İnceleme Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Artificial meat production and future vision

Yıl 2022, Cilt 8, Sayı 3, 260 - 272, 01.07.2022
https://doi.org/10.3153/FH22024

Öz

Artificial meat shows great promise as a method for use in future food production. It is predicted that traditional meat will be insufficient with the increasing human population. In addition, artificial meat has many advantages in terms of human health, such as being sustainable for the environment, controlled fat content, and absence of antibiotics and hormones compared to traditional meat. Artificial meat, also known as cultured meat, is produced through in vitro myogenesis, which includes muscle tissue-based protein products, stem cell culture, and differentiation, and mature muscle cell processing for flavor and texture. Artificial meat production consists of a sequential process; firstly muscle sampling for stem cell collection and followed by muscle tissue dissociation and muscle stem cell isolation, primary cell culture, high cell culture, and ending with muscle differentiation and maturation. A deep understanding of the process by considering its pros and cons will help not only artificial meat production but also the food industry in business sectors seeking new biomaterials. By explaining the methods utilized for artificial meat production, this study is created to prepare for the new era of cellular agriculture as well as for application in academia and industry.

Kaynakça

  • Abdollahi, H., Harris, L.J., Zhang, P., McIlhenny, S., Srinivas, V., Tulenko, T., DiMuzio, P.J. (2011). The role of hypoxia in stem cell differentiation and therapeutics. Journal of Surgical Research, 165(1), 112-117. https://doi.org/10.1016/j.jss.2009.09.057
  • Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., Marchesano, K. (2019). Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators, 105, 525-543. https://doi.org/10.1016/j.ecolind.2018.04.064
  • Alexander, P., Brown, C., Arneth, A., Dias, C., Finnigan, J., Moran, D., Rounsevell, M.D. (2017). Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Global Food Security, 15, 22-32. https://doi.org/10.1016/j.gfs.2017.04.001
  • Anomaly, J. (2020). Cultured meat could prevent the next pandemic. Animal Sentience, 5(30), 5. https://doi.org/10.51291/2377-7478.1633
  • Anonim (2021). https://www.alamy.com/infographic-explaining-the-process-of-producing-artificial-meat-without-killing-animals-image389151727.html Contributor: Wirestock, Inc./Alamy Stock Photo.
  • Asakura, A., Hirai, H., Kablar, B., Morita, S., Ishibashi, J., Piras, B.A., Rudnicki, M.A. (2007). Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proceedings of the National Academy of Sciences, 104(42), 16552-16557. https://doi.org/10.1073/pnas.0708145104
  • Aydın, F. (2021). Preservice science teachers perceptions of artificial meat in the context of socio-scientific issue. International e-Journal of Educational Studies, 5, 118-32. https://doi.org/10.31458/iejes.927717
  • Beutel, S., Henkel, S. (2011). In situ sensor techniques in modern bioprocess monitoring. Applied microbiology and biotechnology, 91(6), 1493-1505. https://doi.org/10.1007/s00253-011-3470-5
  • Bhat, Z.F., Kumar, S., Fayaz, H. (2015). In vitro meat production: Challenges and benefits over conventional meat production. Journal of integrative agriculture, 14(2), 241-248. https://doi.org/10.1016/S2095-3119(14)60887-X
  • Bischoff, R. (1997). Chemotaxis of skeletal muscle satellite cells. Developmental dynamics: an official publication of the American Association of Anatomists, 208(4), 505-515. https://doi.org/10.1002/(SICI)1097-0177(199704)208:4<505::AID-AJA6>3.0.CO;2-M
  • Bogliotti, Y.S., Wu, J., Vilarino, M., Okamura, D., Soto, D. A., Zhong, C., Belmonte, J.C.I. (2018). Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences, 115(9), 2090-2095. https://doi.org/10.1073/pnas.1716161115
  • Bonny, S.P., Gardner, G.E., Pethick, D.W., Hocquette, J.F. (2015). What is artificial meat and what does it mean for the future of the meat industry? Journal of Integrative Agriculture, 14(2), 255-263. https://doi.org/10.1016/S2095-3119(14)60888-1
  • Bredahl, L., Grunert, K.G., Fertin, C. (1998). Relating consumer perceptions of pork quality to physical product characteristics. Food Quality and Preference, 9(4), 273-281. https://doi.org/10.1016/S0950-3293(98)00007-X Chal, J., Pourquié, O. (2017). Making muscle: skeletal myogenesis in vivo and in vitro. Development, 144(12), 2104-2122. https://doi.org/10.1242/dev.151035
  • Chiles, R.M. (2013). If they come, we will build it: in vitro meat and the discursive struggle over future agrofood expectations. Agriculture and Human Values, 30(4), 511-523. https://doi.org/10.1007/s10460-013-9427-9
  • Choi, K.H., Lee, D.K., Kim, S.W., Woo, S.H., Kim, D.Y., Lee, C.K. (2019). Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Reports, 13(1), 221-234. https://doi.org/10.1016/j.stemcr.2019.05.028
  • Choi, K.H., Yoon, J.W., Kim, M., Lee, H.J., Jeong, J., Ryu, M., Lee, C.K. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 429-457. https://doi.org/10.1111/1541-4337.12661
  • Choudhury, D., Tseng, T. W., Swartz, E. (2020). The business of cultured meat. Trends in Biotechnology, 38(6), 573-577. https://doi.org/10.1016/j.tibtech.2020.02.012
  • Cole, R. (2014). Live-cell imaging: The cell's perspective. Cell Adhesion & Migration, 8(5), 452-459. https://doi.org/10.4161/cam.28348
  • Croney, C., Apley, M., Capper, J., Mench, J., Priest, S. (2012). Bioethics Symposium: The ethical food movement: What does it mean for the role of science and scientists in current debates about animal agriculture? Journal of Animal Science, 90(5), 1570-1582. https://doi.org/10.2527/jas.2011-4702
  • Day, K., Shefer, G., Shearer, A., Yablonka-Reuveni, Z. (2010). The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Developmental biology, 340(2), 330-343. https://doi.org/10.1016/j.ydbio.2010.01.006
  • DeFoliart, G.R. (1992). Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Protection, 11(5), 395-399. https://doi.org/10.1016/0261-2194(92)90020-6
  • Derossi, A., Bhandari, B., van Bommel, K., Noort, M., Severini, C. (2021). Could 3D food printing help to improve the food supply chain resilience against disruptions such as caused by pandemic crises?. International Journal of Food Science & Technology, 56(9), 4338-4355.
  • Ding, S., Swennen, G.M., Messmer, T., Gagliardi, M., Molin, D.G., Li, C., Post, M.J. (2018). Maintaining bovine satellite cells stemness through p38 pathway. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-28746-7
  • Ding, S., Wang, F., Liu, Y., Li, S., Zhou, G., Hu, P. (2017). Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery, 3(1), 1-11. https://doi.org/10.1038/cddiscovery.2017.3
