Year 2020, Volume 6 , Issue 3, Pages 151 - 159 2020-05-04

Isolation and identification of Staphylococcus aureus obtained from cheese samples

Elif BOZCAL [1]

Milk and dairy products including cheese are one of the most significant food commodities in terms of the food industry. However, a contaminated food product could conduce a variety of food borne bacterial infections. Although Staphylococcus aureus is known as normal flora members of the humans, it`s often isolated from the community and hospital-acquired infections. Therefore, investigation of Staphylococcus aureus from cheese samples was aimed in this study. A total of nineteen (n=19) white cheese was collected from various outdoor markets in Istanbul. All cheese samples were evaluated quantitatively. Phenotypic identification tests including Gram staining, oxidase, catalase, mannitol, and DNase were performed. The presumptive Staphylococcus aureus colonies (n=47) were analyzed by the 16S rRNA PCR and sequencing. And the sequences were deposited into the National Center for Biotechnology Information. According to the nucleotide BLAST analysis, a total of 47 Staphylococaceae and Enterococcaceae members including Staphylococcus aureus (n=3), Staphylococcus carnosus (n=1), Macrococcus caseolyticus (n=1), Enterococcus faecalis (n=25), Enterococcus faecium (n=12), Enterococcus durans (n=4), and Enterococcus gallinarum (n=1) were identified. Regarding methicillin susceptibility testing, two of out of three Staphylococcus aureus were detected as methicillin-resistant.

