha, P., & Revathy, B.J.I.A. (2013). Development of Aloe vera based edible coating for tomato. International Agrophysics, 27(4). https://doi.org/10.2478/intag-2013-0006
  • Aydogdu, A., Radke, C.J., Bezci, S., & Kirtil, E. (2020). Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films. International Journal of Biological Macromolecules, 148, 110-120. https://doi.org/10.1016/j.ijbiomac.2019.12.255
  • Azab, D.E.S.H., Almoselhy, R.I., & Mahmoud, M.H. (2022). Improving the quality characteristics of low fat toffee by using mango kernel fat, pectin, and high‐speed homogenizer. Journal of Food Processing and Preservation, e17235. https://doi.org/10.1111/jfpp.17235
  • Bari, A., & Giannouli, P. (2022). Evaluation of Biodegradable Gelatin and Gelatin–Rice Starch Coatings to Fresh Cut Zucchini Slices. Horticulturae, 8(11), 1031. https://doi.org/10.3390/horticulturae8111031
  • Basiak, E., Galus, S., & Lenart, A. (2015). Characterisation of composite edible films based on wheat starch and whey‐protein isolate. International Journal of Food Science & Technology, 50(2), 372-380. https://doi.org/10.1111/ijfs.12628
  • Bellur Nagarajaiah, S., & Prakash, J. (2015). Chemical composition and bioactive potential of dehydrated peels of Benincasa hispida, Luffa acutangula, and Sechium edule. Journal of Herbs, Spices & Medicinal Plants, 21(2), 193-202. https://doi.org/10.1080/10496475.2014.940437
  • Cabello, S.P., Takara, E.A., Marchese, J., & Ochoa, N.A. (2015). Influence of plasticizers in pectin films: Microstructural changes. Materials Chemistry and Physics, 162, 491-497. https://doi.org/10.1016/j.matchemphys.2015.06.019
  • Can, F. (2015). Portakal kabuğu tozunun bisküvi hamuru ve bisküvi kalitesi üzerine etkilerinin incelenmesi. Master's thesis. İnönü University. Graduate School of Natural Sciences.
  • Chandla, N.K., Saxena, D.C., & Singh, S. (2017). Amaranth (Amaranthus spp.) starch isolation, characterization, and utilization in development of clear edible films. Journal of Food Processing and Preservation, 41(6), e13217. https://doi.org/10.1111/jfpp.13217
  • Cin, P., & Gezer, C. (2017). Citrus fruits as a functional food and the relation with metabolic syndrome. Food and Health, 3(2), 49-58. https://doi.org/10.3153/JFHS17007
  • de Figueiredo Sousa, H.A., de Oliveira Filho, J.G., Egea, M.B., da Silva, E.R., Macagnan, D., Pires, M., & Peixoto, J. (2019). Active film incorporated with clove essential oil on storage of banana varieties. Nutrition & Food Science, 49(5), 911-924. https://doi.org/10.1108/NFS-09-2018-0262
  • Eça, K.S., Machado, M.T.C., Hubinger, M.D., & Menegalli, F.C. (2015). Development of active films from pectin and fruit extracts: Light protection, antioxidant capacity, and compounds stability. Journal of Food Science, 80(11), C2389–C2396. https://doi.org/10.1111/1750-3841.13074
  • Embuscado, M.E., & Huber, K.C. (2009). Edible films and coatings for food applications (Vol. 9). New York: Springer. ISBN: 978-0-387-92823-4
  • Fahrullah, F., Radiati, L.E., & Rosyidi, D. (2020). The physical characteristics of whey based edible film added with konjac. Current Research in Nutrition and Food Science Journal, 8(1), 333-339. https://doi.org/10.12944/CRNFSJ.8.1.31
  • Fishman, M.L., Coffin, D.R., Onwulata, C.I., & Willett, J.L. (2006). Two stage extrusion of plasticized pectin/poly (vinyl alcohol) blends. Carbohydrate Polymers, 65(4), 421-429. https://doi.org/10.1016/j.carbpol.2006.01.032
  • Gahruie, H.H., Mostaghimi, M., Ghiasi, F., Tavakoli, S., Naseri, M., & Hosseini, S.M.H. (2020). The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. International Journal of Biological Macromolecules, 160, 245-251. https://doi.org/10.1016/j.ijbiomac.2020.05.136
  • Gontard, N., & Guilbert S. (1994). Bio-packaging: technology and properties of edible and/or biodegradable material of agricultural origin. Food Packaging and Preservation, 159-181. https://doi.org/10.1007/978-1-4615-2173-0_9
  • Gökmen, F.Ö. (2022). PVP/PVA blended hydrogels as a biofilm for use in food packaging applications. Food and Health, 8(3), 172-180. https://doi.org/10.3153/FH22017
  • Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste. Rome: Food and Agriculture Organization of the United Nations. ttps://www.fao.org/3/i2697e/i2697e.pdf
  • Günkaya, Z., Demirel, R., & Banar, M. (2016). Portakal kabuğu atıklarından üretilen biyokompozit ambalaj filminin aflatoksinlere karşı etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 513-519. https://doi.org/10.5505/pajes.2016.92653
  • Hernandez, L.M., Xu, E.G., Larsson, H.C., Tahara, R., Maisuria, V.B., & Tufenkji, N. (2019). Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental science & technology, 53(21), 12300-12310. ttps://doi.org/10.1021/acs.est.9b02540
  • Jadhav, E.B., Sankhla, M.S., Bhat, R.A., & Bhagat, D.S. (2021). Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring & Management, 16, 100608. https://doi.org/10.1016/j.enmm.2021.100608
  • Janjarasskul, T., Tananuwong, K., Phupoksakul, T., & Thaiphanit, S. (2020). Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT-Food Science and Technology, 134, 110102. https://doi.org/10.1016/j.lwt.2020.110102
  • Jiang, H., Zhang, W., Chen, L., Liu, J., Cao, J., & Jiang, W. (2022). Recent advances in guar gum-based films or coatings: Diverse property enhancement strategies and applications in foods. Food Hydrocolloids, 108278. https://doi.org/10.1016/j.foodhyd.2022.108278
  • Jridi, M., Abdelhedi, O., Salem, A., Kechaou, H., Nasri, M., & Menchari, Y. (2020). Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocolloids, 103, 105688. https://doi.org/10.1016/j.foodhyd.2020.105688
  • Karakuş, E., Balballı, E.K., İlknur, A.R.A., & Ayhan, Z. (2021). Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi. Akademik Gıda, 19(1), 74-88. https://doi.org/10.24323/akademik-gida.927700
  • Khezerlou, A., Ehsani, A., Tabibiazar, M., & Moghaddas Kia, E. (2019). Development and characterization of a Persian gum–sodium caseinate biocomposite film accompanied by Zingiber officinale extract. Journal of Applied Polymer Science, 136(12), 47215. https://doi.org/10.1002/app.47215
  • Kirtil, E., Aydogdu, A., Svitova, T., & Radke, C.J. (2021). Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packaging and Shelf Life, 29, 100687. https://doi.org/10.1016/j.fpsl.2021.100687
  • Kumar, N. (2019). Polysaccharide-based component and their relevance in edible film/coating: A review. Nutrition & Food Science, 49(5), 793-823. https://doi.org/10.1108/NFS-10-2018-0294
  • Kumari, M., Mahajan, H., Joshi, R., & Gupta, M. (2017). Development and structural characterization of edible films for improving fruit quality. Food Packaging and Shelf Life, 12, 42-50. https://doi.org/10.1016/j.fpsl.2017.02.003
  • Kurt, A. (2019). Rheology of film-forming solutions and physical properties of differently deacetylated salep glucomannan film. Food and Health, 5(3),175-184. https://doi.org/10.3153/FH19019
  • Lal, S. S., Tanna, P., Kale, S., & Mhaske, S.T. (2017). Kafirin polymer film for enteric coating on HPMC and Gelatin capsules. Journal of Materials Science, 52, 3806-3820. https://doi.org/10.1007/s10853-016-0637-6
  • Lin, L., Peng, S., Shi, C., Li, C., Hua, Z., & Cui, H. (2022). Preparation and characterization of cassava starch/sodium carboxymethyl cellulose edible film incorporating apple polyphenols. International Journal of Biological Macromolecules, 212, 155-164. https://doi.org/10.1016/j.ijbiomac.2022.05.121
  • Lopez‐Rubio, A., Flanagan, B.M., Gilbert, E.P., & Gidley, M.J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers: Original Research on Biomolecules, 89(9), 761-768. https://doi.org/10.1002/bip.21005
  • Luzi, F., Torre, L., Kenny, J.M., & Puglia, D. (2019). Bio-and fossil-based polymeric blends and nanocomposites for packaging: Structure–property relationship. Materials, 12(3), 471. ttps://doi.org/10.3390/ma12030471
  • Martelli, M.R., Barros, T.T., de Moura, M.R., Mattoso, L.H., & Assis, O.B. (2013). Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. Journal of Food Science, 78(1), N98-N104. https://doi.org/10.1111/j.1750-3841.2012.03006.x
  • McKay, S., Sawant, P., Fehlberg, J., & Almenar, E. (2021). Antimicrobial activity of orange juice processing waste in powder form and its suitability to produce antimicrobial packaging. Waste Management, 120, 230-239. https://doi.org/10.1016/j.wasman.2020.11.048