  • Djisalov, M., Knežić, T., Podunavac, I., Živojević, K., Radonic, V., Knežević, N.Ž., Gadjanski, I. (2021). Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. Biology, 10(3), 204. https://doi.org/10.3390/biology10030204
  • Doumit, M.E., Merkel, R.A. (1992). Conditions for isolation and culture of porcine myogenic satellite cells. Tissue and Cell, 24(2), 253-262. https://doi.org/10.1016/0040-8166(92)90098-R
  • Egbert, R., Borders, C. (2006). Achieving success with meat analogs. Food Technology (Chicago), 60(1), 28-34.
  • Elzerman, H. (2006). Substitution of meat by NPFs: Sensory properties and contextual factors. Environment and Policy, 45, 116.
  • Fernandes, A.M., Teixeira, OdS., Revillion, J.P., Souza, A. (2021). Panorama and ambiguities of cultured meat: an integrative approach. Critical Reviews in Food Science and Nutrition, 1-11. https://doi.org/10.1080/10408398.2021.1885006
  • Fish, K.D., Rubio, N.R., Stout, A.J., Yuen, J.S., Kaplan, D.L. (2020). Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends in Food Science & Technology, 98, 53-67. https://doi.org/10.1016/j.tifs.2020.02.005
  • Fox, E.M., Leonard, N., Jordan, K. (2011). Molecular diversity of Listeria monocytogenes isolated from Irish dairy farms. Foodborne Pathogens and Disease, 8(5), 635-641. https://doi.org/10.1089/fpd.2010.0806
  • Fratzl, P. (2008). Collagen: Structure and mechanics, an introduction. In Collagen (pp. 1-13): Springer. ISBN: 978-0-387-73906-9 https://doi.org/10.1007/978-0-387-73906-9_1
  • Gaspar, D.A., Gomide, V., Monteiro, F.J. (2012). The role of perfusion bioreactors in bone tissue engineering. Biomatter, 2(4), 167-175. https://doi.org/10.4161/biom.22170
  • Gaydhane, M.K., Mahanta, U., Sharma, C.S., Khandelwal, M., Ramakrishna, S. (2018). Cultured meat: state of the art and future. Biomanufacturing Reviews, 3(1), 1-10. https://doi.org/10.1007/s40898-018-0005-1
  • Gayraud-Morel, B., Chrétien, F., Flamant, P., Gomès, D., Zammit, P.S., Tajbakhsh, S. (2007). A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Developmental Biology, 312(1), 13-28. https://doi.org/10.1016/j.ydbio.2007.08.059
  • Gibson, M.C., Schultz, E. (1983). Age‐related differences in absolute numbers of skeletal muscle satellite cells. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 6(8), 574-580. https://doi.org/10.1002/mus.880060807
  • Goodwin, J. N., Shoulders, C.W. (2013). The future of meat: A qualitative analysis of cultured meat media coverage. Meat Science, 95(3), 445-450. https://doi.org/10.1016/j.meatsci.2013.05.027
  • Grinnell, F. (2000). Fibroblast–collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends in Cell Biology, 10(9), 362-365. https://doi.org/10.1016/S0962-8924(00)01802-X
  • Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W., Chen, C.S. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5(1), 17-26. https://doi.org/10.1016/j.stem.2009.06.016
  • Guilbert, L., Iscove, N. (1976). Partial replacement of serum by selenite, transferrin, albumin and lecithin in haemopoitec cell cultures. Nature, 263(5578), 594-595. https://doi.org/10.1038/263594a0
  • Ham, R.G. (1965). Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proceedings of the National Academy of Sciences of the United States of America, 53(2), 288. https://doi.org/10.1073/pnas.53.2.288
  • Hoek, A.C., Luning, P.A., Stafleu, A., de Graaf, C. (2004). Food-related lifestyle and health attitudes of Dutch vegetarians, non-vegetarian consumers of meat substitutes, and meat consumers. Appetite, 42(3), 265-272. https://doi.org/10.1016/j.appet.2003.12.003
  • Ismail, B.P., Senaratne-Lenagala, L., Stube, A., Brackenridge, A. (2020). Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers, 10(4), 53-63. https://doi.org/10.1093/af/vfaa040
  • Jensen, E.C. (2013). Overview of live‐cell imaging: requirements and methods used. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 296(1), 1-8. https://doi.org/10.1002/ar.22554
  • Joshi, V., Kumar, S. (2015). Meat Analogues: Plant based alternatives to meat products-A review. International Journal of Food and Fermentation Technology, 5(2), 107-119. https://doi.org/10.5958/2277-9396.2016.00001.5
  • Handral, H.K., Tay, S.H., Chan, W.W., Choudhury, D. (2020). 3D Printing of cultured meat products. Critical Reviews in Food Science and Nutrition, 62(1), 272-281.
  • Kadim, I.T., Mahgoub, O., Baqir, S., Faye, B., Purchas, R. (2015). Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture, 14(2), 222-233. https://doi.org/10.1016/S2095-3119(14)60881-9
  • Kanatous, S.B., Mammen, P.P. (2010). Regulation of myoglobin expression. Journal of Experimental Biology, 213(16), 2741-2747. https://doi.org/10.1242/jeb.041442
  • Keefe, A.C., Lawson, J.A., Flygare, S.D., Fox, Z.D., Colasanto, M.P., Mathew, S.J., Kardon, G. (2015). Muscle stem cells contribute to myofibres in sedentary adult mice. Nature Communications, 6(1), 1-11. https://doi.org/10.1038/ncomms8087
  • Kuang, S., Kuroda, K., Le Grand, F., Rudnicki, M.A. (2007). Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell, 129(5), 999-1010. https://doi.org/10.1016/j.cell.2007.03.044
  • Kumar, P., Chatli, M., Mehta, N., Singh, P., Malav, O., Verma, A.K. (2017). Meat analogues: Health promising sustainable meat substitutes. Critical Reviews in Food Science and Nutrition, 57(5), 923-932. https://doi.org/10.1080/10408398.2014.939739
  • Langelaan, M.L., Boonen, K.J., Polak, R.B., Baaijens, F.P., Post, M.J., van der Schaft, D.W. (2010). Meet the new meat: tissue engineered skeletal muscle. Trends in Food Science & Technology, 21(2), 59-66. https://doi.org/10.1016/j.tifs.2009.11.001
  • Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Bugeon, J. (2016). How muscle structure and composition influence meat and flesh quality. The Scientific World Journal,2016, 3182746. https://doi.org/10.1155/2016/3182746
  • Machida, S., Spangenburg, E., Booth, F. (2004). Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages. Cell Proliferation, 37(4), 267-277. https://doi.org/10.1111/j.1365-2184.2004.00311.x
  • Mattick, C., Allenby, B. (2013). The future of meat. Issues in Science and Technology, 30(1), 64-70.
  • Mattick, C.S. (2018). Cellular agriculture: The coming revolution in food production. Bulletin of the Atomic Scientists, 74(1), 32-35. https://doi.org/10.1080/00963402.2017.1413059
  • Mau, M., Oksbjerg, N., Rehfeldt, C. (2008). Establishment and conditions for growth and differentiation of a myoblast cell line derived from the semimembranosus muscle of newborn piglets. In Vitro Cellular & Developmental Biology-Animal, 44(1-2), 1-5. https://doi.org/10.1007/s11626-007-9069-6
