Year 2018, Volume 4 , Issue 1, Pages 63 - 79 2018-01-01


Sevgin DIBLAN [1] , Sevim KAYA [2]

Active packaging technology is one of the innovative methods for preserving of food products, and antimicrobial packaging films is a major branch and promising application of this technology. In order to control microbial spoilage and also contamination of pathogen onto processed or fresh food, antimicrobial agent(s) is/are incorporated into food packaging structure. Polymer type as a carrier of antimicrobial can be petroleum-based plastic or biopolymer: because of environmental concerns researchers have lean to development of biodegradable antimicrobial films. Antimicrobial substances can be organic acids, parabens, sulfites, nitrites, phosphates, alcohols, antibiotics and bacteriocins.  Succeed of antimicrobial film mainly depends on antimicrobial agent selection that antimicrobial should be chosen according to the food type packed, and deteriorative microbial flora of it. This review discussed the recent application of antimicrobial-active films for food protection. Also, their activity mechanisms against microorganisms, the effects of antimicrobials on food quality and of the film properties were presented.  

Active packaging, Antimicrobial, Food quality, Film properties
  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. Lwt-Food Science and Technology, 43(6), 837-842.
  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126.
  • Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Cummins, E., & Kerry, J. P. (2015). Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 4, 26-35.
  • Barzegar, H., Azizi, M. H., Barzegar, M., & Hamidi-Esfahani, Z. (2014). Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films. Carbohydrate Polymers, 110, 26-31.
  • Bastarrachea, L., Dhawan, S., & Sablani, S. S. (2011). Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Engineering Reviews, 3(2), 79-93.
  • Bastarrachea, L., Dhawan, S., Sablani, S. S., & Powers, J. (2010). Release kinetics of nisin from biodegradable poly(butylene adipate-co-terephthalate) films into water. Journal of Food Engineering, 100(1), 93-101.
  • Bhatia, S., & Bharti, A. (2015). Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film. Journal of Food Science and Technology-Mysore, 52(6), 3504-3512.
  • Bierhalz, A. C. K., da Silva, M. A., de Sousa, H. C., Braga, M. E. M., & Kieckbusch, T. G. (2013). Influence of natamycin loading methods on the physical characteristics of alginate active films. The Journal of Supercritical Fluids, 76, 74-82.
  • Bierhalz, A. C. K., da Silva, M. A., & Kieckbusch, T. G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 110(1), 18-25.
  • Branen, A. L., Davidson, P. M., Salminen, S., & Thorngate, J. (2001). Food additives: CRC Press.
  • Brennan, J. G., & Grandison, A. S. (2012). Food processing handbook: John Wiley & Sons.
  • Busolo, M. A., Fernandez, P., Ocio, M. J., & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Additives & Contaminants: Part A, 27(11), 1617-1626.
  • Campos-Requena, V. H., Rivas, B. L., Perez, M. A., Garrido-Miranda, K. A., & Pereira, E. D. (2015). Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release. European Polymer Journal, 71, 461-475.
  • Clarke, D., Molinaro, S., Tyuftin, A., Bolton, D., Fanning, S., & Kerry, J. P. (2016). Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment of their antimicrobial activity and impact on physical film properties. Food Control, 64, 202-211.
  • Cruz-Romero, M. C., Murphy, T., Morris, M., Cummins, E., & Kerry, J. P. (2013). Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 34(2), 393-397.
  • de Moura, M. R., Mattoso, L. H. C., & Zucolotto, V. (2012). Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering, 109(3), 520-524.
  • Dobias, J., Chudackova, K., Voldrich, M., & Marek, M. (2000). Properties of polyethylene films with incorporated benzoic anhydride and/or ethyl and propyl esters of 4-hydroxybenzoic acid and their suitability for food packaging. Food Additives and Contaminants, 17(12), 1047-1053.
  • Dotto, G. L., Buriol, C., & Pinto, L. A. A. (2014). Diffusional mass transfer model for the adsorption of food dyes on chitosan films. Chemical Engineering Research and Design, 92(11),2324-2332.
  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24.
  • Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Buyukcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging 'containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating' to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354-363.
  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182.
  • Echegoyen, Y., & Nerin, C. (2013). Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology, 62, 16-22.
  • El-Saharty, Y. S., & Bary, A. A. (2002). High-performance liquid chromatographic determination of neutraceuticals, glucosamine sulphate and chitosan, in raw materials and dosage forms. Analytica Chimica Acta, 462(1), 125-131.
