İnceleme Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Yıl 2022, Cilt 8, Sayı 2, 161 - 171, 01.04.2022
https://doi.org/10.3153/FH22016

Öz

Kaynakça

  • Agustini, T.W., Soetrisnanto, D., Ma’ruf, W.F. (2017). Study on chemical, physical, microbiological, and sensory of yoghurt enriched by Spirulina platensis. International Food Research Journal, 24(1), 367-371.
  • Ak, I., Çetin, Z., Cirik, Ş., Göksan, T. (2011). Gracilaria verrucosa (Hudson) papenfuss culture using an agricultural organic fertilizer. Fresenius Environmental Bulletin, 20(8a), 2156-2162.
  • Arterburn, L.M., Oken, H.A., Bailey Hall, E., Hamersley, J., Kuratko, C.N., Hoffman, J.P. (2008). Algal-oil capsules and cooked salmon: Nutritionally equivalent sources of docosahexaenoic acid. Journal of the American Dietetic Association, 108(7), 1204-1209. https://doi.org/10.1016/j.jada.2008.04.020
  • Beheshtipour, H., Mortazavian, A.M., Haratian, P., Khosravi-Darani, K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on the viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(6), 1-10. https://doi.org/10.1007/s00217-012-1798-4
  • Bhowmik, D., Dubey, J., Mehra, S. (2009). Probiotic efficiency of Spirulina platensis -stimulating the growth of lactic acid bacteria. World Journal of Dairy & Food Sciences, 4(2), 160–163.
  • Blas-Valdivia, V., Ortiz-Butrón, R., Pineda-Reynoso, M., Hernández-Garcia, A., Cano-Europa, E. (2011). Chlorella vulgaris administration prevents HgCl2-caused oxidative stress and cellular damage in the kidney. Journal of Applied Phycology, 23(1), 53-58. https://doi.org/10.1007/s10811-010-9534-6
  • Borowitzka, M.A., Borowitzka, J.L. (1988). Micro‐algal biotechnology. UK: Cambridge University Press. ISBN-13: 978-0521323499
  • Borowitzka, M.A., Moheimani, N.R. (2013). Algae for Biofuels and Energy. Springer, Dordrecht. ISBN: 978-94-007-5479-9
  • Camacho, F., Macedo, A., Malcata, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Marine Drugs, 17(6), 312. https://doi.org/10.3390/md17060312
  • Carlson, J.L., Erickson, J.M., Lloyd, B.B., Slavin, J.L. (2018). Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition, 2(3), 1-8. https://doi.org/10.1093/cdn/nzy005
  • Candini, S. K., Ganesan, P., Suresh, P.V., Bhaskar, N. (2008). Seaweeds as a source of nutritionally beneficial compounds - A review. Journal of Food Science and Technology, 45(1), 1-13.
  • Chandrarathna, H.P.S.U., Liyanage, T.D., Edirisinghe, S.L., Dananjaya, S.H.S. (2020). Marine microalgae, Spirulina maxima-derived modified pectin, and modified pectin nanoparticles modulate the gut microbiota and trigger ımmune responses in mice. Marine Drugs, 18(175), 1–15. https://doi.org/10.3390/md18030175
  • Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, (1503126), 1-17. https://doi.org/10.1155/2018/1503126
  • Chu, W.L. (2012). Biotechnological applications of microalgae. IeJSME, 6(1), 24–37.
  • Cohen, Z. (1999). Chemicals from Microalgae. CRC, Taylor&Francis. ISBN 9780367399719
  • Culaba, A.B., Ubando, A.T., Ching, P.M.L., Chen, W.H., Chang, J.S. (2020). Biofuel from microalgae: sustainable pathways. Sustainability, 12(19), 1–19. https://doi.org/10.3390/su12198009
  • Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S.J., Berenjian, A., Ghasemi, Y. (2019). Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 1–27. https://doi.org/10.3390/foods8030092
  • Dawczynski, C., Schubert, R., Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3), 891-899. https://doi.org/10.1016/j.foodchem.2006.09.041
  • De Caire, G.Z., Parada, J.L., Zaccaro, M.C., De Cano, M.M. S. (2000). Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World Journal of Microbiology and Biotechnology, 16(6), 563–565. https://doi.org/10.1023/A:1008928930174
  • Duygu Yalçın, D. (2019). Growth Kinetics of Scenedesmus obliquus strains in different nutrient media. Journal of Limnology and Freshwater Fisheries Research, 5(2), 95–103. https://doi.org/10.17216/limnofish.514166
  • Gibson, G.R., Scott, K.P., Rastall, R.A., Tuohy, K.M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E.F., Saulnier, D., Loh, G., Macfarlane, S., Delzenne, N., Ringel, Y., Kozianowski, G., Dickmann, R., Lenoir-Wijnkoop, I., Walker, C., Buddington, R. (2010). Dietary prebiotics: current status and new definition. Food Science & Technology Bulletin: Functional Foods, 7(1), 1-19. https://doi.org/10.1616/1476-2137.15880
  • Gouveia, L., Raymundo, A., Batista, A.P., Sousa, I., Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222 (3), 362-367. https://doi.org/10.1007/s00217-005-0105-z
