Review
PDF EndNote BibTex RIS Cite

Germinated foods and their effects on health

Year 2022, Volume 8, Issue 4, 334 - 343, 01.10.2022
https://doi.org/10.3153/FH22031

Abstract

Plant sprouts attract attention as ready-to-eat healthy foods in many countries. Different processes such as adding nutrients to the environment, especially humidity and temperature, are also necessary to ensure optimum germination. Germination is an inexpensive and effective method for improving the nutritional quality of plants. In the past, germination of legumes, especially some grains such as wheat and barley, was a common practice, but today, alfalfa, broccoli, soybean and some other cereal grains are germinated and consumed as sprouts. The amount of antinutritional factors decreases with germination; The amount of bioactive compounds such as phenolic compounds, phytosterols, folate, gamma aminobutyric acid, antioxidant activity and digestibility can also increase. In addition, the synthesis of new compounds such as Ɣ-oryzanol and amino acids increases during the germination process. In addition to the many physiological effects of germinated nutrients; It has been reported that these foods may have a decrease in the risk of diseases such as cancer, diabetes, cardiovascular diseases and neurological diseases. Therefore, germinated foods are considered as functional foods. Various biological activities of germinated nutrients have still not been conclusively proven. Therefore, there is a need for more studies on the various bioactive component contents of germinated foods and their effects on human health.

