Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Yıl 2021, Cilt 7, Sayı 4, 279 - 285, 01.10.2021
https://doi.org/10.3153/FH21029

Öz

Kaynakça

  • Ahluwalia, B., Moraes, L., Magnusson, M. K., Öhman, L. (2018). Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scandinavian Journal of Gastroenterology, 53(4), 379-389. https://doi.org/10.1080/00365521.2018.1447597
  • Bailey, J. (2017). PTH-082 Dysregulated polyamines in the inflammatory bowel disease gut-a novel therapeutic target. Gut, 66(2), A247. Calder, P.C. (2012). Long-chain fatty acids and inflammation. Proceedings of the Nutrition Society, 71(2), 284-289. https://doi.org/10.1017/S0029665112000067
  • Dai, Z., Wu, Z., Wang, J., Wang, X., Jia, S., Bazer, F. W., Wu, G. (2014). Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-L-cysteine. Amino acids, 46(6), 1557-1564. https://doi.org/10.1007/s00726-014-1717-z
  • Gao, J.-H., Guo, L.-J., Huang, Z.-Y., Rao, J., Tang, C.-W. (2013). Roles of cellular polyamines in mucosal healing in the gastrointestinal tract. Journal of Physiology and Pharmacology : An Official Journal of the Polish Physiological Society, 64, 681-693.
  • Gong, D., Gong, X., Wang, L., Yu, X., Dong, Q. (2016). Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterology Research and Practice, 2016, 6951091. https://doi.org/10.1155/2016/6951091
  • González-Castro, A. M., Martínez, C., Salvo-Romero, E., Fortea, M., Pardo-Camacho, C., Pérez-Berezo, T., Alonso-Cotoner, C., Santos, J., & Vicario, M. (2017). Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome. Journal of Gastroenterology and Hepatology, 32(1), 53-63. https://doi.org/10.1111/jgh.13417
  • Hesterberg, R.S., Cleveland, J.L., Epling-Burnette, P.K. (2018). Role of Polyamines in Immune Cell Functions. Medical Sciences (Basel, Switzerland), 6(1), 22. https://doi.org/10.3390/medsci6010022
  • Joyce, S. (2000). Natural T cells: Cranking up the immune system by prompt cytokine secretion. Proceedings of the National Academy of Sciences, 97(13), 6933-6935. https://doi.org/10.1073/pnas.97.13.6933
  • Lee, S.H., Kwon, J.E., Cho, M.-L. (2018). Immunological pathogenesis of inflammatory bowel disease. Intestinal Research, 16(1), 26-42. https://doi.org/10.5217/ir.2018.16.1.26
  • Lee, S.H. (2015). Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intestinal Research, 13(1), 11-18. https://doi.org/10.5217/ir.2015.13.1.11
  • Linsalata, M., Russo, F., Berloco, P., Valentini, A., Caruso, M., Simone, C., Barone, M., Polimeno, L., Di Leo, A. (2005). Effects of Probiotic Bacteria (VSL#3) on the Polyamine Biosynthesis and Cell Proliferation of Normal Colonic Mucosa of Rats. In Vivo (Athens, Greece), 19, 989-995.
  • Martín, R., Chain, F., Miquel, S., Lu, J., Gratadoux, J.-J., Sokol, H., Verdu, E. F., Bercik, P., Bermúdez-Humarán, L. G., Langella, P. (2014). The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflammatory Bowel Diseases, 20(3), 417-430. https://doi.org/10.1097/01.MIB.0000440815.76627.64
  • Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., Panaccione, R., Ghosh, S., Wu, J.C.Y., Chan, F.K.L., Sung, J.J.Y., Kaplan, G.G. (2018). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet (London, England), 390(10114), 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0
  • Nitta, T., Igarashi, K., Yamashita, A., Yamamoto, M., Yamamoto, N. (2001). Involvement of polyamines in B cell receptor-mediated apoptosis: spermine functions as a negative modulator. Experimental Cell Research, 265(1), 174-183. https://doi.org/10.1006/excr.2001.5177
  • Park, M.H., Igarashi, K. (2013). Polyamines and their metabolites as diagnostic markers of human diseases. Biomolecules & Therapeutics, 21(1), 1-9. https://doi.org/10.4062/biomolther.2012.097
  • Parker, E.A., Roy, T., D’Adamo, C.R., Wieland, L.S. (2018). Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. Nutrition, 45, 125-134.e11. https://doi.org/https://doi.org/10.1016/j.nut.2017.06.024
  • Pegg, A.E. (2009). Mammalian polyamine metabolism and function. IUBMB Life, 61(9), 880-894. https://doi.org/10.1002/iub.230
  • Rossi, G., Cerquetella, M., Scarpona, S., Pengo, G., Fettucciari, K., Bassotti, G., Jergens, A. E., & Suchodolski, J. S. (2018). Effects of probiotic bacteria on mucosal polyamines levels in dogs with IBD and colonic polyps: a preliminary study. Beneficial Microbes, 9(2), 247-255. https://doi.org/10.3920/BM2017.0024
  • Rossi, G., Cerquetella, M., Pengo, G., Mari, S., Balint, E., Bassotti, G., Manolescu, N. (2015). Immunohistochemical expression of ornithine decarboxylase, diamine oxidase, putrescine, and spermine in normal canine enterocolic mucosa, in chronic colitis, and in colorectal cancer. BioMed Research International, 2015, 1-8. https://doi.org/10.1155/2015/172756
  • Scaioli, E., Liverani, E., Belluzzi, A. (2017). The imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: A comprehensive review and future therapeutic perspectives. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122619
  • Shi, N., Li, N., Duan, X., Niu, H. (2017). Interaction between the gut microbiome and mucosal immune system. Military Medical Research, 4, 14. https://doi.org/10.1186/s40779-017-0122-9
  • Uemura, T., Gerner, E. W. (2011). Polyamine transport systems in mammalian cells and tissues. Methods in Molecular Biology (Clifton, N.J.), 720, 339-348. https://doi.org/10.1007/978-1-61779-034-8_21
  • Vidal-Lletjós, S., Beaumont, M., Tomé, D., Benamouzig, R., Blachier, F., Lan, A. (2017). Dietary protein and amino acid supplementation in inflammatory bowel disease course: What impact on the colonic mucosa? Nutrients, 9(3). https://doi.org/10.3390/nu9030310
  • Weiss, T. S., Herfarth, H., Obermeier, F., Ouart, J., Vogl, D., Schölmerich, J., Jauch, K.-W., Rogler, G. (2004). Intracellular polyamine levels of intestinal epithelial cells in inflammatory bowel disease. Inflammatory Bowel Diseases, 10(5), 529-535. https://doi.org/10.1097/00054725-200409000-00006
  • Yakoob, J., Abbas, Z. (2016). Role of omega-3 fatty acids in irritable bowel Synd rome (IBS). international Journal of Pharmacological Research, 6, 271-277.