  • Mohammadi, M., Mirabzadeh, S., Shahvalizadeh, R., & Hamishehkar, H. (2020). Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. International Journal of Biological Macromolecules, 149, 11-20. https://doi.org/10.1016/j.ijbiomac.2020.01.083
  • Mudgil, D., Barak, S., & Khatkar, B.S. (2014). Guar gum: processing, properties and food applications-a review. Journal of Food Science and Technology, 51, 409-418. https://doi.org/10.1007/s13197-011-0522-x
  • Nogueira, G.F., Soares, I.H.B.T., Soares, C.T., Fakhouri, F.M., & de Oliveira, R.A. (2022). Development and characterization of arrowroot starch films incorporated with grape pomace extract. Polysaccharides, 3(1), 250-263. https://doi.org/10.3390/polysaccharides3010014
  • Ocak, Ö.Ö., & Demircan, B. (2020). Lezzet bileşenleri ve biyoaktif maddelerin yenilebilir film ve kaplamalar ile gıda sistemlerinde taşınması ve işlevselliğe etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(7), 1245-1256.
  • Otoni, C.G., Avena‐Bustillos, R.J., Azeredo, H.M., Lorevice, M.V., Moura, M.R., Mattoso, L.H., & McHugh, T.H. (2017). Recent advances on edible films based on fruits and vegetables—a review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151-1169. https://doi.org/10.1111/1541-4337.12281
  • Rai, S.K., Chaturvedi, K., & Yadav, S.K. (2019). Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocolloids, 91, 127-135. https://doi.org/10.1016/j.foodhyd.2019.01.022
  • Pérez-Vergara, L.D., Cifuentes, M.T., Franco, A.P., Pérez-Cervera, CE., & Andrade-Pizarro, R.D. (2020). Development and characterization of edible films based on native cassava starch, beeswax, and propolis. NFS Journal, 21, 39-49. https://doi.org/10.1016/j.nfs.2020.09.002
  • Pi˜neros-Hernandez, D., Medina-Jaramillo, C., L´opez-C´ordoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488–495. https://doi.org/10.1016/j.foodhyd.2016.09.034
  • Rivero, S., Garcia, M.A., & Pinotti, A. (2010). Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science & Emerging Technologies, 11(2), 369-375. https://doi.org/10.1016/j.ifset.2009.07.005
  • Saberi, B., Vuong, Q.V., Chockchaisawasdee, S., Golding, J.B., Scarlett, C.J., & Stathopoulos, C.E. (2017). Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food and Bioprocess Technology, 10, 2240-2250. https://doi.org/10.1007/s11947-017-1995-z
  • Sharefiabadi, E., & Serdaroğlu, M. (2020). Pectin: Properties and utilization in meat products. Food and Health, 7(1), 64-74. https://doi.org/10.3153/FH21008
  • Silva, V.D.M., Macedo, M.CC., Rodrigues, C. G., dos Santos, A.N., e Loyola, A.C.D.F., & Fante, C.A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38, 100750. https://doi.org/10.1016/j.fbio.2020.100750
  • Sistla, Y.S., & Mehraj, S. (2022). Molecular simulations to understand the moisture, carbon dioxide, and oxygen barrier properties of pectin films. Journal of Molecular Modeling, 28(4), 83. https://doi.org/10.1007/s00894-022-05069-z
  • Sobral, P., Menegalli, F., Hubinger, M., & Roques, M. (2001) Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloids, 15, 423–432. https://doi.org/10.1016/S0268-005X(01)00061-3
  • Srinivasa, P.C., Ramesh, M.N., & Tharanathan, R.N. (2007). Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids, 21(7), 1113-1122. https://doi.org/10.1016/j.foodhyd.2006.08.005
  • Terzioğlu, P., Güney, F., Parın, F.N., Şen, İ., & Tuna, S. (2021). Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packaging and Shelf Life, 30, 100742.
  • (TSI) Turkish Statistical Institute. (2023). Statistics on plant production, 2023. Erişim:02.02.2024 https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-1.Tahmini-2023-49534
  • Yu, S.H., Tsai, M.L., Lin, B.X., Lin, C.W., & Mi, F.L. (2015). Tea catechins-cross-linked methylcellulose active films for inhibition of light irradiation and lipid peroxidation induced β-carotene degradation. Food Hydrocolloids, 44, 491-505. https://doi.org/10.1016/j.foodhyd.2014.10.022
Yıl 2024, Cilt: 10 Sayı: 2, 115 - 128, 03.04.2024
https://doi.org/10.3153/FH24011