References

  • Alumkal, J.J., Slottke, R., Schwartzman, J., Cherala, G., Munar, M., Graff, J.N., . . . Gibbs, A. (2015). A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational new drugs, 33(2), 480-489. https://doi.org/10.1007/s10637-014-0189-z
  • Amici, M., Bonfili, L., Spina, M., Cecarini, V., Calzuola, I., Marsili, V., . . . Gianfranceschi, G. (2008). Wheat sprout extract induces changes on 20S proteasomes functionality. Biochimie, 90(5), 790-801. https://doi.org/10.1016/j.biochi.2007.12.001
  • Añón, A., López, J.F., Hernando, D., Orriols, I., Revilla, E., Losada, M.M. (2014). Effect of five enological practices and of the general phenolic composition on fermentation-related aroma compounds in Mencia young red wines. Food chemistry, 148, 268-275. https://doi.org/10.1016/j.foodchem.2013.10.056
  • Ayernor, G., Ocloo, F. (2007). Physico-chemical changes and diastatic activity associated with germinating paddy rice (PSB. Rc 34). African Journal of Food Science, 1(3), 037-041.
  • Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11(2), 421.
  • Chang, Y.W., Jang, J.Y., Kim, Y.H., Kim, J.-W., Shim, J.-J. (2015). The effects of broccoli sprout extract containing sulforaphane on lipid peroxidation and Helicobacter pylori infection in the gastric mucosa. Gut and Liver, 9(4), 486. https://doi.org/10.5009/gnl14040
  • Cornejo, F., Caceres, P.J., Martínez-Villaluenga, C., Rosell, C.M., Frias, J. (2015). Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chemistry, 173, 298-304. https://doi.org/10.1016/j.foodchem.2014.10.037
  • Cui, Y., Miao, K., Niyaphorn, S., Qu, X. (2020). Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. International Journal of Molecular Sciences, 21(3), 995. https://doi.org/10.3390/ijms21030995
  • Demeekul, K., Sukumolanan, P., Bootcha, R., Panprom, C., Petchdee, S. (2021). A cardiac protection of germinated brown rice during cardiopulmonary bypass surgery and simulated myocardial ischemia. Journal of Inflammation Research, 14, 3307. https://doi.org/10.2147/JIR.S321241
  • Demeekul, K., Suthammarak, W., Petchdee, S. (2021). Bioactive compounds from germinated brown rice protect cardiomyocytes against simulated ischemic/reperfusion injury by ameliorating mitochondrial dysfunction. Drug Design, Development and Therapy, 15, 1055. https://doi.org/10.2147/DDDT.S294779
  • Dongyan, T., Yinmao, D., Li, L., Yueheng, L., Congfen, H., Jixiang, L. (2014). Antioxidant activity in mung bean sprouts and safety of extracts for cosmetic use. Journal of Cosmetic Science, 65(4), 207-216.
  • Ebizuka, H., Ihara, M., Arita, M. (2009). Antihypertensive effect of pre-germinated brown rice in spontaneously hypertensive rats. Food Science and Technology Research, 15(6), 625-630. https://doi.org/10.3136/fstr.15.625
  • Ferruzza, S., Natella, F., Ranaldi, G., Murgia, C., Rossi, C., Trošt, K., . . . Giusti, A. M. (2016). Nutraceutical improvement increases the protective activity of broccoli sprout juice in a human intestinal cell model of gut inflammation. Pharmaceuticals, 9(3), 48. https://doi.org/10.3390/ph9030048
  • Frias, J., Fornal, J., Ring, S.G., Vidal-Valverde, C. (1998). Effect of germination on physico-chemical properties of lentil starch and its components. LWT-Food Science and Technology, 31(3), 228-236. https://doi.org/10.1006/fstl.1997.0340
  • Gawlik-Dziki, U., Świeca, M., Dziki, D., Sęczyk, Ł., Złotek, U., Różyło, R., . . . Czyż, J. (2014). Anticancer and antioxidant activity of bread enriched with broccoli sprouts. BioMed Research International, 2014. https://doi.org/10.1155/2014/608053
  • Geng, J., Li, J., Zhu, F., Chen, X., Du, B., Tian, H., Li, J. (2021). Plant sprout foods: Biological activities, health benefits, and bioavailability. Journal of Food Biochemistry, e13777. https://doi.org/10.1111/jfbc.13777
  • Golzarand, M., Toolabi, K., Eskandari Delfan, S., Mirmiran, P. (2021). The effect of brown rice compared to white rice on adiposity indices, lipid profile, and glycemic markers: a systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 1-18. https://doi.org/10.1080/10408398.2021.1914541
  • Guzmán-Ortiz, F.A., San Martín-Martínez, E., Valverde, M.E., Rodríguez-Aza, Y., Berríos, J.D.J., Mora-Escobedo, R. (2017). Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans (Glycine max L.). CyTA-Journal of Food, 15(4), 516-524. https://doi.org/10.1080/19476337.2017.1302995
  • Hafidh, R.R., Abdulamir, A.S., Bakar, F. A., Sekawi, Z., Jahansheri, F., Jalilian, F. A. (2015). Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus− 1: an in vitro study on virally infected Vero and MRC-5 cell lines. BMC Complementary and Alternative Medicine, 15(1), 1-16. https://doi.org/10.1186/s12906-015-0688-2
  • Haghparast, A., Mansouri, K., Moradi, S., Dadashi, F., Eliasi, S., Sobhani, M., Varmira, K. (2017). Radioprotective effects of lentil sprouts against X-ray radiation. Research in Pharmaceutical Sciences, 12(1), 38. https://doi.org/10.4103/1735-5362.199045
  • Huang, X., Cai, W., Xu, B. (2014). Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry, 143, 268-276. https://doi.org/10.1016/j.foodchem.2013.07.080
  • Hübner, F., Arendt, E.K. (2013). Germination of cereal grains as a way to improve the nutritional value: A review. Critical Reviews in Food Science and Mutrition, 53(8), 853-861. https://doi.org/10.1080/10408398.2011.562060
  • Ijarotimi, O.S., ve Keshinro, O.O. (2012). Comparison between the amino acid, fatty acid, mineral and nutritional quality of raw, germinated and fermented African locust bean (Parkia biglobosa) flour. Acta Scientiarum Polonorum Technologia Alimentaria, 11(2), 151-165.
  • Imam, M.U., Azmi, N.H., Bhanger, M.I., Ismail, N., ve Ismail, M. (2012). Antidiabetic properties of germinated brown rice: a systematic review. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/816501
  • Imam, M. U., Musa, S. N. A., Azmi, N. H., ve Ismail, M. (2012). Effects of white rice, brown rice and germinated brown rice on antioxidant status of type 2 diabetic rats. International Journal of Molecular Sciences, 13(10), 12952-12969. https://doi.org/10.3390/ijms131012952
  • Ito, Y., Mizukuchi, A., Kise, M., Aoto, H., Yamamoto, S., Yoshihara, R., ve Yokoyama, J. (2005). Postprandial blood glucose and insulin responses to pre-germinated brown rice in healthy subjects. The Journal of Medical Investigation, 52(3, 4), 159-164. https://doi.org/10.2152/jmi.52.159
  • Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., ve Liyanage, R. (2018). Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793-4806. https://doi.org/10.1002/jsfa.9074
  • Kujawska, M., Ewertowska, M., Ignatowicz, E., Adamska, T., Szaefer, H., Zielińska-Dawidziak, M., . . . Jodynis-Liebert, J. (2016). Evaluation of safety of iron-fortified soybean sprouts, a potential component of functional food, in rat. Plant Foods for Human Nutrition, 71(1), 13-18. https://doi.org/10.1007/s11130-016-0535-8