  • Grayburn, W.S., Tatara, R.A., Rosentrater, K.A., Holbrook, G.P. (2013). Harvesting, oil extraction, and conversion of local filamentous algae growing in wastewater into biodiesel. International Journal of Energy and Environment, 4(2), 185–190.
  • Gupta, S., Gupta, C., Garg, A.P., Prakash, D. (2017). Prebiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology & Experimen-tation, 4(4), 1-4. https://doi.org/10.15406/jmen.2017.04.00120
  • Gyenis, B., Szigeti, J., Ásványi-Molnár, N., Varga, L. (2005). Use of dried microalgal biomasses to stimulate acid production and growth of Lactobacillus plantarum and Enterococcus faecium in milk. Acta Agraria Kaposváriensis, 9(2), 53–59.
  • Hosikian, A., Lim, S., Halim, R., Danquah, M.K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering, (391632), 1-12. https://doi.org/10.1155/2010/391632
  • Hunt, R.W., Chinnasamy, S., Bhatnagar, A., Das, K.C. (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 162(8), 2400-2414. https://doi.org/10.1007/s12010-010-9012-2
  • Jeong, H., Kwon, H.J., Kim, M.K. (2009). Hypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto-Kakizaki and normal wistar rats. Nutrition Research and Practice, 3(1), 23–30. https://doi.org/10.4162/nrp.2009.3.1.23
  • Jeon, J.K. (2006). Effect of Chlorella addition on the quality of processed cheese. Journal of the Korean Society of Food Science and Nutrition, 35(3), 373-377. https://doi.org/10.3746/jkfn.2006.35.3.373
  • Kahraman Ilıkkan, Ö. (2020). Chapter 8: Interactions of probiotics and lactic acid bacteria with heat shock proteins, apoptosis, and intracellular signaling pathways. In Berhardt, L.V. (eds). Advances in Medicine and Biology (pp. 237–251). USA: Nova Science Publishers. https://doi.org/10.1016/j.arthro.2012.05.044
  • Koyande, A.K., Chew, K.W., Rambabu, K., Tao, Y., Chu, D.T., Show, P.L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24. https://doi.org/10.1016/j.fshw.2019.03.001
  • Kromkamp, J. (1987). Formation and functional significance of storage products in cyanobacteria. New Zealand Journal of Marine and Freshwater Research, 27, 457-465. https://doi.org/10.1080/00288330.1987.9516241
  • Leal, B.E.S., Prado, M.R., Grzybowski, A., Tiboni, M., Koop, H.S., Scremin, L.B., Sakuma, A.C., Takamatsu, A.A., Santos, A.F. dos, Cavalcanti, V.F., Fontana, J.D. (2017). Potential prebiotic oligosaccharides from aqueous thermopressurized phosphoric acid hydrolysates of microalgae used in treatment of gaseous steakhouse waste. Algal Research, 24, 138–147. https://doi.org/10.1016/j.algal.2017.03.020
  • Lee, N.K., Park, J.S., Park, E., Paik, H.D. (2007). Adheren-ce and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Letters in Applied Microbiology, 44(3), 274-278. https://doi.org/10.1111/j.1472-765X.2006.02078.x
  • Liu, J., Kandasamy, S., Zhang, J., Kirby, C.W., Karakach, T., Hafting, J., Critchley, A.T., Evans, F., Prithiviraj, B. (2015). Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligo-saccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complementary and Alternative Medicine, 15, 279. https://doi.org/10.1186/s12906-015-0802-5
  • Lum, K.K., Kim, J., Lei, X.G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4(53), 1-7. https://doi.org/10.1186/2049-1891-4-53
  • Markou, G., Angelidaki, I., Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631-645. https://doi.org/10.1007/s00253-012-4398-0
  • Mata, T.M., Martins, A.A., Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  • Mazinani, S., Fadaei, V., Khosravi-Darani, K. (2016). Impact of Spirulina platensis on physicochemical properties and viability of Lactobacillus acidophilus of probiotic UF feta cheese. Journal of Food Processing and Preservation, 40(6), 1318–1324. https://doi.org/10.1111/jfpp.12717
  • Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51-56. https://doi.org/10.1016/j.jbiotec.2010.07.030
  • Nakamura, Y., Takahashi, J.I., Sakurai, A., Inaba, Y., Suzuki, E., Nihei, S., Fujiwara, S., Tsuzuki, M., Miyashita, H., Ikemoto, H., Kawachi, M., Sekiguchi, H., Kurano, N. (2005). Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant and Cell Physiology, 46(3), 539-545. https://doi.org/10.1093/pcp/pci045
  • Nguyen, C.M., Kim, J.S., Song, J.K., Choi, G.J., Choi, Y.H., Jang, K.S., Kim, J.C. (2012). D-Lactic acid production from dry biomass of hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 34(12), 2235-2240. https://doi.org/10.1007/s10529-012-1023-3
  • Nuño, K., Villarruel-López, A., Puebla-Pérez, A.M., Romero-Velarde, E., Puebla-Mora, A.G., Ascencio, F. (2013). Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. Journal of Functional Foods, 5(1), 106–115. https://doi.org/10.1016/j.jff.2012.08.011