The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis

Yıl 2021, Cilt 7, Sayı 4, 279 - 285, 01.10.2021
https://doi.org/10.3153/FH21029

Öz

Polyamines play an important role in the maintenance of intestinal permeability. Therefore we aimed to determine the effects of probiotics and omega 3 fatty acids on serum polyamine levels in colitis. Fifty BALB/c mice were randomly grouped as normal, colitis with no treatment applied, colitis treated by probiotics (VSL#3), colitis treated by omega-3, and colitis treated by both probiotics and omega-3. Experimental colitis was induced by injection of 200 mg/kg 2,4-Dinitrobenzenesulfonic acid (DNBS). The probiotic and the omega-3 fatty acid supplements were applied daily by oral gavage. Serum polyamine levels were measured with high performance liquid chromatography (HPLC). In each group, the levels of serum polyamines are the highest in spermidine and the least in spermine. Bowel inflammation in experimentally induced colitis mice resulted in lower serum polyamine concentrations. In probiotic and omega 3 fatty acid supplemented group significant decreases were observed for spermine and spermidine (p<0.001), while no significant changes were obtained for putrescine. Combined supplementation of probiotics and omega-3 fatty acids for 10 days in colitis mice significantly decreased the serum levels of spermine and spermidine. 

Kaynakça

  • Ahluwalia, B., Moraes, L., Magnusson, M. K., Öhman, L. (2018). Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scandinavian Journal of Gastroenterology, 53(4), 379-389. https://doi.org/10.1080/00365521.2018.1447597
  • Bailey, J. (2017). PTH-082 Dysregulated polyamines in the inflammatory bowel disease gut-a novel therapeutic target. Gut, 66(2), A247. Calder, P.C. (2012). Long-chain fatty acids and inflammation. Proceedings of the Nutrition Society, 71(2), 284-289. https://doi.org/10.1017/S0029665112000067
  • Dai, Z., Wu, Z., Wang, J., Wang, X., Jia, S., Bazer, F. W., Wu, G. (2014). Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-L-cysteine. Amino acids, 46(6), 1557-1564. https://doi.org/10.1007/s00726-014-1717-z
  • Gao, J.-H., Guo, L.-J., Huang, Z.-Y., Rao, J., Tang, C.-W. (2013). Roles of cellular polyamines in mucosal healing in the gastrointestinal tract. Journal of Physiology and Pharmacology : An Official Journal of the Polish Physiological Society, 64, 681-693.
  • Gong, D., Gong, X., Wang, L., Yu, X., Dong, Q. (2016). Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterology Research and Practice, 2016, 6951091. https://doi.org/10.1155/2016/6951091
  • González-Castro, A. M., Martínez, C., Salvo-Romero, E., Fortea, M., Pardo-Camacho, C., Pérez-Berezo, T., Alonso-Cotoner, C., Santos, J., & Vicario, M. (2017). Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome. Journal of Gastroenterology and Hepatology, 32(1), 53-63. https://doi.org/10.1111/jgh.13417
  • Hesterberg, R.S., Cleveland, J.L., Epling-Burnette, P.K. (2018). Role of Polyamines in Immune Cell Functions. Medical Sciences (Basel, Switzerland), 6(1), 22. https://doi.org/10.3390/medsci6010022
  • Joyce, S. (2000). Natural T cells: Cranking up the immune system by prompt cytokine secretion. Proceedings of the National Academy of Sciences, 97(13), 6933-6935. https://doi.org/10.1073/pnas.97.13.6933
  • Lee, S.H., Kwon, J.E., Cho, M.-L. (2018). Immunological pathogenesis of inflammatory bowel disease. Intestinal Research, 16(1), 26-42. https://doi.org/10.5217/ir.2018.16.1.26
  • Lee, S.H. (2015). Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intestinal Research, 13(1), 11-18. https://doi.org/10.5217/ir.2015.13.1.11