  • Kumari, S., Chang, S. K. (2016). Effect of cooking on isoflavones, phenolic acids, and antioxidant activity in sprouts of prosoy soybean (glycine max). Journal of Food Science, 81(7), C1679-C1691. https://doi.org/10.1111/1750-3841.13351
  • Lee, Y.-J., Kim, K.-J., Park, K.-J., Yoon, B.-R., Lim, J.-H., Lee, O.-H. (2013). Buckwheat (Fagopyrum esculentum M.) sprout treated with methyl jasmonate (MeJA) improved anti-adipogenic activity associated with the oxidative stress system in 3T3-L1 adipocytes. International Journal of Molecular Sciences, 14(1), 1428-1442. https://doi.org/10.3390/ijms14011428
  • Lee, Y.-R., Kim, J.-Y., Woo, K.-S., Hwang, I.-G., Kim, K.-H., Kim, K.-J., . . . Jeong, H.-S. (2007). Changes in the chemical and functional components of Korean rough rice before and after germination. Food Science and Biotechnology, 16(6), 1006-1010.
  • Ling, C. X., Chang, Y. P. (2017). Valorizing guava (Psidium guajava L.) seeds through germination-induced carbohydrate changes. Journal of Food Science and Technology, 54(7), 2041-2049. https://doi.org/10.1007/s13197-017-2641-5
  • López-Amorós, M., Hernández, T., Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. Journal of Food Composition and Analysis, 19(4), 277-283. https://doi.org/10.1016/j.jfca.2004.06.012
  • Mamiya, T., Kise, M., Morikawa, K., Aoto, H., Ukai, M., Noda, Y. (2007). Effects of pre-germinated brown rice on depression-like behavior in mice. Pharmacology Biochemistry and Behavior, 86(1), 62-67. https://doi.org/10.1016/j.pbb.2006.12.008
  • Mäkinen, O.E., Arendt, E.K. (2015). Nonbrewing applications of malted cereals, pseudocereals, and legumes: A review. Journal of the American Society of Brewing Chemists, 73(3), 223-227. https://doi.org/10.1094/ASBCJ-2015-0515-01
  • Meschini, R., Filippi, S., Molinari, R., Costantini, L., Bonafaccia, G., ve Merendino, N. (2015). Pasta containing tartary buckwheat sprouts prevents DNA damage in spontaneously hypertensive rats. International Journal of Food Sciences and Nutrition, 66(5), 574-578. https://doi.org/10.3109/09637486.2015.1052378
  • Mewis, I., Schreiner, M., Nguyen, C.N., Krumbein, A., Ulrichs, C., Lohse, M., Zrenner, R. (2012). UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant and Cell Physiology, 53(9), 1546-1560. https://doi.org/10.1093/pcp/pcs096
  • Müller, L., Meyer, M., Bauer, R. N., Zhou, H., Zhang, H., Jones, S., . . . Jaspers, I. (2016). Effect of broccoli sprouts and live attenuated influenza virus on peripheral blood natural killer cells: a randomized, double-blind study. PloS one, 11(1), e0147742. https://doi.org/10.1371/journal.pone.0147742
  • Nakamura, K., Koyama, M., Ishida, R., Kitahara, T., Nakajima, T., Aoyama, T. (2016). Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. Journal of food science and technology, 53(1), 581-590. https://doi.org/10.1007/s13197-015-2048-0
  • Oh, C.-H., ve Oh, S.-H. (2004). Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. Journal of Medicinal Food, 7(1), 19-23. https://doi.org/10.1089/109662004322984653
  • Ohsaki, Y., Shirakawa, H., Koseki, T., Komai, M. (2008). Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 56(8), 2825-2830. https://doi.org/10.1021/jf072896y
  • Okada, M., Okada, Y. (2016). Potential properties of plant sprout extracts on amyloid β. Biochemistry Research International, 2016. https://doi.org/10.1155/2016/9347468
  • Pal, P., Singh, N., Kaur, P., Kaur, A., Virdi, A.S., Parmar, N. (2016). Comparison of composition, protein, pasting, and phenolic compounds of brown rice and germinated brown rice from different cultivars. Cereal Chemistry, 93(6), 584-592. https://doi.org/10.1094/CCHEM-03-16-0066-R
  • Paucar-Menacho, L.M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., Peñas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT-Food Science and Technology, 76, 236-244. https://doi.org/10.1016/j.lwt.2016.07.064
  • Rebollo-Hernanz, M., Aguilera, Y., Herrera, T., Cayuelas, L.T., Dueñas, M., Rodríguez-Rodríguez, P., Martín-Cabrejas, M.A. (2020). Bioavailability of melatonin from lentil sprouts and its role in the plasmatic antioxidant status in rats. Foods, 9(3), 330. https://doi.org/10.3390/foods9030330
  • Ren, C., Hong, B., Zheng, X., Wang, L., Zhang, Y., Guan, L., . . . Lu, S. (2020). Improvement of germinated brown rice quality with autoclaving treatment. Food Science ve Nutrition, 8(3), 1709-1717. https://doi.org/10.1002/fsn3.1459
  • Roohinejad, S., Omidizadeh, A., Mirhosseini, H., Saari, N., Mustafa, S., Mohd Yusof, R., ..., Abd Manap, M.Y. (2010). Effect of pre‐germination time of brown rice on serum cholesterol levels of hypercholesterolaemic rats. Journal of the Science of Food and Agriculture, 90(2), 245-251. https://doi.org/10.1002/jsfa.3803
  • Skoglund, M., Peterson, D.M., Andersson, R., Nilsson, J., Dimberg, L.H. (2008). Avenanthramide content and related enzyme activities in oats as affected by steeping and germination. Journal of Cereal Science, 48(2), 294-303. https://doi.org/10.1016/j.jcs.2007.09.010
  • Stalker, D.M., Hiatt, W. R., Comai, L. (1985). A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. Journal of Biological Chemistry, 260(8), 4724-4728. https://doi.org/10.1016/S0021-9258(18)89130-X Świeca, M., Dziki, D. (2015). Improvement in sprouted wheat flour functionality: Effect of time, temperature and elicitation. International Journal of Food Science ve Technology, 50(9), 2135-2142. https://doi.org/10.1111/ijfs.12881
  • Tuncel, N.Y. (2016). Gama-orizanol. Akademik Gıda, 14(4), 458-464.
  • Wu, F., Yang, N., Touré, A., Jin, Z., Xu, X. (2013). Germinated brown rice and its role in human health. Critical Reviews in food Science and Nutrition, 53(5), 451-463. https://doi.org/10.1080/10408398.2010.542259
  • Xu, M., Jin, Z., Ohm, J.-B., Schwarz, P., Rao, J., Chen, B. (2018). Improvement of the antioxidative activity of soluble phenolic compounds in chickpea by germination. Journal of Agricultural and Food Chemistry, 66(24), 6179-6187. https://doi.org/10.1021/acs.jafc.8b02208
  • Xu, M., Rao, J., Chen, B. (2020). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical reviews in food science and nutrition, 60(5), 740-759. https://doi.org/10.1080/10408398.2018.1550051
  • Yeo, J., Shahidi, F. (2015). Critical evaluation of changes in the ratio of insoluble bound to soluble phenolics on antioxidant activity of lentils during germination. Journal of Agricultural and Food Chemistry, 63(2), 379-381. https://doi.org/10.1021/jf505632p
  • Yetim, H., Öztürk, İ., Törnük, F.S.O., Hayta, M. (2010). Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri. Gıda, 35(3), 205-210.