Staphylococcus aureus, 16S rRNA, PCR, Cheese
  • Abdeen, E.E., Hussein, H., Hussan, Z., Abdella., W. (2016). Genotyping and virulence genes of Enterococcus faecalis Isolated from Kareish cheese and minced meat in Egypt. Research Journal of Microbiology, 11, 133-138.
  • Aguilar, C.E.G.A., Junior, O.D.R., Vidal, A.M.C.V., Ribeiro, L.F, Rossi, G.A.M. (2016). Microbial quality of industrial and retail market grated parmesan cheese in the State of São Paulo, Brazil. Food Technology, 46(12), 2257-2263.
  • Amaral, M.F.A., Silva, L.F., Casarotti, S.N., Nascimento, L.C.S., Penna, A.L.B. (2017). Enterococcus faecium and Enterococcus durans isolated from cheese: Survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. Journal of Dairy Science, 100(2), 933-949.
  • Anderson, A.C, Jonas, D., Huber, I., Karygianni, L.,Wölber, J., Hellwig, E., Arweiler, N., Vach, K., Wittmer, A., Al-Ahmad, A. (2016). Enterococcus faecalis from food, clinical specimens, and oral sites: prevalence of virulence factors in association with biofilm formation. Frontiers in Microbiology, 6, 1534.
  • Ataseven, Y.A. (2017). Durum ve tahmin. Süt ve süt ürünleri. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, 305, ISBN: 978-605-2207-17-8.
  • Baran, A., Erdogan, A., Turgut, T., Adıgüzel, M. (2017). A review on the presence of Staphylococcus aureus in cheese. Turkish Journal of Nature and Science, (6)2, 100-105.
  • Bingöl, K.K, Toğay, S.Ö. (2017). Enterotoxin production potential and methicillin resistance of Staphylococcus aureus strains isolated from Urfa Cheeses. Akademik Gıda, 15(1), 29-35.
  • Brown, D.F.J, Edwards, D.I, Hawkey, P.M., Morrison, D., Ridgway, G.L., Towner, K.J. (2008). Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). Journal Antimicrobial Chemotherapy, 56, 1000-1018.
  • Brown, D.F.J, Yates, V.S. (1986). Methicillin susceptibility testing of Staphylococcus aureus on media containing five percent sodium chloride. European Journal of Clinical Microbiology, 5(6), 726-728.
  • Bückle, A., Kranz, M., Schmidt, H., Weiss, A. (2017). Genetic diversity and population structure of food-borne Staphylococcus carnosus strains. Systematic and Applied Microbiology, 40, 34-41.
  • Coton, E., Desmonts, M. H., Leroy, S., Coton, M., Jamet, E., Christieans, S., Donnio, P.Y., Lebert, I., Talon, R. (2010). Biodiversity of coagulase-negative staphylococci in French cheeses, dry fermented sausages, processing environments and clinical samples. International Journal of Food Microbiology 137, 221–229.
  • Cuny, C., Wieler, L.H., Witte, W. (2015). Livestock-Associated MRSA: The Impact on Humans. Antibiotics, 4, 521-543.
  • Donnely, C.W. (1990). Concerns of microbial pathogens in association with dairy foods. Journal of Dairy Science, 73, 1656-1661.
  • Ektik, N., Gökmen, M., Çibik, R. (2017). The prevalence and antibiotic resistance of methicillin-resistant Staphylococcus aureus (MRSA) in milk and dairy products in Balikesir, Turkey. Journal of the Hellenic Veterinary Medical Society, 68(4), 613-620.
  • Food and Drug Administration Compliance Program Guidance Manual (Accessed at 03.05.2019).
  • Food Safety Authority of Ireland. (2011). Staphylococcus aureus. Microbial Fact Sheet Series, 1, 1-5.
  • Frank, J.A, Reich, C.I, Sharma, S., Weisbaum, J.S, Wilson, B.A, Olsen, G.J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74, 2461-2470.
  • Frankenberg, L., Brugna, M., Hederstedt, L. (2002). Enterococcus faecalis Heme-dependent catalase. Journal of Bacteriology, 184, 6351-6356.
  • Gökmen, N., Gürbüz, Ü., Torlak, E., İnal, M. (2013). Identification of Staphylococcus spp. isolated in different production stages of white cheese and detection of enterotoxin. Kocatepe Veterinary Journal, 6(2), 7-11.
  • Göncüoğlu, M., Ormancı, F.S.B., Doğru, A.K. (2009). Beyaz peynir üretiminde Enterococcus faecium’un starter kültür olarak kullanılması, Ankara Üniversitesi Veteriner Fakültesi Dergisi, 56, 249-254.
  • Hanchi, H., Mottawea, W., Sebei, K., Hammami, R. (2018). The Genus Enterococcus: Between probiotic potential and safety concerns-An Update. Frontiers in Microbiology, 9, 1791.
  • Harrison, E.M., Weinert, L.A., Holden, M.T.G., Welch, J.J, Wilson, K, Morgan F.J.E., Harris S.R., Loeffler, A., Boag, A.K., Peacock, S.J., Paterson, G.K, Waller, A.S., Parkhill, J., Holmes, M.A. (2014). A shared population of epidemic methicillin-resistant Staphylococcus aureus 15 circulates in humans and companion animals. Molecular Biology, 5(3), 00985-13.
  • Hennekinne, J.A., De Buyser, M.L., Dragacci, S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews 36, 815-836.
  • Herrera, F.C., Garcia-Lopez, M., Santos, J.A. (2016). Short communication: Characterization of methicillin-resistant Staphylococcus aureus isolated from raw milk fresh cheese in Colombia, Journal of Dairy Science, 99 (10), 7872-7876.
  • (Accessed at 13.02.2020).
  • Kadiroğlu, P., Korel, F., Ceylan, C. (2014). Quantification of Staphylococcus aureus in white cheese by the improved DNA extraction strategy combined with TaqMan and LNA probe-based qPCR. Journal of Microbiological Methods, 105, 92-97.
  • Kateete,D.P., Kimanil, C.N., Fred A Katabazi, F.A., Okeng, A., Okee, M.S.,Nanteza, A., Moses Joloba, M.L., Najjuka, F.C. (2010). Identification of Staphylococcus aureus: dNaseand mannitol salt agar improve the efficiency of the tube coagulase test. Annals of Clinical Microbiology and Antimicrobials, 9(23), 1-7.
  • Kümmel, J., Stessl, B., Gonano, M., Walcher,G., Bereuter,O., Fricker, M., Grunert, T., Wagner, M., Ehling-Schulz, M.(2016).Staphylococcus aureus entrance into the dairy chain: tracking S.aureus from Dairy Cow to Cheese. Frontiers in Microbiology, 7, 1603.
  • Mazhar, S., Hill, C., McAuliffe, O. (2018). A rapid PCR-based method to discriminate Macrococcus caseolyticus and Macrococcus canis from closely-related Staphylococcus species based on the ctaC gene sequence. Journal of Microbiological Methods, 152, 36-38.
  • Monte, D.F.M., Júnior,W.D., Abley, M., Gebreyes, W.A., De Oliveira, C. J. B., Júnior, Melanie, Abley, W.D. L., Wondwossen, A.G., De Oliveira, C.J.B. (2018). Antimicrobial resistance and genotypic relatedness of environmental Staphylococci in semi-extensive dairy farms.Veterinary and Animal Science, 6, 103-106.
  • Nazli, B. (1998). Researches on the ripening of turkish fermented sausage using a local starter culture combination.Turkish Journal of Veterinary and Animal Sciences, 22, 393-397.
  • Nunes, R.C.S., Aquila, E.M.D., Paschoalin, W.M.F. (2015). Safety evaluation of the coagulase-negative Staphylococci microbiota of salami: superantigenic toxin production and antimicrobial resistance. BioMed Research International, 483548, 1-17.
  • Özseven, A.G., Çetin, E.S., Arıdoğan, B.C., Çiftçi, E., Özseven, L. (2011). Antimicrobial Susceptibility of Enterococci Isolated from Various Clinical Specimens, Ankem Dergisi, 25(4), 256-262.
  • Pollitt, E.J.G., Szkuta, P.T., Burns, N., Foster S.J. (2018). Staphylococcus aureus infection dynamics. PLoS Pathogens, 14(6), e1007112.
  • Quast, C., Pruesse, E., Yilmaz, P., Gerken J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic acid Research, 4, 590-596.
  • Saka, E., Gulel, G.T. (2018). detection of enterotoxin genes and methicillin-resistance in Staphylococcus aureus isolated from water buffalo milk and dairy products, Journal of Food Science, 83(6), 1716-1722.
  • Sanders, M.E., Akkermans, L.M.A., Haller, D., Hammerman, C., Heimbach, J.T., Hörmannsperger, G., Huys, G. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1,164-185.
  • Schwendener, S. Cotting, K., Perreten, V. (2017). Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Scientific Reports, 7, 43797.
  • Staphylococcal food intoxication. Division of disease control (2016). (Accessed at 14.02.2019). Suardana, I.W. (2014). Analysis of nucleotide sequences of the 16S rRNA gene of novel Escherichia coli Strains isolated from feces of human and Bali Cattle. Journal of Nucleic Acids, 475754, 1-7.
  • Suzzi G., Caruso M., Gardini F., Lombardi A., Vannini L., Guerzoni M. E., Andrighetto, C., Lanorte, M.T. (2000). A survey of the enterococci isolated from an artisanal Italian goat’s cheese (Semicotto Caprino). Journal of Applied Microbiology, 89(2), 267–274.
  • Temelli, S., Anar, S., Sen, C., Akyuva, P. (2006). Determination of microbiological contamination sources during Turkish white cheese production. Food Control, 17, 856-861.
  • Turkish Food Codex Microbiological Criteria, Official journal (29 December 2011), General Directorate of Prime Ministry Legislation Development and Publication, 28157.
  • Yildirim, T., Sadati, F., Kocaman, B., Sirieken, B. (2019). Staphylococcus aureus and Staphylococcal enterotoxin detection in raw milk and cheese origin coagulase positive isolates. International Journal of Science Letters, (1), 30-41.
  • Younis, A., Krifucks, O., Heller, E.D., Samra, Z., Glickman, A., Saran Leitner, G. (2003). Staphylococcus aureus exosecretions and bovine mastitis. Journal of Veterinary Medicine, 50(1), 1-7.
  • Yücel, N., Anıl, Y. (2011). Identification and antimicrobial susceptibility of Staphylococcus aureus and coagulase negative staphylococci isolated from raw milk and cheese samples. Turk Hijyen ve Deneysel Biyoloji Dergisi, 68(2), 73-78.
Primary Language en
Subjects Biology
Journal Section Research Articles