  • Mc Clements, D.J. (2020). Future foods: How modern science is transforming the way we eat. Food & Function 11(3) 1933-1945. https://doi.org/10.1039/C9FO02076D
  • Mc Leod, A. (2011). World livestock 2011-livestock in food security. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/i2373e/i2373e.pdf
  • Nienow, A.W. (2006). Reactor engineering in large scale animal cell culture. Cytotechnology, 50(1-3), 9. https://doi.org/10.1007/s10616-006-9005-8
  • O’Mara, P., Farrell, A., Bones, J., Twomey, K. (2018). Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta, 176, 130-139. https://doi.org/10.1016/j.talanta.2017.07.088
  • Ong, S., Choudhury, D., Naing, M.W. (2020). Cell-based meat: current ambiguities with nomenclature. Trends in Food Science & Technology, 102, 223-231. https://doi.org/10.1016/j.tifs.2020.02.010
  • Pereira, P.M.d.C.C., Vicente, A.F.d.R.B. (2013). Meat nutritional composition and nutritive role in the human diet. Meat Science, 93(3), 586-592. https://doi.org/10.1016/j.meatsci.2012.09.018 Post, M.J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 92(3), 297-301. https://doi.org/10.1016/j.meatsci.2012.04.008
  • Post, M.J., Levenberg, S., Kaplan, D.L., Genovese, N., Fu, J., Bryant, C.J., Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403-415. https://doi.org/10.1038/s43016-020-0112-z
  • Potyrailo, R.A., Surman, C., Monk, D., Morris, W.G., Wortley, T., Vincent, M., Gach, G. (2011). RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing. Measurement Science and Technology, 22(8), 082001. https://doi.org/10.1088/0957-0233/22/8/082001
  • Purslow, P.P. (2020). The structure and role of intramuscular connective tissue in muscle function. Frontiers in Physiology, 11, 495. https://doi.org/10.3389/fphys.2020.00495
  • Redshaw, Z., McOrist, S., Loughna, P. (2010). Muscle origin of porcine satellite cells affects in vitro differentiation potential. Cell Biochemistry and Function, 28(5), 403-411. https://doi.org/10.1002/cbf.1670
  • Richler, C., Yaffe, D. (1970). The in vitro cultivation and differentiation capacities of myogenic cell lines. Developmental Biology, 23(1), 1-22. https://doi.org/10.1016/S0012-1606(70)80004-5
  • Rischer, H., Szilvay, G.R., Oksman-Caldentey, K.-M. (2020). Cellular agriculture—industrial biotechnology for food and materials. Current opinion in biotechnology, 61, 128-134. https://doi.org/10.1016/j.copbio.2019.12.003
  • Schabel, H.G. (2010). Forest insects as food: A global review. Forest insects as food: Humans Bite Back, Food & Agriculture Org. ISBN: 978-92-5-106488-7.
  • Sexton, A.E., Garnett, T., Lorimer, J. (2019). Framing the future of food: The contested promises of alternative proteins. Environment and Planning E: Nature and Space, 2(1), 47-72. https://doi.org/10.1177/2514848619827009
  • Sha, L., Xiong, Y.L. (2020). Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102, 51-61. https://doi.org/10.1016/j.tifs.2020.05.022
  • Shahini, A., Vydiam, K., Choudhury, D., Rajabian, N., Nguyen, T., Lei, P., Andreadis, S.T. (2018). Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Research, 30, 122-129. https://doi.org/10.1016/j.scr.2018.05.017
  • Shen, N., Riedl, J.A., Berrio, D.A.C., Davis, Z., Monaghan, M.G., Layland, S.L., Schenke-Layland, K. (2018). A flow bioreactor system compatible with real-time two-photon fluorescence lifetime imaging microscopy. Biomedical Materials, 13(2), 024101. https://doi.org/10.1088/1748-605X/aa9b3c
  • Specht, L., Scientist, S. (2020). An analysis of culture medium costs and production volumes for cultivated meat. The Good Food Institute: Washington, DC, USA.
  • Steinfeld, H., Gerber, P., Wassenaar, T. ., Castel, V., Rosales, M., Rosales, M., de Haan, C. (2006). Livestock's long shadow: environmental issues and options: Food & Agriculture Org. ISBN: 978-92-5-106488-7
  • Sürek, E., Pınar, U. (2020). Geleceğin alternatif protein kaynağı: Yapay et. Akademik Gıda, 18(2), 209-216. https://doi.org/10.24323/akademik-gida.758840
  • Tuomisto, H.L., Teixeira de Mattos, M.J. (2011). Environmental impacts of cultured meat production. Environmental Science & Technology, 45(14), 6117-6123. https://doi.org/10.1021/es200130u
  • Urbani, L., Piccoli, M., Franzin, C., Pozzobon, M., De Coppi, P. (2012). Hypoxia increases mouse satellite cell clone proliferation maintaining both in vitro and in vivo heterogeneity and myogenic potential. PloS ONE, 7(11), e49860. https://doi.org/10.1371/journal.pone.0049860
  • Van Boeckel, T.P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N.G., Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365(6459). https://doi.org/10.1126/science.aaw1944
  • Van Eenennaam, A.L. (2017). Genetic modification of food animals. Current Opinion in Biotechnology, 44, 27-34. https://doi.org/10.1016/j.copbio.2016.10.007
  • Vandenburgh, H., Shansky, J., Del Tatto, M., Chromiak, J. (1999). Organogenesis of skeletal muscle in tissue culture. In Tissue Engineering Methods and Protocols (pp. 217-225): Springer. ISBN: 978-1-59259-602-7 https://doi.org/10.1385/0-89603-516-6:217
  • Vasileska, A., Rechkoska, G. (2012). Global and regional food consumption patterns and trends. Procedia-Social and Behavioral Sciences, 44, 363-369. https://doi.org/10.1016/j.sbspro.2012.05.040
  • Verbeke, W., Pérez-Cueto, F.J., de Barcellos, M.D., Krystallis, A., Grunert, K.G. (2010). European citizen and consumer attitudes and preferences regarding beef and pork. Meat Science, 84(2), 284-292. https://doi.org/10.1016/j.meatsci.2009.05.001
  • Verbeke, W., Van Wezemael, L., de Barcellos, M.D., Kügler, J.O., Hocquette, J.-F., Ueland, Ø., Grunert, K.G. (2010). European beef consumers’ interest in a beef eating-quality guarantee: insights from a qualitative study in four EU countries. Appetite, 54(2), 289-296. https://doi.org/10.1016/j.appet.2009.11.013
  • Verhagen, J.H., Fouchier, R.A., Lewis, N. (2021). Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses, 13(2), 212. https://doi.org/10.3390/v13020212
  • Verkerk, M., Tramper, J., Van Trijp, J., Martens, D. (2007). Insect cells for human food. Biotechnology Advances, 25(2), 198-202. https://doi.org/10.1016/j.biotechadv.2006.11.004
  • Verzijden, K., Lawyers, A. (2012). Update on cloning in relation to foot production. EFSA Journal 10(7), 2794.
  • Wang, Y.X., Dumont, N.A., Rudnicki, M.A. (2014). Muscle stem cells at a glance. Journal of Cell Science, 127(21), 4543-4548. https://doi.org/10.1242/jcs.151209
  • Wilschut, K.J., Haagsman, H.P., Roelen, B.A. (2010). Extracellular matrix components direct porcine muscle stem cell behavior. Experimental Cell Research, 316(3), 341-352. https://doi.org/10.1016/j.yexcr.2009.10.014
  • Yin, H., Price, F., Rudnicki, M.A. (2013). Satellite cells and the muscle stem cell niche. Physiological Reviews, 93(1), 23-67.