Çimlendirilmiş besinler ve sağlık üzerine etkileri

Year 2022, Volume 8, Issue 4, 334 - 343, 01.10.2022
https://doi.org/10.3153/FH22031

Abstract

Bitki filizleri birçok ülkede tüketime hazır sağlıklı gıdalar olarak dikkatleri üzerine çekmektedir. Nem ve sıcaklık başta olmak üzere, ortama besin ilavesi gibi farklı işlemler de optimum çimlenmenin sağlanması için gereklidir. Çimlenme, bitkilerin besin kalitesini iyileştirmek için ucuz ve etkili bir yöntemdir. Geçmişte buğday ve arpa gibi bazı tahıllar başta olmak üzere, baklagillerin çimlendirilmesi de yaygın bir uygulama iken günümüzde yonca, brokoli, soya fasulyesi ve diğer bazı tahıl taneleri çimlendirilerek filiz halinde tüketilmesi söz konusudur. Çimlenmeyle antibesinsel faktörlerinin miktarı azalmakta; fenolik bileşikler, fitosteroller, folat, gama aminobütirik asit gibi biyoaktif bileşiklerin miktarı, antioksidan aktivite ve sindirilebilirlik de artabilmektedir. Ayrıca Ɣ-orizanol ve aminoasitler gibi yeni bileşiklerin sentezi de çimlenme sürecinde artmaktadır. Çimlendirilmiş besinlerin birçok fizyolojik etkisinin bulunmasının yanı sıra; bu besinlerin kanser, diyabet, kalp-damar hastalıkları ve nörolojik hastalık gibi hastalık riskinde azalmaya sahip olabileceği bildirilmiştir. Bu nedenle çimlendirilmiş besinler fonksiyonel besin olarak kabul edilmektedir. Çimlendirilmiş besinlerin çeşitli biyolojik aktiviteleri halen kesin olarak kanıtlanmamıştır. Bu nedenle çimlendirilmiş besinlerin çeşitli biyoaktif bileşen içerikleri ve insan sağlığı üzerindeki etkileriyle ilgili daha fazla sayıda çalışmaya ihtiyaç vardır.