  • O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H., Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7), 2038-64. https://doi.org/10.3390/md8072038
  • Omar, H.H., Dighriri, K.A., Gashgary, R.M. (2019a). The benefit roles of micro-and macro-algae in probiotics. Nature and Science, 17(11), 258–279. https://doi.org/10.7537/marsnsj171119.33
  • Pal, A., Kamthania, M.C., Kumar, A. (2014). Bioactive compounds and properties of seaweeds-a review. OALib, 1, 1-17. https://doi.org/10.4236/oalib.1100752
  • Pandey, K.R., Naik, S.R., Vakil, B.V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1
  • Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., Chhikara, N. (2018). Potential non-dairy probiotic products – a healthy approach. Food Bioscience, 21, 80-89. https://doi.org/10.1016/j.fbio.2017.12.003
  • Parada, J.L., De Caire, G.Z., De Mulé, M.C.Z., De Cano, M.M.S. (1998). Lactic acid bacteria growth promoters from Spirulina platensis. International Journal of Food Micro-biology, 45(3), 225-228. https://doi.org/10.1016/S0168-1605(98)00151-2
  • Pascal, G., Denery, S., Bodinier, M. (2011). Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. Journal of Leukocyte Biology, 89 (5), 685-95. https://doi.org/10.1189/jlb.1109753
  • Plaza-Diaz, J., Ruiz-Ojeda, F.J., Gil-Campos, M., Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10, 49–66. https://doi.org/10.1093/advances/nmy063
  • Priyadarshani, I., Rath, B. (2012). Commercial and industrial applications of micro algae – A review. J. Algal Biomass Utln, 3(4), 89–100.
  • Rodríguez-Lagunas, M.J., Azagra-Boronat, I., Saldaña-Ruíz, S., Massot-Cladera, M., Rigo-Adrover, M., Sabaté-Jofre, A., Franch, À., Castell, M., Pérez-Cano, F.J. (2017). Immunomodulatory role of probiotics in early life. Recent Advances in Pharmaceutical Sciences VII, 19–34.
  • Ru, I.T.K., Sung, Y.Y., Jusoh, M., Wahid, M.E.A., Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2-11. https://doi.org/10.1080/26388081.2020.1715256
  • Sataloff, R. T., Johns, M. M., Kost, K. M. (2016). Probiotics, Prebiotics, and Synbiotics:Bioactive Foods in Health Promotion. Academic Press. ISBN: 978-0128021897 Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003
  • Schlagermann, P., Göttlicher, G., Dillschneider, R., Rosello-Sastre, R., Posten, C. (2012). Composition of algal oil and its potential as biofuel. Journal of Combustion, 285185, 1-14. https://doi.org/10.1155/2012/285185
  • Scieszka, S., Klewicka, E. (2020). Influence of the microalga Chlorella vulgaris on the growth and metabolic activity of Lactobacillus spp. bacteria. Foods, 9(7), 959. https://doi.org/10.3390/foods9070959
  • Shekharam, K.M., Venkataraman, L.V., Salimath, P.V. (1987). Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry, 26(8), 2267-2269. https://doi.org/10.1016/S0031-9422(00)84698-1
  • Sornplang, P., Piyadeatsoontorn, S. (2016). Probiotic isolates from unconventional sources: A review. Journal of Animal Science and Technology, 58(26), 1-11. https://doi.org/10.1186/s40781-016-0108-2
  • Sun, J., Yoon, S.S. (2011). Probiotics, nuclear receptor signaling, and anti-inflammatory pathways. Gastroenterology Research and Practice, 2011(Cd), 14–19. https://doi.org/10.1155/2011/971938
  • Tipnee S., Ramaraj R., Yuwale, U. (2015). Nutritional evaluation of edible freshwater green macroalga Spirogyra varians. Life Science, 1(2), 1-7. Torun, Z., Konuklugil, B. (2020). Prebiotic effects of macroalgae. Ege Journal of Fisheries and Aquatic Sciences, 37(1), 103–112. https://doi.org/10.12714/egejfas.37.1.12
  • Varga, L., Szigeti, J., Kovács, R., Földes, T., Buti, S. (2002). Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). Journal of Dairy Science, 85, 1031-1038. https://doi.org/10.3168/jds.S0022-0302(02)74163-5
  • Varga, L., Szigeti, J., Ördög, V. (1999). Effect of a Spirulina platensis biomass and that of its active components on single strains of dairy starter cultures. Milchwissenschaft, 54(4), 187-190.
  • Wang, H.M.D., Chen, C.C., Huynh, P., Chang, J.S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355-362. https://doi.org/10.1016/j.biortech.2014.12.001
  • Webb, L.E. (1982). Detection by Warburg manometry of compounds stimulatory to lactic acid bacteria. Journal of Dairy Research, 49(3), 479-486. https://doi.org/10.1017/S0022029900022615
  • Wilson, B., Whelan, K. (2017). Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology, 1, 64-68. https://doi.org/10.1111/jgh.13700

Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae

Yıl 2022, Cilt 8, Sayı 2, 161 - 171, 01.04.2022
https://doi.org/10.3153/FH22016

Öz

Microalgae can be considered an alternative food ingredient thanks to their nutritional composition and bioactive molecules. Microalgae are considered a rich source of sulfated and non-sulfated polysaccharides, and certain types of polysaccharides vary depending on their taxonomic groups. It is thought that valuable bioactive compounds possessed by algae biomass can increase the vitality of probiotic bacteria by stimulating their growth and being a good source for lactic acid production. Probiotics are defined as living, microbial dietary supplements that beneficially affect the human organism with their effects on the intestinal tract when they are consumed adequately. Prebiotics are indigestible or poorly digested food ingredients that stimulate the growth or activity of probiotic bacteria. Synbiotic is a term that expresses the union of probiotics and prebiotics to exert health benefits on humans. Spirulina and Chlorella are good sources of protein and polysaccharides or oligosaccharides that have been suggested as potential prebiotic candidates. These microalgae are thought to have a stimulating effect on the growth of probiotic bacteria. In this study, synbiotic efficacy and prebiotic activity of microalgae on probiotic microorganisms will be discussed and their potential in this area will be revealed.

Kaynakça

  • Agustini, T.W., Soetrisnanto, D., Ma’ruf, W.F. (2017). Study on chemical, physical, microbiological, and sensory of yoghurt enriched by Spirulina platensis. International Food Research Journal, 24(1), 367-371.
  • Ak, I., Çetin, Z., Cirik, Ş., Göksan, T. (2011). Gracilaria verrucosa (Hudson) papenfuss culture using an agricultural organic fertilizer. Fresenius Environmental Bulletin, 20(8a), 2156-2162.
  • Arterburn, L.M., Oken, H.A., Bailey Hall, E., Hamersley, J., Kuratko, C.N., Hoffman, J.P. (2008). Algal-oil capsules and cooked salmon: Nutritionally equivalent sources of docosahexaenoic acid. Journal of the American Dietetic Association, 108(7), 1204-1209. https://doi.org/10.1016/j.jada.2008.04.020
  • Beheshtipour, H., Mortazavian, A.M., Haratian, P., Khosravi-Darani, K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on the viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(6), 1-10. https://doi.org/10.1007/s00217-012-1798-4
  • Bhowmik, D., Dubey, J., Mehra, S. (2009). Probiotic efficiency of Spirulina platensis -stimulating the growth of lactic acid bacteria. World Journal of Dairy & Food Sciences, 4(2), 160–163.
  • Blas-Valdivia, V., Ortiz-Butrón, R., Pineda-Reynoso, M., Hernández-Garcia, A., Cano-Europa, E. (2011). Chlorella vulgaris administration prevents HgCl2-caused oxidative stress and cellular damage in the kidney. Journal of Applied Phycology, 23(1), 53-58. https://doi.org/10.1007/s10811-010-9534-6
  • Borowitzka, M.A., Borowitzka, J.L. (1988). Micro‐algal biotechnology. UK: Cambridge University Press. ISBN-13: 978-0521323499
  • Borowitzka, M.A., Moheimani, N.R. (2013). Algae for Biofuels and Energy. Springer, Dordrecht. ISBN: 978-94-007-5479-9
  • Camacho, F., Macedo, A., Malcata, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Marine Drugs, 17(6), 312. https://doi.org/10.3390/md17060312
  • Carlson, J.L., Erickson, J.M., Lloyd, B.B., Slavin, J.L. (2018). Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition, 2(3), 1-8. https://doi.org/10.1093/cdn/nzy005
  • Candini, S. K., Ganesan, P., Suresh, P.V., Bhaskar, N. (2008). Seaweeds as a source of nutritionally beneficial compounds - A review. Journal of Food Science and Technology, 45(1), 1-13.