  • Fucinos, C., Miguez, M., Cerqueira, M. A., Costa, M. J., Vicente, A. A., Rua, M. L., & Pastrana, L. M. (2015). Functional Characterisation and Antimicrobial Efficiency Assessment of Smart Nanohydrogels Containing Natamycin Incorporated into Polysaccharide-Based Films. Food and Bioprocess Technology, 8(7), 1430-1441.
  • Guo, M., Jin, T. Z., Wang, L., Scullen, O. J., & Sommers, C. H. (2014). Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat. Food Control, 40, 64-70.
  • Hauser, C., & Wunderlich, J. (2011). Antimicrobial packaging films with a sorbic acid based coating. Procedia Food Science, 1, 197-202.
  • Imran, M., Klouj, A., Revol-Junelles, A.-M., & Desobry, S. (2014). Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. Journal of Food Engineering, 143, 178-185.
  • Kaba, N., & Duyar, H. A. (2008). Antimikrobiyal Paketleme. Ege Üniversitesi Su Ürünleri Dergisi, 25(2), 181-185. Kapetanakou, A. E., Agathaggelou, E. I., & Skandamis, P. N. (2014). Storage of pork meat under modified atmospheres containing vapors from commercial alcoholic beverages. International Journal of Food Microbiology, 178, 65-75.
  • Kashiri, M., Cerisuelo, J. P., Dominguez, I., Lopez-Carballo, G., Hernandez-Munoz, P., & Gavara, R. (2016). Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE). Food Hydrocolloids, 61, 547-554.
  • Klangmuang, P., & Sothornvit, R. (2016). Barrier properties, mechanical properties and antimicrobial activity of hydroxypropyl methylcellulose-based nanocomposite films incorporated with Thai essential oils. Food Hydrocolloids, 61, 609-616.
  • Kumar, R., & Munstedt, H. (2005). Silver ion release from antimicrobial polyamide/silver composites. Biomaterials, 26(14), 2081-2088.
  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2013). Migration of antimicrobial agents from starch-based films into a food simulant. LWT - Food Science and Technology, 50(2), 432-438.
  • Kuplennik, N., Tchoudakov, R., Zelas, Z. B. B., Sadovski, A., Fishman, A., & Narkis, M. (2015). Antimicrobial packaging based on linear low-density polyethylene compounded with potassium sorbate. Lwt-Food Science and Technology, 62(1), 278-286.
  • Kurek, M., Laridon, Y., Torrieri, E., Guillard, V., Pant, A., Stramm, C., . . . Guillaume, C. (2017). A mathematical model for tailoring antimicrobial packaging material containing encapsulated volatile compounds. Innovative Food Science & Emerging Technologies, 42, 64-72.
  • Lantano, C., Alfieri, I., Cavazza, A., Corradini, C., Lorenzi, A., Zucchetto, N., & Montenero, A. (2014). Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging. Food Chemistry, 165, 342-347.
  • Li, W., Zhang, C., Chi, H., Li, L., Lan, T., Han, P., . . . Qin, Y. (2017). Development of Antimicrobial Packaging Film Made from Poly (Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles. Molecules, 22(7).
  • Liu, W., & Hansen, J. N. (1990). Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Applied and Environmental Microbiology, 56(8), 2551-2558.
  • Lorevice, M. V., Otoni, C. G., de Moura, M. R., & Mattoso, L. H. C. (2016). Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 52, 732-740.
  • Matsumura, Y., Yoshikata, K., Kunisaki, S. i., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278-4281.
  • Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41(6), 464-469.
  • Mulla, M., Ahmed, J., Al-Attar, H., Castro-Aguirre, E., Arfat, Y. A., & Auras, R. (2017). Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control, 73, 663-671.
  • O' Callaghan, K. A. M., & Kerry, J. P. (2014). Assessment of the antimicrobial activity of potentially active substances (nanoparticled and non-nanoparticled) against cheese-derived microorganisms. International Journal of Dairy Technology, 67(4), 483-489.
  • Olasupo, N. A., Fitzgerald, D. J., Gasson, M. J., & Narbad, A. (2003). Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 37(6), 448-451.
  • Ouattara, B., Simard, R. E., Piette, G., Bégin, A., & Holley, R. A. (2000). Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62(1), 139-148.
  • Ozdemir, M., & Floros, J. D. (2001). Analysis and modeling of potassium sorbate diffusion through edible whey protein films. Journal of Food Engineering, 47(2), 149-155.
  • Ozdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185-193.
  • Panea, B., Ripoll, G., González, J., Fernández-Cuello, Á., & Albertí, P. (2014). Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering, 123, 104-112.
  • Patiño, J. H., Henríquez, L. E., Restrepo, D., Mendoza, M. P., Lantero, M. I., & García, M. A. (2014). Evaluation of polyamide composite casings with silver–zinc crystals for sausages packaging. Food Packaging and Shelf Life, 1(1), 3-9.
  • Pekcan, G., Köksal, E., Küçükerdönmez, O., & Ozel, H. (2006). Household food wastage in Turkey. Rome, Italy: FAO.