References

  • Alumkal, J.J., Slottke, R., Schwartzman, J., Cherala, G., Munar, M., Graff, J.N., . . . Gibbs, A. (2015). A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investigational new drugs, 33(2), 480-489. https://doi.org/10.1007/s10637-014-0189-z
  • Amici, M., Bonfili, L., Spina, M., Cecarini, V., Calzuola, I., Marsili, V., . . . Gianfranceschi, G. (2008). Wheat sprout extract induces changes on 20S proteasomes functionality. Biochimie, 90(5), 790-801. https://doi.org/10.1016/j.biochi.2007.12.001
  • Añón, A., López, J.F., Hernando, D., Orriols, I., Revilla, E., Losada, M.M. (2014). Effect of five enological practices and of the general phenolic composition on fermentation-related aroma compounds in Mencia young red wines. Food chemistry, 148, 268-275. https://doi.org/10.1016/j.foodchem.2013.10.056
  • Ayernor, G., Ocloo, F. (2007). Physico-chemical changes and diastatic activity associated with germinating paddy rice (PSB. Rc 34). African Journal of Food Science, 1(3), 037-041.
  • Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11(2), 421.
  • Chang, Y.W., Jang, J.Y., Kim, Y.H., Kim, J.-W., Shim, J.-J. (2015). The effects of broccoli sprout extract containing sulforaphane on lipid peroxidation and Helicobacter pylori infection in the gastric mucosa. Gut and Liver, 9(4), 486. https://doi.org/10.5009/gnl14040
  • Cornejo, F., Caceres, P.J., Martínez-Villaluenga, C., Rosell, C.M., Frias, J. (2015). Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chemistry, 173, 298-304. https://doi.org/10.1016/j.foodchem.2014.10.037
  • Cui, Y., Miao, K., Niyaphorn, S., Qu, X. (2020). Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. International Journal of Molecular Sciences, 21(3), 995. https://doi.org/10.3390/ijms21030995
  • Demeekul, K., Sukumolanan, P., Bootcha, R., Panprom, C., Petchdee, S. (2021). A cardiac protection of germinated brown rice during cardiopulmonary bypass surgery and simulated myocardial ischemia. Journal of Inflammation Research, 14, 3307. https://doi.org/10.2147/JIR.S321241
  • Demeekul, K., Suthammarak, W., Petchdee, S. (2021). Bioactive compounds from germinated brown rice protect cardiomyocytes against simulated ischemic/reperfusion injury by ameliorating mitochondrial dysfunction. Drug Design, Development and Therapy, 15, 1055. https://doi.org/10.2147/DDDT.S294779
  • Dongyan, T., Yinmao, D., Li, L., Yueheng, L., Congfen, H., Jixiang, L. (2014). Antioxidant activity in mung bean sprouts and safety of extracts for cosmetic use. Journal of Cosmetic Science, 65(4), 207-216.
  • Ebizuka, H., Ihara, M., Arita, M. (2009). Antihypertensive effect of pre-germinated brown rice in spontaneously hypertensive rats. Food Science and Technology Research, 15(6), 625-630. https://doi.org/10.3136/fstr.15.625
  • Ferruzza, S., Natella, F., Ranaldi, G., Murgia, C., Rossi, C., Trošt, K., . . . Giusti, A. M. (2016). Nutraceutical improvement increases the protective activity of broccoli sprout juice in a human intestinal cell model of gut inflammation. Pharmaceuticals, 9(3), 48. https://doi.org/10.3390/ph9030048
  • Frias, J., Fornal, J., Ring, S.G., Vidal-Valverde, C. (1998). Effect of germination on physico-chemical properties of lentil starch and its components. LWT-Food Science and Technology, 31(3), 228-236. https://doi.org/10.1006/fstl.1997.0340
  • Gawlik-Dziki, U., Świeca, M., Dziki, D., Sęczyk, Ł., Złotek, U., Różyło, R., . . . Czyż, J. (2014). Anticancer and antioxidant activity of bread enriched with broccoli sprouts. BioMed Research International, 2014. https://doi.org/10.1155/2014/608053
  • Geng, J., Li, J., Zhu, F., Chen, X., Du, B., Tian, H., Li, J. (2021). Plant sprout foods: Biological activities, health benefits, and bioavailability. Journal of Food Biochemistry, e13777. https://doi.org/10.1111/jfbc.13777
  • Golzarand, M., Toolabi, K., Eskandari Delfan, S., Mirmiran, P. (2021). The effect of brown rice compared to white rice on adiposity indices, lipid profile, and glycemic markers: a systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 1-18. https://doi.org/10.1080/10408398.2021.1914541
  • Guzmán-Ortiz, F.A., San Martín-Martínez, E., Valverde, M.E., Rodríguez-Aza, Y., Berríos, J.D.J., Mora-Escobedo, R. (2017). Profile analysis and correlation across phenolic compounds, isoflavones and antioxidant capacity during germination of soybeans (Glycine max L.). CyTA-Journal of Food, 15(4), 516-524. https://doi.org/10.1080/19476337.2017.1302995