Öz

Kaynakça

  • Association of Analytical Chemists (AOAC) (1984). Standard Official Methods of Analysis of the Association of Analytical Chemists. 14th edition, S.W Williams (Ed), Washington, DC., p. 12.
  • Adilah, A. N., Jamilah, B., Noranizan, M. A., & Nur Hanani, Z. A. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006
  • Akbaba, G., (2006). Yenilebilir ambalajlar, Bilim ve Teknik Dergisi, 30-32.
  • Akşehir, K. (2013). Ak dut (Morus alba) ve kara dut (Morus nigra) meyvelerinden üretilen yenilebilir filmlerin karakterizasyonu. Master's thesis. On Dokuz Mayıs University. Graduate School of Natural Sciences.
  • Amado, L.R., Silva, K.D.S., & Mauro, M.A. (2020). Effects of interactions between soy protein isolate and pectin on properties of soy protein‐based films. Journal of Applied Polymer Science, 137(21), 48732. https://doi.org/10.1002/app.48732
  • Amin, U., Khan, M.A., Akram, M.E., Said Al-Tawaha, A. R.M., Laishevtcev, A., & Shariati, M.A. (2019). Characterızatıon of composite edible films from aloe vera gel, beeswax and chitosan. Potravinarstvo, 13(1). https://doi.org/10.5219/1177
  • Athmaselvi, K.A., Sumitha, P., & Revathy, B.J.I.A. (2013). Development of Aloe vera based edible coating for tomato. International Agrophysics, 27(4). https://doi.org/10.2478/intag-2013-0006
  • Aydogdu, A., Radke, C.J., Bezci, S., & Kirtil, E. (2020). Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films. International Journal of Biological Macromolecules, 148, 110-120. https://doi.org/10.1016/j.ijbiomac.2019.12.255
  • Azab, D.E.S.H., Almoselhy, R.I., & Mahmoud, M.H. (2022). Improving the quality characteristics of low fat toffee by using mango kernel fat, pectin, and high‐speed homogenizer. Journal of Food Processing and Preservation, e17235. https://doi.org/10.1111/jfpp.17235
  • Bari, A., & Giannouli, P. (2022). Evaluation of Biodegradable Gelatin and Gelatin–Rice Starch Coatings to Fresh Cut Zucchini Slices. Horticulturae, 8(11), 1031. https://doi.org/10.3390/horticulturae8111031
  • Basiak, E., Galus, S., & Lenart, A. (2015). Characterisation of composite edible films based on wheat starch and whey‐protein isolate. International Journal of Food Science & Technology, 50(2), 372-380. https://doi.org/10.1111/ijfs.12628
  • Bellur Nagarajaiah, S., & Prakash, J. (2015). Chemical composition and bioactive potential of dehydrated peels of Benincasa hispida, Luffa acutangula, and Sechium edule. Journal of Herbs, Spices & Medicinal Plants, 21(2), 193-202. https://doi.org/10.1080/10496475.2014.940437
  • Cabello, S.P., Takara, E.A., Marchese, J., & Ochoa, N.A. (2015). Influence of plasticizers in pectin films: Microstructural changes. Materials Chemistry and Physics, 162, 491-497. https://doi.org/10.1016/j.matchemphys.2015.06.019
  • Can, F. (2015). Portakal kabuğu tozunun bisküvi hamuru ve bisküvi kalitesi üzerine etkilerinin incelenmesi. Master's thesis. İnönü University. Graduate School of Natural Sciences.
  • Chandla, N.K., Saxena, D.C., & Singh, S. (2017). Amaranth (Amaranthus spp.) starch isolation, characterization, and utilization in development of clear edible films. Journal of Food Processing and Preservation, 41(6), e13217. https://doi.org/10.1111/jfpp.13217
  • Cin, P., & Gezer, C. (2017). Citrus fruits as a functional food and the relation with metabolic syndrome. Food and Health, 3(2), 49-58. https://doi.org/10.3153/JFHS17007
  • de Figueiredo Sousa, H.A., de Oliveira Filho, J.G., Egea, M.B., da Silva, E.R., Macagnan, D., Pires, M., & Peixoto, J. (2019). Active film incorporated with clove essential oil on storage of banana varieties. Nutrition & Food Science, 49(5), 911-924. https://doi.org/10.1108/NFS-09-2018-0262