  • Chandrarathna, H.P.S.U., Liyanage, T.D., Edirisinghe, S.L., Dananjaya, S.H.S. (2020). Marine microalgae, Spirulina maxima-derived modified pectin, and modified pectin nanoparticles modulate the gut microbiota and trigger ımmune responses in mice. Marine Drugs, 18(175), 1–15. https://doi.org/10.3390/md18030175
  • Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, (1503126), 1-17. https://doi.org/10.1155/2018/1503126
  • Chu, W.L. (2012). Biotechnological applications of microalgae. IeJSME, 6(1), 24–37.
  • Cohen, Z. (1999). Chemicals from Microalgae. CRC, Taylor&Francis. ISBN 9780367399719
  • Culaba, A.B., Ubando, A.T., Ching, P.M.L., Chen, W.H., Chang, J.S. (2020). Biofuel from microalgae: sustainable pathways. Sustainability, 12(19), 1–19. https://doi.org/10.3390/su12198009
  • Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S.J., Berenjian, A., Ghasemi, Y. (2019). Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 1–27. https://doi.org/10.3390/foods8030092
  • Dawczynski, C., Schubert, R., Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3), 891-899. https://doi.org/10.1016/j.foodchem.2006.09.041
  • De Caire, G.Z., Parada, J.L., Zaccaro, M.C., De Cano, M.M. S. (2000). Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World Journal of Microbiology and Biotechnology, 16(6), 563–565. https://doi.org/10.1023/A:1008928930174
  • Duygu Yalçın, D. (2019). Growth Kinetics of Scenedesmus obliquus strains in different nutrient media. Journal of Limnology and Freshwater Fisheries Research, 5(2), 95–103. https://doi.org/10.17216/limnofish.514166
  • Gibson, G.R., Scott, K.P., Rastall, R.A., Tuohy, K.M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E.F., Saulnier, D., Loh, G., Macfarlane, S., Delzenne, N., Ringel, Y., Kozianowski, G., Dickmann, R., Lenoir-Wijnkoop, I., Walker, C., Buddington, R. (2010). Dietary prebiotics: current status and new definition. Food Science & Technology Bulletin: Functional Foods, 7(1), 1-19. https://doi.org/10.1616/1476-2137.15880
  • Gouveia, L., Raymundo, A., Batista, A.P., Sousa, I., Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222 (3), 362-367. https://doi.org/10.1007/s00217-005-0105-z
  • Grayburn, W.S., Tatara, R.A., Rosentrater, K.A., Holbrook, G.P. (2013). Harvesting, oil extraction, and conversion of local filamentous algae growing in wastewater into biodiesel. International Journal of Energy and Environment, 4(2), 185–190.
  • Gupta, S., Gupta, C., Garg, A.P., Prakash, D. (2017). Prebiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology & Experimen-tation, 4(4), 1-4. https://doi.org/10.15406/jmen.2017.04.00120
  • Gyenis, B., Szigeti, J., Ásványi-Molnár, N., Varga, L. (2005). Use of dried microalgal biomasses to stimulate acid production and growth of Lactobacillus plantarum and Enterococcus faecium in milk. Acta Agraria Kaposváriensis, 9(2), 53–59.
  • Hosikian, A., Lim, S., Halim, R., Danquah, M.K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering, (391632), 1-12. https://doi.org/10.1155/2010/391632
  • Hunt, R.W., Chinnasamy, S., Bhatnagar, A., Das, K.C. (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 162(8), 2400-2414. https://doi.org/10.1007/s12010-010-9012-2
  • Jeong, H., Kwon, H.J., Kim, M.K. (2009). Hypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto-Kakizaki and normal wistar rats. Nutrition Research and Practice, 3(1), 23–30. https://doi.org/10.4162/nrp.2009.3.1.23
  • Jeon, J.K. (2006). Effect of Chlorella addition on the quality of processed cheese. Journal of the Korean Society of Food Science and Nutrition, 35(3), 373-377. https://doi.org/10.3746/jkfn.2006.35.3.373
  • Kahraman Ilıkkan, Ö. (2020). Chapter 8: Interactions of probiotics and lactic acid bacteria with heat shock proteins, apoptosis, and intracellular signaling pathways. In Berhardt, L.V. (eds). Advances in Medicine and Biology (pp. 237–251). USA: Nova Science Publishers. https://doi.org/10.1016/j.arthro.2012.05.044