  • Hafidh, R.R., Abdulamir, A.S., Bakar, F. A., Sekawi, Z., Jahansheri, F., Jalilian, F. A. (2015). Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus− 1: an in vitro study on virally infected Vero and MRC-5 cell lines. BMC Complementary and Alternative Medicine, 15(1), 1-16. https://doi.org/10.1186/s12906-015-0688-2
  • Haghparast, A., Mansouri, K., Moradi, S., Dadashi, F., Eliasi, S., Sobhani, M., Varmira, K. (2017). Radioprotective effects of lentil sprouts against X-ray radiation. Research in Pharmaceutical Sciences, 12(1), 38. https://doi.org/10.4103/1735-5362.199045
  • Huang, X., Cai, W., Xu, B. (2014). Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry, 143, 268-276. https://doi.org/10.1016/j.foodchem.2013.07.080
  • Hübner, F., Arendt, E.K. (2013). Germination of cereal grains as a way to improve the nutritional value: A review. Critical Reviews in Food Science and Mutrition, 53(8), 853-861. https://doi.org/10.1080/10408398.2011.562060
  • Ijarotimi, O.S., ve Keshinro, O.O. (2012). Comparison between the amino acid, fatty acid, mineral and nutritional quality of raw, germinated and fermented African locust bean (Parkia biglobosa) flour. Acta Scientiarum Polonorum Technologia Alimentaria, 11(2), 151-165.
  • Imam, M.U., Azmi, N.H., Bhanger, M.I., Ismail, N., ve Ismail, M. (2012). Antidiabetic properties of germinated brown rice: a systematic review. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/816501
  • Imam, M. U., Musa, S. N. A., Azmi, N. H., ve Ismail, M. (2012). Effects of white rice, brown rice and germinated brown rice on antioxidant status of type 2 diabetic rats. International Journal of Molecular Sciences, 13(10), 12952-12969. https://doi.org/10.3390/ijms131012952
  • Ito, Y., Mizukuchi, A., Kise, M., Aoto, H., Yamamoto, S., Yoshihara, R., ve Yokoyama, J. (2005). Postprandial blood glucose and insulin responses to pre-germinated brown rice in healthy subjects. The Journal of Medical Investigation, 52(3, 4), 159-164. https://doi.org/10.2152/jmi.52.159
  • Jayathilake, C., Visvanathan, R., Deen, A., Bangamuwage, R., Jayawardana, B. C., Nammi, S., ve Liyanage, R. (2018). Cowpea: an overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture, 98(13), 4793-4806. https://doi.org/10.1002/jsfa.9074
  • Kujawska, M., Ewertowska, M., Ignatowicz, E., Adamska, T., Szaefer, H., Zielińska-Dawidziak, M., . . . Jodynis-Liebert, J. (2016). Evaluation of safety of iron-fortified soybean sprouts, a potential component of functional food, in rat. Plant Foods for Human Nutrition, 71(1), 13-18. https://doi.org/10.1007/s11130-016-0535-8
  • Kumari, S., Chang, S. K. (2016). Effect of cooking on isoflavones, phenolic acids, and antioxidant activity in sprouts of prosoy soybean (glycine max). Journal of Food Science, 81(7), C1679-C1691. https://doi.org/10.1111/1750-3841.13351
  • Lee, Y.-J., Kim, K.-J., Park, K.-J., Yoon, B.-R., Lim, J.-H., Lee, O.-H. (2013). Buckwheat (Fagopyrum esculentum M.) sprout treated with methyl jasmonate (MeJA) improved anti-adipogenic activity associated with the oxidative stress system in 3T3-L1 adipocytes. International Journal of Molecular Sciences, 14(1), 1428-1442. https://doi.org/10.3390/ijms14011428
  • Lee, Y.-R., Kim, J.-Y., Woo, K.-S., Hwang, I.-G., Kim, K.-H., Kim, K.-J., . . . Jeong, H.-S. (2007). Changes in the chemical and functional components of Korean rough rice before and after germination. Food Science and Biotechnology, 16(6), 1006-1010.
  • Ling, C. X., Chang, Y. P. (2017). Valorizing guava (Psidium guajava L.) seeds through germination-induced carbohydrate changes. Journal of Food Science and Technology, 54(7), 2041-2049. https://doi.org/10.1007/s13197-017-2641-5
  • López-Amorós, M., Hernández, T., Estrella, I. (2006). Effect of germination on legume phenolic compounds and their antioxidant activity. Journal of Food Composition and Analysis, 19(4), 277-283. https://doi.org/10.1016/j.jfca.2004.06.012
  • Mamiya, T., Kise, M., Morikawa, K., Aoto, H., Ukai, M., Noda, Y. (2007). Effects of pre-germinated brown rice on depression-like behavior in mice. Pharmacology Biochemistry and Behavior, 86(1), 62-67. https://doi.org/10.1016/j.pbb.2006.12.008
  • Mäkinen, O.E., Arendt, E.K. (2015). Nonbrewing applications of malted cereals, pseudocereals, and legumes: A review. Journal of the American Society of Brewing Chemists, 73(3), 223-227. https://doi.org/10.1094/ASBCJ-2015-0515-01
  • Meschini, R., Filippi, S., Molinari, R., Costantini, L., Bonafaccia, G., ve Merendino, N. (2015). Pasta containing tartary buckwheat sprouts prevents DNA damage in spontaneously hypertensive rats. International Journal of Food Sciences and Nutrition, 66(5), 574-578. https://doi.org/10.3109/09637486.2015.1052378