  • Eça, K.S., Machado, M.T.C., Hubinger, M.D., & Menegalli, F.C. (2015). Development of active films from pectin and fruit extracts: Light protection, antioxidant capacity, and compounds stability. Journal of Food Science, 80(11), C2389–C2396. https://doi.org/10.1111/1750-3841.13074
  • Embuscado, M.E., & Huber, K.C. (2009). Edible films and coatings for food applications (Vol. 9). New York: Springer. ISBN: 978-0-387-92823-4
  • Fahrullah, F., Radiati, L.E., & Rosyidi, D. (2020). The physical characteristics of whey based edible film added with konjac. Current Research in Nutrition and Food Science Journal, 8(1), 333-339. https://doi.org/10.12944/CRNFSJ.8.1.31
  • Fishman, M.L., Coffin, D.R., Onwulata, C.I., & Willett, J.L. (2006). Two stage extrusion of plasticized pectin/poly (vinyl alcohol) blends. Carbohydrate Polymers, 65(4), 421-429. https://doi.org/10.1016/j.carbpol.2006.01.032
  • Gahruie, H.H., Mostaghimi, M., Ghiasi, F., Tavakoli, S., Naseri, M., & Hosseini, S.M.H. (2020). The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. International Journal of Biological Macromolecules, 160, 245-251. https://doi.org/10.1016/j.ijbiomac.2020.05.136
  • Gontard, N., & Guilbert S. (1994). Bio-packaging: technology and properties of edible and/or biodegradable material of agricultural origin. Food Packaging and Preservation, 159-181. https://doi.org/10.1007/978-1-4615-2173-0_9
  • Gökmen, F.Ö. (2022). PVP/PVA blended hydrogels as a biofilm for use in food packaging applications. Food and Health, 8(3), 172-180. https://doi.org/10.3153/FH22017
  • Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste. Rome: Food and Agriculture Organization of the United Nations. ttps://www.fao.org/3/i2697e/i2697e.pdf
  • Günkaya, Z., Demirel, R., & Banar, M. (2016). Portakal kabuğu atıklarından üretilen biyokompozit ambalaj filminin aflatoksinlere karşı etkisinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 513-519. https://doi.org/10.5505/pajes.2016.92653
  • Hernandez, L.M., Xu, E.G., Larsson, H.C., Tahara, R., Maisuria, V.B., & Tufenkji, N. (2019). Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental science & technology, 53(21), 12300-12310. ttps://doi.org/10.1021/acs.est.9b02540
  • Jadhav, E.B., Sankhla, M.S., Bhat, R.A., & Bhagat, D.S. (2021). Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring & Management, 16, 100608. https://doi.org/10.1016/j.enmm.2021.100608
  • Janjarasskul, T., Tananuwong, K., Phupoksakul, T., & Thaiphanit, S. (2020). Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. LWT-Food Science and Technology, 134, 110102. https://doi.org/10.1016/j.lwt.2020.110102
  • Jiang, H., Zhang, W., Chen, L., Liu, J., Cao, J., & Jiang, W. (2022). Recent advances in guar gum-based films or coatings: Diverse property enhancement strategies and applications in foods. Food Hydrocolloids, 108278. https://doi.org/10.1016/j.foodhyd.2022.108278
  • Jridi, M., Abdelhedi, O., Salem, A., Kechaou, H., Nasri, M., & Menchari, Y. (2020). Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocolloids, 103, 105688. https://doi.org/10.1016/j.foodhyd.2020.105688
  • Karakuş, E., Balballı, E.K., İlknur, A.R.A., & Ayhan, Z. (2021). Polisakkarit ve Protein Bazlı Aktif Biyokompozit Malzemelerin Gıda Ambalajlama Açısından Değerlendirilmesi. Akademik Gıda, 19(1), 74-88. https://doi.org/10.24323/akademik-gida.927700
  • Khezerlou, A., Ehsani, A., Tabibiazar, M., & Moghaddas Kia, E. (2019). Development and characterization of a Persian gum–sodium caseinate biocomposite film accompanied by Zingiber officinale extract. Journal of Applied Polymer Science, 136(12), 47215. https://doi.org/10.1002/app.47215