  • Linsalata, M., Russo, F., Berloco, P., Valentini, A., Caruso, M., Simone, C., Barone, M., Polimeno, L., Di Leo, A. (2005). Effects of Probiotic Bacteria (VSL#3) on the Polyamine Biosynthesis and Cell Proliferation of Normal Colonic Mucosa of Rats. In Vivo (Athens, Greece), 19, 989-995.
  • Martín, R., Chain, F., Miquel, S., Lu, J., Gratadoux, J.-J., Sokol, H., Verdu, E. F., Bercik, P., Bermúdez-Humarán, L. G., Langella, P. (2014). The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflammatory Bowel Diseases, 20(3), 417-430. https://doi.org/10.1097/01.MIB.0000440815.76627.64
  • Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., Panaccione, R., Ghosh, S., Wu, J.C.Y., Chan, F.K.L., Sung, J.J.Y., Kaplan, G.G. (2018). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet (London, England), 390(10114), 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0
  • Nitta, T., Igarashi, K., Yamashita, A., Yamamoto, M., Yamamoto, N. (2001). Involvement of polyamines in B cell receptor-mediated apoptosis: spermine functions as a negative modulator. Experimental Cell Research, 265(1), 174-183. https://doi.org/10.1006/excr.2001.5177
  • Park, M.H., Igarashi, K. (2013). Polyamines and their metabolites as diagnostic markers of human diseases. Biomolecules & Therapeutics, 21(1), 1-9. https://doi.org/10.4062/biomolther.2012.097
  • Parker, E.A., Roy, T., D’Adamo, C.R., Wieland, L.S. (2018). Probiotics and gastrointestinal conditions: An overview of evidence from the Cochrane Collaboration. Nutrition, 45, 125-134.e11. https://doi.org/https://doi.org/10.1016/j.nut.2017.06.024
  • Pegg, A.E. (2009). Mammalian polyamine metabolism and function. IUBMB Life, 61(9), 880-894. https://doi.org/10.1002/iub.230
  • Rossi, G., Cerquetella, M., Scarpona, S., Pengo, G., Fettucciari, K., Bassotti, G., Jergens, A. E., & Suchodolski, J. S. (2018). Effects of probiotic bacteria on mucosal polyamines levels in dogs with IBD and colonic polyps: a preliminary study. Beneficial Microbes, 9(2), 247-255. https://doi.org/10.3920/BM2017.0024
  • Rossi, G., Cerquetella, M., Pengo, G., Mari, S., Balint, E., Bassotti, G., Manolescu, N. (2015). Immunohistochemical expression of ornithine decarboxylase, diamine oxidase, putrescine, and spermine in normal canine enterocolic mucosa, in chronic colitis, and in colorectal cancer. BioMed Research International, 2015, 1-8. https://doi.org/10.1155/2015/172756
  • Scaioli, E., Liverani, E., Belluzzi, A. (2017). The imbalance between n-6/n-3 polyunsaturated fatty acids and inflammatory bowel disease: A comprehensive review and future therapeutic perspectives. International Journal of Molecular Sciences, 18(12). https://doi.org/10.3390/ijms18122619
  • Shi, N., Li, N., Duan, X., Niu, H. (2017). Interaction between the gut microbiome and mucosal immune system. Military Medical Research, 4, 14. https://doi.org/10.1186/s40779-017-0122-9
  • Uemura, T., Gerner, E. W. (2011). Polyamine transport systems in mammalian cells and tissues. Methods in Molecular Biology (Clifton, N.J.), 720, 339-348. https://doi.org/10.1007/978-1-61779-034-8_21
  • Vidal-Lletjós, S., Beaumont, M., Tomé, D., Benamouzig, R., Blachier, F., Lan, A. (2017). Dietary protein and amino acid supplementation in inflammatory bowel disease course: What impact on the colonic mucosa? Nutrients, 9(3). https://doi.org/10.3390/nu9030310
  • Weiss, T. S., Herfarth, H., Obermeier, F., Ouart, J., Vogl, D., Schölmerich, J., Jauch, K.-W., Rogler, G. (2004). Intracellular polyamine levels of intestinal epithelial cells in inflammatory bowel disease. Inflammatory Bowel Diseases, 10(5), 529-535. https://doi.org/10.1097/00054725-200409000-00006
  • Yakoob, J., Abbas, Z. (2016). Role of omega-3 fatty acids in irritable bowel Synd rome (IBS). international Journal of Pharmacological Research, 6, 271-277.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Bilimi ve Teknolojisi
Bölüm Research Articles
Yazarlar