  • Mewis, I., Schreiner, M., Nguyen, C.N., Krumbein, A., Ulrichs, C., Lohse, M., Zrenner, R. (2012). UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant and Cell Physiology, 53(9), 1546-1560. https://doi.org/10.1093/pcp/pcs096
  • Müller, L., Meyer, M., Bauer, R. N., Zhou, H., Zhang, H., Jones, S., . . . Jaspers, I. (2016). Effect of broccoli sprouts and live attenuated influenza virus on peripheral blood natural killer cells: a randomized, double-blind study. PloS one, 11(1), e0147742. https://doi.org/10.1371/journal.pone.0147742
  • Nakamura, K., Koyama, M., Ishida, R., Kitahara, T., Nakajima, T., Aoyama, T. (2016). Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. Journal of food science and technology, 53(1), 581-590. https://doi.org/10.1007/s13197-015-2048-0
  • Oh, C.-H., ve Oh, S.-H. (2004). Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. Journal of Medicinal Food, 7(1), 19-23. https://doi.org/10.1089/109662004322984653
  • Ohsaki, Y., Shirakawa, H., Koseki, T., Komai, M. (2008). Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 56(8), 2825-2830. https://doi.org/10.1021/jf072896y
  • Okada, M., Okada, Y. (2016). Potential properties of plant sprout extracts on amyloid β. Biochemistry Research International, 2016. https://doi.org/10.1155/2016/9347468
  • Pal, P., Singh, N., Kaur, P., Kaur, A., Virdi, A.S., Parmar, N. (2016). Comparison of composition, protein, pasting, and phenolic compounds of brown rice and germinated brown rice from different cultivars. Cereal Chemistry, 93(6), 584-592. https://doi.org/10.1094/CCHEM-03-16-0066-R
  • Paucar-Menacho, L.M., Martínez-Villaluenga, C., Dueñas, M., Frias, J., Peñas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT-Food Science and Technology, 76, 236-244. https://doi.org/10.1016/j.lwt.2016.07.064
  • Rebollo-Hernanz, M., Aguilera, Y., Herrera, T., Cayuelas, L.T., Dueñas, M., Rodríguez-Rodríguez, P., Martín-Cabrejas, M.A. (2020). Bioavailability of melatonin from lentil sprouts and its role in the plasmatic antioxidant status in rats. Foods, 9(3), 330. https://doi.org/10.3390/foods9030330
  • Ren, C., Hong, B., Zheng, X., Wang, L., Zhang, Y., Guan, L., . . . Lu, S. (2020). Improvement of germinated brown rice quality with autoclaving treatment. Food Science ve Nutrition, 8(3), 1709-1717. https://doi.org/10.1002/fsn3.1459
  • Roohinejad, S., Omidizadeh, A., Mirhosseini, H., Saari, N., Mustafa, S., Mohd Yusof, R., ..., Abd Manap, M.Y. (2010). Effect of pre‐germination time of brown rice on serum cholesterol levels of hypercholesterolaemic rats. Journal of the Science of Food and Agriculture, 90(2), 245-251. https://doi.org/10.1002/jsfa.3803
  • Skoglund, M., Peterson, D.M., Andersson, R., Nilsson, J., Dimberg, L.H. (2008). Avenanthramide content and related enzyme activities in oats as affected by steeping and germination. Journal of Cereal Science, 48(2), 294-303. https://doi.org/10.1016/j.jcs.2007.09.010
  • Stalker, D.M., Hiatt, W. R., Comai, L. (1985). A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. Journal of Biological Chemistry, 260(8), 4724-4728. https://doi.org/10.1016/S0021-9258(18)89130-X Świeca, M., Dziki, D. (2015). Improvement in sprouted wheat flour functionality: Effect of time, temperature and elicitation. International Journal of Food Science ve Technology, 50(9), 2135-2142. https://doi.org/10.1111/ijfs.12881
  • Tuncel, N.Y. (2016). Gama-orizanol. Akademik Gıda, 14(4), 458-464.
  • Wu, F., Yang, N., Touré, A., Jin, Z., Xu, X. (2013). Germinated brown rice and its role in human health. Critical Reviews in food Science and Nutrition, 53(5), 451-463. https://doi.org/10.1080/10408398.2010.542259
  • Xu, M., Jin, Z., Ohm, J.-B., Schwarz, P., Rao, J., Chen, B. (2018). Improvement of the antioxidative activity of soluble phenolic compounds in chickpea by germination. Journal of Agricultural and Food Chemistry, 66(24), 6179-6187. https://doi.org/10.1021/acs.jafc.8b02208
  • Xu, M., Rao, J., Chen, B. (2020). Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Critical reviews in food science and nutrition, 60(5), 740-759. https://doi.org/10.1080/10408398.2018.1550051
  • Yeo, J., Shahidi, F. (2015). Critical evaluation of changes in the ratio of insoluble bound to soluble phenolics on antioxidant activity of lentils during germination. Journal of Agricultural and Food Chemistry, 63(2), 379-381. https://doi.org/10.1021/jf505632p
  • Yetim, H., Öztürk, İ., Törnük, F.S.O., Hayta, M. (2010). Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri. Gıda, 35(3), 205-210.