  • Kirtil, E., Aydogdu, A., Svitova, T., & Radke, C.J. (2021). Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packaging and Shelf Life, 29, 100687. https://doi.org/10.1016/j.fpsl.2021.100687
  • Kumar, N. (2019). Polysaccharide-based component and their relevance in edible film/coating: A review. Nutrition & Food Science, 49(5), 793-823. https://doi.org/10.1108/NFS-10-2018-0294
  • Kumari, M., Mahajan, H., Joshi, R., & Gupta, M. (2017). Development and structural characterization of edible films for improving fruit quality. Food Packaging and Shelf Life, 12, 42-50. https://doi.org/10.1016/j.fpsl.2017.02.003
  • Kurt, A. (2019). Rheology of film-forming solutions and physical properties of differently deacetylated salep glucomannan film. Food and Health, 5(3),175-184. https://doi.org/10.3153/FH19019
  • Lal, S. S., Tanna, P., Kale, S., & Mhaske, S.T. (2017). Kafirin polymer film for enteric coating on HPMC and Gelatin capsules. Journal of Materials Science, 52, 3806-3820. https://doi.org/10.1007/s10853-016-0637-6
  • Lin, L., Peng, S., Shi, C., Li, C., Hua, Z., & Cui, H. (2022). Preparation and characterization of cassava starch/sodium carboxymethyl cellulose edible film incorporating apple polyphenols. International Journal of Biological Macromolecules, 212, 155-164. https://doi.org/10.1016/j.ijbiomac.2022.05.121
  • Lopez‐Rubio, A., Flanagan, B.M., Gilbert, E.P., & Gidley, M.J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers: Original Research on Biomolecules, 89(9), 761-768. https://doi.org/10.1002/bip.21005
  • Luzi, F., Torre, L., Kenny, J.M., & Puglia, D. (2019). Bio-and fossil-based polymeric blends and nanocomposites for packaging: Structure–property relationship. Materials, 12(3), 471. ttps://doi.org/10.3390/ma12030471
  • Martelli, M.R., Barros, T.T., de Moura, M.R., Mattoso, L.H., & Assis, O.B. (2013). Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. Journal of Food Science, 78(1), N98-N104. https://doi.org/10.1111/j.1750-3841.2012.03006.x
  • McKay, S., Sawant, P., Fehlberg, J., & Almenar, E. (2021). Antimicrobial activity of orange juice processing waste in powder form and its suitability to produce antimicrobial packaging. Waste Management, 120, 230-239. https://doi.org/10.1016/j.wasman.2020.11.048
  • Mohammadi, M., Mirabzadeh, S., Shahvalizadeh, R., & Hamishehkar, H. (2020). Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. International Journal of Biological Macromolecules, 149, 11-20. https://doi.org/10.1016/j.ijbiomac.2020.01.083
  • Mudgil, D., Barak, S., & Khatkar, B.S. (2014). Guar gum: processing, properties and food applications-a review. Journal of Food Science and Technology, 51, 409-418. https://doi.org/10.1007/s13197-011-0522-x
  • Nogueira, G.F., Soares, I.H.B.T., Soares, C.T., Fakhouri, F.M., & de Oliveira, R.A. (2022). Development and characterization of arrowroot starch films incorporated with grape pomace extract. Polysaccharides, 3(1), 250-263. https://doi.org/10.3390/polysaccharides3010014
  • Ocak, Ö.Ö., & Demircan, B. (2020). Lezzet bileşenleri ve biyoaktif maddelerin yenilebilir film ve kaplamalar ile gıda sistemlerinde taşınması ve işlevselliğe etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(7), 1245-1256.
  • Otoni, C.G., Avena‐Bustillos, R.J., Azeredo, H.M., Lorevice, M.V., Moura, M.R., Mattoso, L.H., & McHugh, T.H. (2017). Recent advances on edible films based on fruits and vegetables—a review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151-1169. https://doi.org/10.1111/1541-4337.12281