Yapay et üretimi ve gelecek vizyonu

Yıl 2022, Cilt 8, Sayı 3, 260 - 272, 01.07.2022
https://doi.org/10.3153/FH22024

Öz

Yapay et gelecekteki gıda üretiminde kullanılmak üzere bir yöntem olarak büyük umut vadetmektedir. Geleneksel etin, artan insan nüfusu ile birlikte yetersiz kalacağı ön görülmektedir. Ayrıca yapay etin geleneksel ete kıyasla çevre için sürdürülebilir olması, kontrollü yağ içeriği, antibiyotik ve hormon içermemesi gibi insan sağlığı açısından pek çok avantajı bulunmaktadır. Kültürlenmiş et olarak da bilinen yapay et, kas dokusu bazlı protein ürünleri, kök hücre kültürü ve farklılaşmasını içeren in vitro miyogenez, lezzet ve doku için ise olgun kas hücresi işleme yoluyla üretilmektedir. Yapay et üretimi sıralı bir süreçten oluşmaktadır. İlk olarak kök hücre toplama için kas örneklemesi ve sırasıyla kas dokusu ayrışması ve kas kök hücre izolasyonu, birincil hücre kültürü, yüksek hücre kültürü, kas farklılaşması ve olgunlaşma ile son bulmaktadır. Sürecin olumlu ve olumsuz yanlarıyla birlikte derinlemesine anlaşılması, yalnızca yapay et üretimine değil, aynı zamanda gıda endüstrisi için yeni biyomalzemeler arayan iş sektörlerine de yardımcı olacaktır. Bu derleme, yapay et üretimi için kullanılan yöntemleri tartışarak hem hücresel tarımın yeni çağına hazırlanmak hem de akademi ve endüstride kullanılmak üzere hazırlanmıştır. 