  • Perez, L. M., Soazo, M. D., Balague, C. E., Rubiolo, A. C., & Verdini, R. A. (2014). Effect of pH on the effectiveness of whey protein/glycerol edible. films containing potassium sorbate to control non-O157 shiga toxin-producing Escherichia coli in ready-to-eat foods. Food Control, 37, 298-304.
  • Pires, A. C. D., Soares, N. D. F., de Andrade, N. J., do Silva, L. H. M., Camilloto, G. P., & Bernardes, P. C. (2008). Development and Evaluation of Active Packaging for Sliced Mozzarella Preservation. Packaging Technology and Science, 21(7), 375-383.
  • Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652.
  • Rhim, J. W., Wang, L. F., & Hong, S. I. (2013). Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids, 33(2), 327-335.
  • Ripoche, A. C., Chollet, E., Peyrol, E., & Sebti, I. (2006). Evaluation of nisin diffusion in a polysaccharide gel: Influence of agarose and fatty content. Innovative Food Science & Emerging Technologies, 7(1-2), 107-111.
  • Rodriguez-Martinez, A. V., Sendon, R., Abad, M. J., Gonzalez-Rodriguez, M. V., Barros-Velazquez, J., Aubourg, S. P., . . . de Quiros, A. R. B. (2016). Migration kinetics of sorbic acid from polylactic acid and seaweed based films into food simulants. LWT-Food Science and Technology, 65, 630-636.
  • Sanchez-Valdes, S., Ortega-Ortiz, H., Valle, L. F. R. D., Medellin-Rodriguez, F. J., & Guedea-Miranda, R. (2009). Mechanical and Antimicrobial Properties of Multilayer Films with a Polyethylene/Silver Nanocomposite Layer. Journal of Applied Polymer Science, 111(2), 953-962.
  • Sebti, I., Carnet, A. R., Blanc, D., Saurel, R., & Coma, V. (2003). Controlled Diffusion of an Antimicrobial Peptide from a Biopolymer Film. Chemical Engineering Research and Design, 81(9), 1099-1104.
  • Shemesh, R., Krepker, M., Goldman, D., Danin-Poleg, Y., Kashi, Y., Nitzan, N., . . . Segal, E. (2015). Antibacterial and antifungal LDPE films for active packaging. Polymers for Advanced Technologies, 26(1), 110-116.
  • Silveira, M. F. A., Soares, N. F. F., Geraldine, R. M., Andrade, N. J., & Goncalves, M. P. J. (2007). Antimicrobial efficiency and sorbic acid migration from active films into pastry dough. Packaging Technology and Science, 20(4), 287-292.
  • Siripatrawan, U., & Noipha, S. (2012). Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocolloids, 27(1), 102-108.
  • Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids, 61, 695-702.
  • Sohaib, M., Anjum, F. M., Arshad, M. S., & Rahman, U. U. (2016). Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. Journal of Food Science and Technology-Mysore, 53(1), 19-30.
  • Song, H., Li, B., Lin, Q. B., Wu, H. J., & Chen, Y. (2011). Migration of silver from nanosilver-polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A, 28(12), 1758-1762.
  • Soysal, C., Bozkurt, H., Dirican, E., Guclu, M., Bozhuyuk, E. D., Uslu, A. E., & Kaya, S. (2015). Effect of antimicrobial packaging on physicochemical and microbial quality of chicken drumsticks. Food Control, 54, 294-299.
  • Sung, S.-Y., Sin, L. T., Tee, T.-T., Bee, S.-T., Rahmat, A., Rahman, W., Tan, A. C., & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123.
  • Takala, P. N., Vu, K. D., Salmieri, S., Khan, R. A., & Lacroix, M. (2013). Antibacterial effect of biodegradable active packaging on the growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in fresh broccoli stored at 4 degrees C. LWT-Food Science and Technology, 53(2), 499-506.
  • Teerakarn, A., Hirt, D. E., Acton, J. C., Rieck, J. R., & Dawson, P. L. (2002). Nisin diffusion in protein films: Effects of film type and temperature. Journal of Food Science, 67(8), 3019-3025.
  • von Goetz, N., Fabricius, L., Glaus, R., Weitbrecht, V., Gunther, D., & Hungerbuhler, K. (2013). Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Additives & Contaminants: Part A, 30(3), 612-620. Wang, H. L., Hao, L. L., Wang, P., Chen, M. M., Jiang, S. W., & Jiang, S. T. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids, 63, 437-446.
  • Wang, H. L., Zhang, R., Zhang, H., Jiang, S. W., Liu, H., Sun, M., & Jiang, S. T. (2015). Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol). Carbohydrate Polymers, 127, 64-71.
  • Yoshida, C. M. P., Bastos, C. E. N., & Franco, T. T. (2010). Modeling of potassium sorbate diffusion through chitosan films. LWT - Food Science and Technology, 43(4), 584-589.
  • Zendo, T., Nakayama, J., Fujita, K., & Sonomoto, K. (2008). Bacteriocin detection by liquid chromatography/mass spectrometry for rapid identification. Journal of Applied Microbiology, 104(2), 499-507.
  • Zhou, F., Ji, B. P., Zhang, H., Jiang, H., Yang, Z. W., Li, J. J., Li, J. H., Ren, Y. L., &Yan, W. J. (2007). Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella typhimurium. Journal of Food Protection, 70(7), 1704-1709.
Subjects Food Science and Technology
Journal Section Articles