Havvanur YOLDAŞ İLKTAÇ (Sorumlu Yazar)
İSTANBUL MEDENİYET ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ FAKÜLTESİ, BESLENME VE DİYETETİK BÖLÜMÜ
0000-0002-7433-6370
Türkiye


Nihal BÜYÜKUSLU
İSTANBUL MEDİPOL ÜNİVERSİTESİ, SAĞLIK BİLİMLERİ FAKÜLTESİ, BESLENME VE DİYETETİK BÖLÜMÜ
0000-0003-1420-0989
Türkiye


Cüneyd PARLAYAN
Bahcesehir University, Faculty of Medicine, Biostatistics and Medical Informatics, Istanbul
0000-0002-6183-9489
Türkiye

Yayımlanma Tarihi 1 Ekim 2021
Başvuru Tarihi 21 Mart 2021
Kabul Tarihi 3 Mayıs 2021
Yayınlandığı Sayı Yıl 2021, Cilt 7, Sayı 4

Kaynak Göster

Bibtex @araştırma makalesi { jfhs900482, journal = {Food and Health}, issn = {}, eissn = {2602-2834}, address = {Vidin Caddesi No:28 D:4 Kocamustafapaşa 34107 Fatih İstanbul}, publisher = {Özkan ÖZDEN}, year = {2021}, volume = {7}, pages = {279 - 285}, doi = {10.3153/FH21029}, title = {The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis}, key = {cite}, author = {Yoldaş İlktaç, Havvanur and Büyükuslu, Nihal and Parlayan, Cüneyd} }
APA Yoldaş İlktaç, H. , Büyükuslu, N. & Parlayan, C. (2021). The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis . Food and Health , 7 (4) , 279-285 . DOI: 10.3153/FH21029
MLA Yoldaş İlktaç, H. , Büyükuslu, N. , Parlayan, C. "The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis" . Food and Health 7 (2021 ): 279-285 <http://jfhs.scientificwebjournals.com/tr/pub/issue/64186/900482>
Chicago Yoldaş İlktaç, H. , Büyükuslu, N. , Parlayan, C. "The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis". Food and Health 7 (2021 ): 279-285
RIS TY - JOUR T1 - The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis AU - Havvanur Yoldaş İlktaç , Nihal Büyükuslu , Cüneyd Parlayan Y1 - 2021 PY - 2021 N1 - doi: 10.3153/FH21029 DO - 10.3153/FH21029 T2 - Food and Health JF - Journal JO - JOR SP - 279 EP - 285 VL - 7 IS - 4 SN - -2602-2834 M3 - doi: 10.3153/FH21029 UR - https://doi.org/10.3153/FH21029 Y2 - 2021 ER -
EndNote %0 Food and Health The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis %A Havvanur Yoldaş İlktaç , Nihal Büyükuslu , Cüneyd Parlayan %T The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis %D 2021 %J Food and Health %P -2602-2834 %V 7 %N 4 %R doi: 10.3153/FH21029 %U 10.3153/FH21029
ISNAD Yoldaş İlktaç, Havvanur , Büyükuslu, Nihal , Parlayan, Cüneyd . "The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis". Food and Health 7 / 4 (Ekim 2021): 279-285 . https://doi.org/10.3153/FH21029
AMA Yoldaş İlktaç H. , Büyükuslu N. , Parlayan C. The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis. Food Health. 2021; 7(4): 279-285.
Vancouver Yoldaş İlktaç H. , Büyükuslu N. , Parlayan C. The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis. Food and Health. 2021; 7(4): 279-285.
IEEE H. Yoldaş İlktaç , N. Büyükuslu ve C. Parlayan , "The combined supplementation of omega-3 fatty acids and probiotics decreased the levels of serum polyamines in experimental colitis", Food and Health, c. 7, sayı. 4, ss. 279-285, Eki. 2021, doi:10.3153/FH21029

Food and Health" journal is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14627 13310

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.