Kaynakça

  • Abdollahi, H., Harris, L.J., Zhang, P., McIlhenny, S., Srinivas, V., Tulenko, T., DiMuzio, P.J. (2011). The role of hypoxia in stem cell differentiation and therapeutics. Journal of Surgical Research, 165(1), 112-117. https://doi.org/10.1016/j.jss.2009.09.057
  • Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., Marchesano, K. (2019). Agriculture, climate change and sustainability: The case of EU-28. Ecological Indicators, 105, 525-543. https://doi.org/10.1016/j.ecolind.2018.04.064
  • Alexander, P., Brown, C., Arneth, A., Dias, C., Finnigan, J., Moran, D., Rounsevell, M.D. (2017). Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Global Food Security, 15, 22-32. https://doi.org/10.1016/j.gfs.2017.04.001
  • Anomaly, J. (2020). Cultured meat could prevent the next pandemic. Animal Sentience, 5(30), 5. https://doi.org/10.51291/2377-7478.1633
  • Anonim (2021). https://www.alamy.com/infographic-explaining-the-process-of-producing-artificial-meat-without-killing-animals-image389151727.html Contributor: Wirestock, Inc./Alamy Stock Photo.
  • Asakura, A., Hirai, H., Kablar, B., Morita, S., Ishibashi, J., Piras, B.A., Rudnicki, M.A. (2007). Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proceedings of the National Academy of Sciences, 104(42), 16552-16557. https://doi.org/10.1073/pnas.0708145104
  • Aydın, F. (2021). Preservice science teachers perceptions of artificial meat in the context of socio-scientific issue. International e-Journal of Educational Studies, 5, 118-32. https://doi.org/10.31458/iejes.927717
  • Beutel, S., Henkel, S. (2011). In situ sensor techniques in modern bioprocess monitoring. Applied microbiology and biotechnology, 91(6), 1493-1505. https://doi.org/10.1007/s00253-011-3470-5
  • Bhat, Z.F., Kumar, S., Fayaz, H. (2015). In vitro meat production: Challenges and benefits over conventional meat production. Journal of integrative agriculture, 14(2), 241-248. https://doi.org/10.1016/S2095-3119(14)60887-X
  • Bischoff, R. (1997). Chemotaxis of skeletal muscle satellite cells. Developmental dynamics: an official publication of the American Association of Anatomists, 208(4), 505-515. https://doi.org/10.1002/(SICI)1097-0177(199704)208:4<505::AID-AJA6>3.0.CO;2-M
  • Bogliotti, Y.S., Wu, J., Vilarino, M., Okamura, D., Soto, D. A., Zhong, C., Belmonte, J.C.I. (2018). Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences, 115(9), 2090-2095. https://doi.org/10.1073/pnas.1716161115
  • Bonny, S.P., Gardner, G.E., Pethick, D.W., Hocquette, J.F. (2015). What is artificial meat and what does it mean for the future of the meat industry? Journal of Integrative Agriculture, 14(2), 255-263. https://doi.org/10.1016/S2095-3119(14)60888-1
  • Bredahl, L., Grunert, K.G., Fertin, C. (1998). Relating consumer perceptions of pork quality to physical product characteristics. Food Quality and Preference, 9(4), 273-281. https://doi.org/10.1016/S0950-3293(98)00007-X Chal, J., Pourquié, O. (2017). Making muscle: skeletal myogenesis in vivo and in vitro. Development, 144(12), 2104-2122. https://doi.org/10.1242/dev.151035
  • Chiles, R.M. (2013). If they come, we will build it: in vitro meat and the discursive struggle over future agrofood expectations. Agriculture and Human Values, 30(4), 511-523. https://doi.org/10.1007/s10460-013-9427-9
  • Choi, K.H., Lee, D.K., Kim, S.W., Woo, S.H., Kim, D.Y., Lee, C.K. (2019). Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Reports, 13(1), 221-234. https://doi.org/10.1016/j.stemcr.2019.05.028
  • Choi, K.H., Yoon, J.W., Kim, M., Lee, H.J., Jeong, J., Ryu, M., Lee, C.K. (2021). Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 429-457. https://doi.org/10.1111/1541-4337.12661
  • Choudhury, D., Tseng, T. W., Swartz, E. (2020). The business of cultured meat. Trends in Biotechnology, 38(6), 573-577. https://doi.org/10.1016/j.tibtech.2020.02.012
  • Cole, R. (2014). Live-cell imaging: The cell's perspective. Cell Adhesion & Migration, 8(5), 452-459. https://doi.org/10.4161/cam.28348
  • Croney, C., Apley, M., Capper, J., Mench, J., Priest, S. (2012). Bioethics Symposium: The ethical food movement: What does it mean for the role of science and scientists in current debates about animal agriculture? Journal of Animal Science, 90(5), 1570-1582. https://doi.org/10.2527/jas.2011-4702
  • Day, K., Shefer, G., Shearer, A., Yablonka-Reuveni, Z. (2010). The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Developmental biology, 340(2), 330-343. https://doi.org/10.1016/j.ydbio.2010.01.006
  • DeFoliart, G.R. (1992). Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Protection, 11(5), 395-399. https://doi.org/10.1016/0261-2194(92)90020-6
  • Derossi, A., Bhandari, B., van Bommel, K., Noort, M., Severini, C. (2021). Could 3D food printing help to improve the food supply chain resilience against disruptions such as caused by pandemic crises?. International Journal of Food Science & Technology, 56(9), 4338-4355.
  • Ding, S., Swennen, G.M., Messmer, T., Gagliardi, M., Molin, D.G., Li, C., Post, M.J. (2018). Maintaining bovine satellite cells stemness through p38 pathway. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-28746-7
  • Ding, S., Wang, F., Liu, Y., Li, S., Zhou, G., Hu, P. (2017). Characterization and isolation of highly purified porcine satellite cells. Cell Death Discovery, 3(1), 1-11. https://doi.org/10.1038/cddiscovery.2017.3
  • Djisalov, M., Knežić, T., Podunavac, I., Živojević, K., Radonic, V., Knežević, N.Ž., Gadjanski, I. (2021). Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. Biology, 10(3), 204. https://doi.org/10.3390/biology10030204
  • Doumit, M.E., Merkel, R.A. (1992). Conditions for isolation and culture of porcine myogenic satellite cells. Tissue and Cell, 24(2), 253-262. https://doi.org/10.1016/0040-8166(92)90098-R
  • Egbert, R., Borders, C. (2006). Achieving success with meat analogs. Food Technology (Chicago), 60(1), 28-34.
  • Elzerman, H. (2006). Substitution of meat by NPFs: Sensory properties and contextual factors. Environment and Policy, 45, 116.
  • Fernandes, A.M., Teixeira, OdS., Revillion, J.P., Souza, A. (2021). Panorama and ambiguities of cultured meat: an integrative approach. Critical Reviews in Food Science and Nutrition, 1-11. https://doi.org/10.1080/10408398.2021.1885006