  • Rai, S.K., Chaturvedi, K., & Yadav, S.K. (2019). Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocolloids, 91, 127-135. https://doi.org/10.1016/j.foodhyd.2019.01.022
  • Pérez-Vergara, L.D., Cifuentes, M.T., Franco, A.P., Pérez-Cervera, CE., & Andrade-Pizarro, R.D. (2020). Development and characterization of edible films based on native cassava starch, beeswax, and propolis. NFS Journal, 21, 39-49. https://doi.org/10.1016/j.nfs.2020.09.002
  • Pi˜neros-Hernandez, D., Medina-Jaramillo, C., L´opez-C´ordoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488–495. https://doi.org/10.1016/j.foodhyd.2016.09.034
  • Rivero, S., Garcia, M.A., & Pinotti, A. (2010). Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Science & Emerging Technologies, 11(2), 369-375. https://doi.org/10.1016/j.ifset.2009.07.005
  • Saberi, B., Vuong, Q.V., Chockchaisawasdee, S., Golding, J.B., Scarlett, C.J., & Stathopoulos, C.E. (2017). Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food and Bioprocess Technology, 10, 2240-2250. https://doi.org/10.1007/s11947-017-1995-z
  • Sharefiabadi, E., & Serdaroğlu, M. (2020). Pectin: Properties and utilization in meat products. Food and Health, 7(1), 64-74. https://doi.org/10.3153/FH21008
  • Silva, V.D.M., Macedo, M.CC., Rodrigues, C. G., dos Santos, A.N., e Loyola, A.C.D.F., & Fante, C.A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38, 100750. https://doi.org/10.1016/j.fbio.2020.100750
  • Sistla, Y.S., & Mehraj, S. (2022). Molecular simulations to understand the moisture, carbon dioxide, and oxygen barrier properties of pectin films. Journal of Molecular Modeling, 28(4), 83. https://doi.org/10.1007/s00894-022-05069-z
  • Sobral, P., Menegalli, F., Hubinger, M., & Roques, M. (2001) Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloids, 15, 423–432. https://doi.org/10.1016/S0268-005X(01)00061-3
  • Srinivasa, P.C., Ramesh, M.N., & Tharanathan, R.N. (2007). Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids, 21(7), 1113-1122. https://doi.org/10.1016/j.foodhyd.2006.08.005
  • Terzioğlu, P., Güney, F., Parın, F.N., Şen, İ., & Tuna, S. (2021). Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packaging and Shelf Life, 30, 100742.
  • (TSI) Turkish Statistical Institute. (2023). Statistics on plant production, 2023. Erişim:02.02.2024 https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-1.Tahmini-2023-49534
  • Yu, S.H., Tsai, M.L., Lin, B.X., Lin, C.W., & Mi, F.L. (2015). Tea catechins-cross-linked methylcellulose active films for inhibition of light irradiation and lipid peroxidation induced β-carotene degradation. Food Hydrocolloids, 44, 491-505. https://doi.org/10.1016/j.foodhyd.2014.10.022
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Ambalajlama, Saklama ve İşleme
Bölüm Research Articles
Yazarlar

Nalan Yazıcıoğlu 0000-0001-9569-3361

Kübra Siyasal 0000-0001-6758-3624

Erken Görünüm Tarihi 12 Mart 2024
Yayımlanma Tarihi 3 Nisan 2024
Gönderilme Tarihi 11 Aralık 2023
Kabul Tarihi 1 Mart 2024
Yayımlandığı Sayı Yıl 2024Cilt: 10 Sayı: 2

Kaynak Göster

APA Yazıcıoğlu, N., & Siyasal, K. (2024). Quick-dissolvable heat-sealable edible films made from orange peel powder and guar gum for instant beverage packaging. Food and Health, 10(2), 115-128. https://doi.org/10.3153/FH24011

ustresim_2021_1.png

Journal is licensed under a 

CreativeCommons Attribtion-ShareAlike 4.0 International Licence 146271331027042

Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:
This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:


Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).