  • Koyande, A.K., Chew, K.W., Rambabu, K., Tao, Y., Chu, D.T., Show, P.L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24. https://doi.org/10.1016/j.fshw.2019.03.001
  • Kromkamp, J. (1987). Formation and functional significance of storage products in cyanobacteria. New Zealand Journal of Marine and Freshwater Research, 27, 457-465. https://doi.org/10.1080/00288330.1987.9516241
  • Leal, B.E.S., Prado, M.R., Grzybowski, A., Tiboni, M., Koop, H.S., Scremin, L.B., Sakuma, A.C., Takamatsu, A.A., Santos, A.F. dos, Cavalcanti, V.F., Fontana, J.D. (2017). Potential prebiotic oligosaccharides from aqueous thermopressurized phosphoric acid hydrolysates of microalgae used in treatment of gaseous steakhouse waste. Algal Research, 24, 138–147. https://doi.org/10.1016/j.algal.2017.03.020
  • Lee, N.K., Park, J.S., Park, E., Paik, H.D. (2007). Adheren-ce and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Letters in Applied Microbiology, 44(3), 274-278. https://doi.org/10.1111/j.1472-765X.2006.02078.x
  • Liu, J., Kandasamy, S., Zhang, J., Kirby, C.W., Karakach, T., Hafting, J., Critchley, A.T., Evans, F., Prithiviraj, B. (2015). Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligo-saccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complementary and Alternative Medicine, 15, 279. https://doi.org/10.1186/s12906-015-0802-5
  • Lum, K.K., Kim, J., Lei, X.G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4(53), 1-7. https://doi.org/10.1186/2049-1891-4-53
  • Markou, G., Angelidaki, I., Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631-645. https://doi.org/10.1007/s00253-012-4398-0
  • Mata, T.M., Martins, A.A., Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  • Mazinani, S., Fadaei, V., Khosravi-Darani, K. (2016). Impact of Spirulina platensis on physicochemical properties and viability of Lactobacillus acidophilus of probiotic UF feta cheese. Journal of Food Processing and Preservation, 40(6), 1318–1324. https://doi.org/10.1111/jfpp.12717
  • Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51-56. https://doi.org/10.1016/j.jbiotec.2010.07.030
  • Nakamura, Y., Takahashi, J.I., Sakurai, A., Inaba, Y., Suzuki, E., Nihei, S., Fujiwara, S., Tsuzuki, M., Miyashita, H., Ikemoto, H., Kawachi, M., Sekiguchi, H., Kurano, N. (2005). Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant and Cell Physiology, 46(3), 539-545. https://doi.org/10.1093/pcp/pci045
  • Nguyen, C.M., Kim, J.S., Song, J.K., Choi, G.J., Choi, Y.H., Jang, K.S., Kim, J.C. (2012). D-Lactic acid production from dry biomass of hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 34(12), 2235-2240. https://doi.org/10.1007/s10529-012-1023-3
  • Nuño, K., Villarruel-López, A., Puebla-Pérez, A.M., Romero-Velarde, E., Puebla-Mora, A.G., Ascencio, F. (2013). Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. Journal of Functional Foods, 5(1), 106–115. https://doi.org/10.1016/j.jff.2012.08.011
  • O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H., Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7), 2038-64. https://doi.org/10.3390/md8072038
  • Omar, H.H., Dighriri, K.A., Gashgary, R.M. (2019a). The benefit roles of micro-and macro-algae in probiotics. Nature and Science, 17(11), 258–279. https://doi.org/10.7537/marsnsj171119.33
  • Pal, A., Kamthania, M.C., Kumar, A. (2014). Bioactive compounds and properties of seaweeds-a review. OALib, 1, 1-17. https://doi.org/10.4236/oalib.1100752
  • Pandey, K.R., Naik, S.R., Vakil, B.V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1
  • Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., Chhikara, N. (2018). Potential non-dairy probiotic products – a healthy approach. Food Bioscience, 21, 80-89. https://doi.org/10.1016/j.fbio.2017.12.003
  • Parada, J.L., De Caire, G.Z., De Mulé, M.C.Z., De Cano, M.M.S. (1998). Lactic acid bacteria growth promoters from Spirulina platensis. International Journal of Food Micro-biology, 45(3), 225-228. https://doi.org/10.1016/S0168-1605(98)00151-2
  • Pascal, G., Denery, S., Bodinier, M. (2011). Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. Journal of Leukocyte Biology, 89 (5), 685-95. https://doi.org/10.1189/jlb.1109753
  • Plaza-Diaz, J., Ruiz-Ojeda, F.J., Gil-Campos, M., Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10, 49–66. https://doi.org/10.1093/advances/nmy063
  • Priyadarshani, I., Rath, B. (2012). Commercial and industrial applications of micro algae – A review. J. Algal Biomass Utln, 3(4), 89–100.
  • Rodríguez-Lagunas, M.J., Azagra-Boronat, I., Saldaña-Ruíz, S., Massot-Cladera, M., Rigo-Adrover, M., Sabaté-Jofre, A., Franch, À., Castell, M., Pérez-Cano, F.J. (2017). Immunomodulatory role of probiotics in early life. Recent Advances in Pharmaceutical Sciences VII, 19–34.
  • Ru, I.T.K., Sung, Y.Y., Jusoh, M., Wahid, M.E.A., Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2-11. https://doi.org/10.1080/26388081.2020.1715256
  • Sataloff, R. T., Johns, M. M., Kost, K. M. (2016). Probiotics, Prebiotics, and Synbiotics:Bioactive Foods in Health Promotion. Academic Press. ISBN: 978-0128021897 Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003
  • Schlagermann, P., Göttlicher, G., Dillschneider, R., Rosello-Sastre, R., Posten, C. (2012). Composition of algal oil and its potential as biofuel. Journal of Combustion, 285185, 1-14. https://doi.org/10.1155/2012/285185
  • Scieszka, S., Klewicka, E. (2020). Influence of the microalga Chlorella vulgaris on the growth and metabolic activity of Lactobacillus spp. bacteria. Foods, 9(7), 959. https://doi.org/10.3390/foods9070959
  • Shekharam, K.M., Venkataraman, L.V., Salimath, P.V. (1987). Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry, 26(8), 2267-2269. https://doi.org/10.1016/S0031-9422(00)84698-1
  • Sornplang, P., Piyadeatsoontorn, S. (2016). Probiotic isolates from unconventional sources: A review. Journal of Animal Science and Technology, 58(26), 1-11. https://doi.org/10.1186/s40781-016-0108-2
  • Sun, J., Yoon, S.S. (2011). Probiotics, nuclear receptor signaling, and anti-inflammatory pathways. Gastroenterology Research and Practice, 2011(Cd), 14–19. https://doi.org/10.1155/2011/971938
  • Tipnee S., Ramaraj R., Yuwale, U. (2015). Nutritional evaluation of edible freshwater green macroalga Spirogyra varians. Life Science, 1(2), 1-7. Torun, Z., Konuklugil, B. (2020). Prebiotic effects of macroalgae. Ege Journal of Fisheries and Aquatic Sciences, 37(1), 103–112. https://doi.org/10.12714/egejfas.37.1.12
  • Varga, L., Szigeti, J., Kovács, R., Földes, T., Buti, S. (2002). Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). Journal of Dairy Science, 85, 1031-1038. https://doi.org/10.3168/jds.S0022-0302(02)74163-5
  • Varga, L., Szigeti, J., Ördög, V. (1999). Effect of a Spirulina platensis biomass and that of its active components on single strains of dairy starter cultures. Milchwissenschaft, 54(4), 187-190.
  • Wang, H.M.D., Chen, C.C., Huynh, P., Chang, J.S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355-362. https://doi.org/10.1016/j.biortech.2014.12.001
  • Webb, L.E. (1982). Detection by Warburg manometry of compounds stimulatory to lactic acid bacteria. Journal of Dairy Research, 49(3), 479-486. https://doi.org/10.1017/S0022029900022615
  • Wilson, B., Whelan, K. (2017). Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology, 1, 64-68. https://doi.org/10.1111/jgh.13700