  • Fish, K.D., Rubio, N.R., Stout, A.J., Yuen, J.S., Kaplan, D.L. (2020). Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends in Food Science & Technology, 98, 53-67. https://doi.org/10.1016/j.tifs.2020.02.005
  • Fox, E.M., Leonard, N., Jordan, K. (2011). Molecular diversity of Listeria monocytogenes isolated from Irish dairy farms. Foodborne Pathogens and Disease, 8(5), 635-641. https://doi.org/10.1089/fpd.2010.0806
  • Fratzl, P. (2008). Collagen: Structure and mechanics, an introduction. In Collagen (pp. 1-13): Springer. ISBN: 978-0-387-73906-9 https://doi.org/10.1007/978-0-387-73906-9_1
  • Gaspar, D.A., Gomide, V., Monteiro, F.J. (2012). The role of perfusion bioreactors in bone tissue engineering. Biomatter, 2(4), 167-175. https://doi.org/10.4161/biom.22170
  • Gaydhane, M.K., Mahanta, U., Sharma, C.S., Khandelwal, M., Ramakrishna, S. (2018). Cultured meat: state of the art and future. Biomanufacturing Reviews, 3(1), 1-10. https://doi.org/10.1007/s40898-018-0005-1
  • Gayraud-Morel, B., Chrétien, F., Flamant, P., Gomès, D., Zammit, P.S., Tajbakhsh, S. (2007). A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Developmental Biology, 312(1), 13-28. https://doi.org/10.1016/j.ydbio.2007.08.059
  • Gibson, M.C., Schultz, E. (1983). Age‐related differences in absolute numbers of skeletal muscle satellite cells. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 6(8), 574-580. https://doi.org/10.1002/mus.880060807
  • Goodwin, J. N., Shoulders, C.W. (2013). The future of meat: A qualitative analysis of cultured meat media coverage. Meat Science, 95(3), 445-450. https://doi.org/10.1016/j.meatsci.2013.05.027
  • Grinnell, F. (2000). Fibroblast–collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends in Cell Biology, 10(9), 362-365. https://doi.org/10.1016/S0962-8924(00)01802-X
  • Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W., Chen, C.S. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5(1), 17-26. https://doi.org/10.1016/j.stem.2009.06.016
  • Guilbert, L., Iscove, N. (1976). Partial replacement of serum by selenite, transferrin, albumin and lecithin in haemopoitec cell cultures. Nature, 263(5578), 594-595. https://doi.org/10.1038/263594a0
  • Ham, R.G. (1965). Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proceedings of the National Academy of Sciences of the United States of America, 53(2), 288. https://doi.org/10.1073/pnas.53.2.288
  • Hoek, A.C., Luning, P.A., Stafleu, A., de Graaf, C. (2004). Food-related lifestyle and health attitudes of Dutch vegetarians, non-vegetarian consumers of meat substitutes, and meat consumers. Appetite, 42(3), 265-272. https://doi.org/10.1016/j.appet.2003.12.003
  • Ismail, B.P., Senaratne-Lenagala, L., Stube, A., Brackenridge, A. (2020). Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers, 10(4), 53-63. https://doi.org/10.1093/af/vfaa040
  • Jensen, E.C. (2013). Overview of live‐cell imaging: requirements and methods used. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 296(1), 1-8. https://doi.org/10.1002/ar.22554
  • Joshi, V., Kumar, S. (2015). Meat Analogues: Plant based alternatives to meat products-A review. International Journal of Food and Fermentation Technology, 5(2), 107-119. https://doi.org/10.5958/2277-9396.2016.00001.5
  • Handral, H.K., Tay, S.H., Chan, W.W., Choudhury, D. (2020). 3D Printing of cultured meat products. Critical Reviews in Food Science and Nutrition, 62(1), 272-281.
  • Kadim, I.T., Mahgoub, O., Baqir, S., Faye, B., Purchas, R. (2015). Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture, 14(2), 222-233. https://doi.org/10.1016/S2095-3119(14)60881-9
  • Kanatous, S.B., Mammen, P.P. (2010). Regulation of myoglobin expression. Journal of Experimental Biology, 213(16), 2741-2747. https://doi.org/10.1242/jeb.041442
  • Keefe, A.C., Lawson, J.A., Flygare, S.D., Fox, Z.D., Colasanto, M.P., Mathew, S.J., Kardon, G. (2015). Muscle stem cells contribute to myofibres in sedentary adult mice. Nature Communications, 6(1), 1-11. https://doi.org/10.1038/ncomms8087
  • Kuang, S., Kuroda, K., Le Grand, F., Rudnicki, M.A. (2007). Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell, 129(5), 999-1010. https://doi.org/10.1016/j.cell.2007.03.044
  • Kumar, P., Chatli, M., Mehta, N., Singh, P., Malav, O., Verma, A.K. (2017). Meat analogues: Health promising sustainable meat substitutes. Critical Reviews in Food Science and Nutrition, 57(5), 923-932. https://doi.org/10.1080/10408398.2014.939739
  • Langelaan, M.L., Boonen, K.J., Polak, R.B., Baaijens, F.P., Post, M.J., van der Schaft, D.W. (2010). Meet the new meat: tissue engineered skeletal muscle. Trends in Food Science & Technology, 21(2), 59-66. https://doi.org/10.1016/j.tifs.2009.11.001
  • Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Bugeon, J. (2016). How muscle structure and composition influence meat and flesh quality. The Scientific World Journal,2016, 3182746. https://doi.org/10.1155/2016/3182746
  • Machida, S., Spangenburg, E., Booth, F. (2004). Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages. Cell Proliferation, 37(4), 267-277. https://doi.org/10.1111/j.1365-2184.2004.00311.x
  • Mattick, C., Allenby, B. (2013). The future of meat. Issues in Science and Technology, 30(1), 64-70.
  • Mattick, C.S. (2018). Cellular agriculture: The coming revolution in food production. Bulletin of the Atomic Scientists, 74(1), 32-35. https://doi.org/10.1080/00963402.2017.1413059
  • Mau, M., Oksbjerg, N., Rehfeldt, C. (2008). Establishment and conditions for growth and differentiation of a myoblast cell line derived from the semimembranosus muscle of newborn piglets. In Vitro Cellular & Developmental Biology-Animal, 44(1-2), 1-5. https://doi.org/10.1007/s11626-007-9069-6
  • Mc Clements, D.J. (2020). Future foods: How modern science is transforming the way we eat. Food & Function 11(3) 1933-1945. https://doi.org/10.1039/C9FO02076D
  • Mc Leod, A. (2011). World livestock 2011-livestock in food security. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/i2373e/i2373e.pdf
  • Nienow, A.W. (2006). Reactor engineering in large scale animal cell culture. Cytotechnology, 50(1-3), 9. https://doi.org/10.1007/s10616-006-9005-8
  • O’Mara, P., Farrell, A., Bones, J., Twomey, K. (2018). Staying alive! Sensors used for monitoring cell health in bioreactors. Talanta, 176, 130-139. https://doi.org/10.1016/j.talanta.2017.07.088