Orcid: 0000-0002-7998-4801
Author: Sevgin DIBLAN (Primary Author)
Country: Turkey

Orcid: 0000-0003-4790-7630
Author: Sevim KAYA
Country: Turkey


Application Date : July 14, 2017
Acceptance Date : October 17, 2017
Publication Date : January 1, 2018

Bibtex @review { jfhs328488, journal = {Food and Health}, issn = {}, eissn = {2602-2834}, address = {Vidin Caddesi No:28 D:4 Kocamustafapaşa 34107 Fatih İstanbul}, publisher = {Özkan ÖZDEN}, year = {2018}, volume = {4}, pages = {63 - 79}, doi = {10.3153/JFHS18007}, title = {ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS}, key = {cite}, author = {Dıblan, Sevgin and Kaya, Sevim} }
APA Dıblan, S , Kaya, S . (2018). ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS . Food and Health , 4 (1) , 63-79 . DOI: 10.3153/JFHS18007
MLA Dıblan, S , Kaya, S . "ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS" . Food and Health 4 (2018 ): 63-79 <>
Chicago Dıblan, S , Kaya, S . "ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS". Food and Health 4 (2018 ): 63-79
RIS TY - JOUR T1 - ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS AU - Sevgin Dıblan , Sevim Kaya Y1 - 2018 PY - 2018 N1 - doi: 10.3153/JFHS18007 DO - 10.3153/JFHS18007 T2 - Food and Health JF - Journal JO - JOR SP - 63 EP - 79 VL - 4 IS - 1 SN - -2602-2834 M3 - doi: 10.3153/JFHS18007 UR - Y2 - 2017 ER -
EndNote %0 Food and Health ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS %A Sevgin Dıblan , Sevim Kaya %T ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS %D 2018 %J Food and Health %P -2602-2834 %V 4 %N 1 %R doi: 10.3153/JFHS18007 %U 10.3153/JFHS18007
ISNAD Dıblan, Sevgin , Kaya, Sevim . "ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS". Food and Health 4 / 1 (January 2018): 63-79 .
AMA Dıblan S , Kaya S . ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS. Food Health. 2018; 4(1): 63-79.
Vancouver Dıblan S , Kaya S . ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS. Food and Health. 2018; 4(1): 63-79.
IEEE S. Dıblan and S. Kaya , "ANTIMICROBIALS USED IN ACTIVE PACKAGING FILMS", Food and Health, vol. 4, no. 1, pp. 63-79, Jan. 2018, doi:10.3153/JFHS18007