Details

Primary Language Turkish
Subjects Medicine
Journal Section Review Articles
Authors

Zeynep KALAYCI> (Primary Author)
Antalya Bilim Üniversitesi, Sağlık Bilimleri Fakültesi Beslenme ve Diyetetik Bölümü
0000-0002-9148-4164
Türkiye


Aysel ŞAHİN KAYA>
Antalya Bilim Üniversitesi, Sağlık Bilimleri Fakültesi, Beslenme ve Diyetetik Bölümü
0000-0001-7234-4900
Türkiye

Publication Date October 1, 2022
Application Date March 4, 2022
Acceptance Date June 22, 2022
Published in Issue Year 2022, Volume 8, Issue 4

Cite

Bibtex @review { jfhs1082760, journal = {Food and Health}, eissn = {2602-2834}, address = {Vidin Caddesi No:28 D:4 Kocamustafapaşa 34107 Fatih İstanbul}, publisher = {Özkan ÖZDEN}, year = {2022}, volume = {8}, number = {4}, pages = {334 - 343}, doi = {10.3153/FH22031}, title = {Çimlendirilmiş besinler ve sağlık üzerine etkileri}, key = {cite}, author = {Kalaycı, Zeynep and Şahin Kaya, Aysel} }
APA Kalaycı, Z. & Şahin Kaya, A. (2022). Çimlendirilmiş besinler ve sağlık üzerine etkileri . Food and Health , 8 (4) , 334-343 . DOI: 10.3153/FH22031
MLA Kalaycı, Z. , Şahin Kaya, A. "Çimlendirilmiş besinler ve sağlık üzerine etkileri" . Food and Health 8 (2022 ): 334-343 <http://jfhs.scientificwebjournals.com/en/pub/issue/72186/1082760>
Chicago Kalaycı, Z. , Şahin Kaya, A. "Çimlendirilmiş besinler ve sağlık üzerine etkileri". Food and Health 8 (2022 ): 334-343
RIS TY - JOUR T1 - Germinated foods and their effects on health AU - ZeynepKalaycı, AyselŞahin Kaya Y1 - 2022 PY - 2022 N1 - doi: 10.3153/FH22031 DO - 10.3153/FH22031 T2 - Food and Health JF - Journal JO - JOR SP - 334 EP - 343 VL - 8 IS - 4 SN - -2602-2834 M3 - doi: 10.3153/FH22031 UR - https://doi.org/10.3153/FH22031 Y2 - 2022 ER -
EndNote %0 Food and Health Çimlendirilmiş besinler ve sağlık üzerine etkileri %A Zeynep Kalaycı , Aysel Şahin Kaya %T Çimlendirilmiş besinler ve sağlık üzerine etkileri %D 2022 %J Food and Health %P -2602-2834 %V 8 %N 4 %R doi: 10.3153/FH22031 %U 10.3153/FH22031
ISNAD Kalaycı, Zeynep , Şahin Kaya, Aysel . "Çimlendirilmiş besinler ve sağlık üzerine etkileri". Food and Health 8 / 4 (October 2022): 334-343 . https://doi.org/10.3153/FH22031
AMA Kalaycı Z. , Şahin Kaya A. Çimlendirilmiş besinler ve sağlık üzerine etkileri. Food Health. 2022; 8(4): 334-343.
Vancouver Kalaycı Z. , Şahin Kaya A. Çimlendirilmiş besinler ve sağlık üzerine etkileri. Food and Health. 2022; 8(4): 334-343.
IEEE Z. Kalaycı and A. Şahin Kaya , "Çimlendirilmiş besinler ve sağlık üzerine etkileri", Food and Health, vol. 8, no. 4, pp. 334-343, Oct. 2022, doi:10.3153/FH22031

ustresim_2021_1.png

journal is licensed under a CreativeCommons Attribtion-ShareAlike 4.0 International Licence 14627 13310

openaccess.jpgOpen Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.