Orcid: 0000-0003-2836-778X
Author: Elif BOZCAL (Primary Author)
Institution: Istanbul University
Country: Turkey

Thanks This study was partly presented as an oral presentation at the 2nd International Eurasian Conference on Biological and Chemical Sciences (EurasianBioChem 2019) Ankara-Turkey, 28-29 June 2019). The Author used the facilities of BM Labosis (Ankara,Turkey) for the Sanger Sequencing.

Application Date : November 13, 2019
Acceptance Date : February 29, 2020
Publication Date : May 4, 2020

Bibtex @research article { jfhs646615, journal = {Food and Health}, issn = {}, eissn = {2602-2834}, address = {Vidin Caddesi No:28 D:4 Kocamustafapaşa 34107 Fatih İstanbul}, publisher = {Özkan ÖZDEN}, year = {2020}, volume = {6}, pages = {151 - 159}, doi = {10.3153/FH20016}, title = {Isolation and identification of Staphylococcus aureus obtained from cheese samples}, key = {cite}, author = {Bozcal, Elif} }
APA Bozcal, E . (2020). Isolation and identification of Staphylococcus aureus obtained from cheese samples . Food and Health , 6 (3) , 151-159 . DOI: 10.3153/FH20016
MLA Bozcal, E . "Isolation and identification of Staphylococcus aureus obtained from cheese samples" . Food and Health 6 (2020 ): 151-159 <>
Chicago Bozcal, E . "Isolation and identification of Staphylococcus aureus obtained from cheese samples". Food and Health 6 (2020 ): 151-159
RIS TY - JOUR T1 - Isolation and identification of Staphylococcus aureus obtained from cheese samples AU - Elif Bozcal Y1 - 2020 PY - 2020 N1 - doi: 10.3153/FH20016 DO - 10.3153/FH20016 T2 - Food and Health JF - Journal JO - JOR SP - 151 EP - 159 VL - 6 IS - 3 SN - -2602-2834 M3 - doi: 10.3153/FH20016 UR - Y2 - 2020 ER -
EndNote %0 Food and Health Isolation and identification of Staphylococcus aureus obtained from cheese samples %A Elif Bozcal %T Isolation and identification of Staphylococcus aureus obtained from cheese samples %D 2020 %J Food and Health %P -2602-2834 %V 6 %N 3 %R doi: 10.3153/FH20016 %U 10.3153/FH20016
ISNAD Bozcal, Elif . "Isolation and identification of Staphylococcus aureus obtained from cheese samples". Food and Health 6 / 3 (May 2020): 151-159 .
AMA Bozcal E . Isolation and identification of Staphylococcus aureus obtained from cheese samples. Food Health. 2020; 6(3): 151-159.
Vancouver Bozcal E . Isolation and identification of Staphylococcus aureus obtained from cheese samples. Food and Health. 2020; 6(3): 151-159.
IEEE E. Bozcal , "Isolation and identification of Staphylococcus aureus obtained from cheese samples", Food and Health, vol. 6, no. 3, pp. 151-159, May. 2020, doi:10.3153/FH20016