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Bilimi ve Teknolojisi
Bölüm Review Articles
Yazarlar

Özge ILIKKAN
BAŞKENT ÜNİVERSİTESİ
0000-0001-5843-6868
Türkiye


Elif BAĞDAT Bu kişi benim
BAŞKENT ÜNİVERSİTESİ
0000-0001-6627-7270
Türkiye


Dilek YALÇIN (Sorumlu Yazar)
BAŞKENT ÜNİVERSİTESİ
0000-0003-2127-8186
Türkiye

Yayımlanma Tarihi 1 Nisan 2022
Başvuru Tarihi 18 Mart 2021
Kabul Tarihi 10 Temmuz 2021
Yayınlandığı Sayı Yıl 2022, Cilt 8, Sayı 2

Kaynak Göster

Bibtex @İnceleme makalesi { jfhs898863, journal = {Food and Health}, eissn = {2602-2834}, address = {Vidin Caddesi No:28 D:4 Kocamustafapaşa 34107 Fatih İstanbul}, publisher = {Özkan ÖZDEN}, year = {2022}, volume = {8}, number = {2}, pages = {161 - 171}, doi = {10.3153/FH22016}, title = {Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae}, key = {cite}, author = {Ilıkkan, Özge and Bağdat, Elif and Yalçın, Dilek} }
APA Ilıkkan, Ö. , Bağdat, E. & Yalçın, D. (2022). Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae . Food and Health , 8 (2) , 161-171 . DOI: 10.3153/FH22016
MLA Ilıkkan, Ö. , Bağdat, E. , Yalçın, D. "Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae" . Food and Health 8 (2022 ): 161-171 <http://jfhs.scientificwebjournals.com/tr/pub/issue/68312/898863>
Chicago Ilıkkan, Ö. , Bağdat, E. , Yalçın, D. "Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae". Food and Health 8 (2022 ): 161-171
RIS TY - JOUR T1 - Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae AU - Özge Ilıkkan , Elif Bağdat , Dilek Yalçın Y1 - 2022 PY - 2022 N1 - doi: 10.3153/FH22016 DO - 10.3153/FH22016 T2 - Food and Health JF - Journal JO - JOR SP - 161 EP - 171 VL - 8 IS - 2 SN - -2602-2834 M3 - doi: 10.3153/FH22016 UR - https://doi.org/10.3153/FH22016 Y2 - 2021 ER -
EndNote %0 Food and Health Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae %A Özge Ilıkkan , Elif Bağdat , Dilek Yalçın %T Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae %D 2022 %J Food and Health %P -2602-2834 %V 8 %N 2 %R doi: 10.3153/FH22016 %U 10.3153/FH22016
ISNAD Ilıkkan, Özge , Bağdat, Elif , Yalçın, Dilek . "Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae". Food and Health 8 / 2 (Nisan 2022): 161-171 . https://doi.org/10.3153/FH22016
AMA Ilıkkan Ö. , Bağdat E. , Yalçın D. Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae. Food Health. 2022; 8(2): 161-171.
Vancouver Ilıkkan Ö. , Bağdat E. , Yalçın D. Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae. Food and Health. 2022; 8(2): 161-171.
IEEE Ö. Ilıkkan , E. Bağdat ve D. Yalçın , "Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae", Food and Health, c. 8, sayı. 2, ss. 161-171, Nis. 2022, doi:10.3153/FH22016

Food and Health" journal is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14627 13310

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.