  • Ong, S., Choudhury, D., Naing, M.W. (2020). Cell-based meat: current ambiguities with nomenclature. Trends in Food Science & Technology, 102, 223-231. https://doi.org/10.1016/j.tifs.2020.02.010
  • Pereira, P.M.d.C.C., Vicente, A.F.d.R.B. (2013). Meat nutritional composition and nutritive role in the human diet. Meat Science, 93(3), 586-592. https://doi.org/10.1016/j.meatsci.2012.09.018 Post, M.J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 92(3), 297-301. https://doi.org/10.1016/j.meatsci.2012.04.008
  • Post, M.J., Levenberg, S., Kaplan, D.L., Genovese, N., Fu, J., Bryant, C.J., Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403-415. https://doi.org/10.1038/s43016-020-0112-z
  • Potyrailo, R.A., Surman, C., Monk, D., Morris, W.G., Wortley, T., Vincent, M., Gach, G. (2011). RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing. Measurement Science and Technology, 22(8), 082001. https://doi.org/10.1088/0957-0233/22/8/082001
  • Purslow, P.P. (2020). The structure and role of intramuscular connective tissue in muscle function. Frontiers in Physiology, 11, 495. https://doi.org/10.3389/fphys.2020.00495
  • Redshaw, Z., McOrist, S., Loughna, P. (2010). Muscle origin of porcine satellite cells affects in vitro differentiation potential. Cell Biochemistry and Function, 28(5), 403-411. https://doi.org/10.1002/cbf.1670
  • Richler, C., Yaffe, D. (1970). The in vitro cultivation and differentiation capacities of myogenic cell lines. Developmental Biology, 23(1), 1-22. https://doi.org/10.1016/S0012-1606(70)80004-5
  • Rischer, H., Szilvay, G.R., Oksman-Caldentey, K.-M. (2020). Cellular agriculture—industrial biotechnology for food and materials. Current opinion in biotechnology, 61, 128-134. https://doi.org/10.1016/j.copbio.2019.12.003
  • Schabel, H.G. (2010). Forest insects as food: A global review. Forest insects as food: Humans Bite Back, Food & Agriculture Org. ISBN: 978-92-5-106488-7.
  • Sexton, A.E., Garnett, T., Lorimer, J. (2019). Framing the future of food: The contested promises of alternative proteins. Environment and Planning E: Nature and Space, 2(1), 47-72. https://doi.org/10.1177/2514848619827009
  • Sha, L., Xiong, Y.L. (2020). Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology, 102, 51-61. https://doi.org/10.1016/j.tifs.2020.05.022
  • Shahini, A., Vydiam, K., Choudhury, D., Rajabian, N., Nguyen, T., Lei, P., Andreadis, S.T. (2018). Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Research, 30, 122-129. https://doi.org/10.1016/j.scr.2018.05.017
  • Shen, N., Riedl, J.A., Berrio, D.A.C., Davis, Z., Monaghan, M.G., Layland, S.L., Schenke-Layland, K. (2018). A flow bioreactor system compatible with real-time two-photon fluorescence lifetime imaging microscopy. Biomedical Materials, 13(2), 024101. https://doi.org/10.1088/1748-605X/aa9b3c
  • Specht, L., Scientist, S. (2020). An analysis of culture medium costs and production volumes for cultivated meat. The Good Food Institute: Washington, DC, USA.
  • Steinfeld, H., Gerber, P., Wassenaar, T. ., Castel, V., Rosales, M., Rosales, M., de Haan, C. (2006). Livestock's long shadow: environmental issues and options: Food & Agriculture Org. ISBN: 978-92-5-106488-7
  • Sürek, E., Pınar, U. (2020). Geleceğin alternatif protein kaynağı: Yapay et. Akademik Gıda, 18(2), 209-216. https://doi.org/10.24323/akademik-gida.758840
  • Tuomisto, H.L., Teixeira de Mattos, M.J. (2011). Environmental impacts of cultured meat production. Environmental Science & Technology, 45(14), 6117-6123. https://doi.org/10.1021/es200130u
  • Urbani, L., Piccoli, M., Franzin, C., Pozzobon, M., De Coppi, P. (2012). Hypoxia increases mouse satellite cell clone proliferation maintaining both in vitro and in vivo heterogeneity and myogenic potential. PloS ONE, 7(11), e49860. https://doi.org/10.1371/journal.pone.0049860
  • Van Boeckel, T.P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N.G., Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science, 365(6459). https://doi.org/10.1126/science.aaw1944
  • Van Eenennaam, A.L. (2017). Genetic modification of food animals. Current Opinion in Biotechnology, 44, 27-34. https://doi.org/10.1016/j.copbio.2016.10.007
  • Vandenburgh, H., Shansky, J., Del Tatto, M., Chromiak, J. (1999). Organogenesis of skeletal muscle in tissue culture. In Tissue Engineering Methods and Protocols (pp. 217-225): Springer. ISBN: 978-1-59259-602-7 https://doi.org/10.1385/0-89603-516-6:217
  • Vasileska, A., Rechkoska, G. (2012). Global and regional food consumption patterns and trends. Procedia-Social and Behavioral Sciences, 44, 363-369. https://doi.org/10.1016/j.sbspro.2012.05.040
  • Verbeke, W., Pérez-Cueto, F.J., de Barcellos, M.D., Krystallis, A., Grunert, K.G. (2010). European citizen and consumer attitudes and preferences regarding beef and pork. Meat Science, 84(2), 284-292. https://doi.org/10.1016/j.meatsci.2009.05.001
  • Verbeke, W., Van Wezemael, L., de Barcellos, M.D., Kügler, J.O., Hocquette, J.-F., Ueland, Ø., Grunert, K.G. (2010). European beef consumers’ interest in a beef eating-quality guarantee: insights from a qualitative study in four EU countries. Appetite, 54(2), 289-296. https://doi.org/10.1016/j.appet.2009.11.013
  • Verhagen, J.H., Fouchier, R.A., Lewis, N. (2021). Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses, 13(2), 212. https://doi.org/10.3390/v13020212
  • Verkerk, M., Tramper, J., Van Trijp, J., Martens, D. (2007). Insect cells for human food. Biotechnology Advances, 25(2), 198-202. https://doi.org/10.1016/j.biotechadv.2006.11.004
  • Verzijden, K., Lawyers, A. (2012). Update on cloning in relation to foot production. EFSA Journal 10(7), 2794.
  • Wang, Y.X., Dumont, N.A., Rudnicki, M.A. (2014). Muscle stem cells at a glance. Journal of Cell Science, 127(21), 4543-4548. https://doi.org/10.1242/jcs.151209
  • Wilschut, K.J., Haagsman, H.P., Roelen, B.A. (2010). Extracellular matrix components direct porcine muscle stem cell behavior. Experimental Cell Research, 316(3), 341-352. https://doi.org/10.1016/j.yexcr.2009.10.014
  • Yin, H., Price, F., Rudnicki, M.A. (2013). Satellite cells and the muscle stem cell niche. Physiological Reviews, 93(1), 23-67.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Bilimi ve Teknolojisi
Bölüm Review Articles
Yazarlar

Darya FARHOOMAND>
Ankara Üniversitesi, Fen Fakültesi, Biyoloji Bölümü
0000-0002-7731-648X
Türkiye


Aybüke OKAY>
Ankara Üniversitesi, Fen Fakültesi, Biyoloji Bölümü
0000-0002-6772-4316
Türkiye


Sümer ARAS>
Ankara Üniversitesi, Fen Fakültesi, Biyoloji Bölümü
0000-0003-3474-9493
Türkiye


İlker BÜYÜK> (Sorumlu Yazar)
Ankara Üniversitesi, Fen Fakültesi, Biyoloji Bölümü
0000-0002-0843-8299
Türkiye

Yayımlanma Tarihi 1 Temmuz 2022
Başvuru Tarihi 27 Ekim 2021
Kabul Tarihi 25 Şubat 2022
Yayınlandığı Sayı Yıl 2022, Cilt 8, Sayı 3

Kaynak Göster

Bibtex @İnceleme makalesi { jfhs1015467, journal = {Food and Health}, eissn = {2602-2834}, address = {Vidin Caddesi No:28 D:4 Kocamustafapaşa 34107 Fatih İstanbul}, publisher = {Özkan ÖZDEN}, year = {2022}, volume = {8}, number = {3}, pages = {260 - 272}, doi = {10.3153/FH22024}, title = {Yapay et üretimi ve gelecek vizyonu}, key = {cite}, author = {Farhoomand, Darya and Okay, Aybüke and Aras, Sümer and Büyük, İlker} }
APA Farhoomand, D. , Okay, A. , Aras, S. & Büyük, İ. (2022). Yapay et üretimi ve gelecek vizyonu . Food and Health , 8 (3) , 260-272 . DOI: 10.3153/FH22024
MLA Farhoomand, D. , Okay, A. , Aras, S. , Büyük, İ. "Yapay et üretimi ve gelecek vizyonu" . Food and Health 8 (2022 ): 260-272 <http://jfhs.scientificwebjournals.com/tr/pub/issue/69254/1015467>
Chicago Farhoomand, D. , Okay, A. , Aras, S. , Büyük, İ. "Yapay et üretimi ve gelecek vizyonu". Food and Health 8 (2022 ): 260-272
RIS TY - JOUR T1 - Yapay et üretimi ve gelecek vizyonu AU - DaryaFarhoomand, AybükeOkay, SümerAras, İlkerBüyük Y1 - 2022 PY - 2022 N1 - doi: 10.3153/FH22024 DO - 10.3153/FH22024 T2 - Food and Health JF - Journal JO - JOR SP - 260 EP - 272 VL - 8 IS - 3 SN - -2602-2834 M3 - doi: 10.3153/FH22024 UR - https://doi.org/10.3153/FH22024 Y2 - 2022 ER -
EndNote %0 Food and Health Yapay et üretimi ve gelecek vizyonu %A Darya Farhoomand , Aybüke Okay , Sümer Aras , İlker Büyük %T Yapay et üretimi ve gelecek vizyonu %D 2022 %J Food and Health %P -2602-2834 %V 8 %N 3 %R doi: 10.3153/FH22024 %U 10.3153/FH22024
ISNAD Farhoomand, Darya , Okay, Aybüke , Aras, Sümer , Büyük, İlker . "Yapay et üretimi ve gelecek vizyonu". Food and Health 8 / 3 (Temmuz 2022): 260-272 . https://doi.org/10.3153/FH22024
AMA Farhoomand D. , Okay A. , Aras S. , Büyük İ. Yapay et üretimi ve gelecek vizyonu. Food Health. 2022; 8(3): 260-272.
Vancouver Farhoomand D. , Okay A. , Aras S. , Büyük İ. Yapay et üretimi ve gelecek vizyonu. Food and Health. 2022; 8(3): 260-272.
IEEE D. Farhoomand , A. Okay , S. Aras ve İ. Büyük , "Yapay et üretimi ve gelecek vizyonu", Food and Health, c. 8, sayı. 3, ss. 260-272, Tem. 2022, doi:10.3153/FH22024

Food and Health" journal is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14627 13310

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.