Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 41 Sayı: 6, 1209 - 1220, 29.12.2023

Öz

Kaynakça

  • REFERENCES
  • [1] Siddique M. Potential Effect of Biomass Addition with Pakistani Low Rank Coal on Emission of SO2. J Appl Emerg Sci 2016;6:6–8.
  • [2] Siddique M, Soomro S. An Overview of Recent Advances and Novel Synthetic Approaches for Lignocellulosic derived Biofuels. Jurnal Kejuruteraan 2021;33:165–173. [CrossRef]
  • [3] Siddique M. Effective Use of Tree Leaves With Pakistani Coal Through Co-Firing. EESD 2016;167.
  • [4] Siddique M. Effect of Blending Ratio of Coal and Biomass on NOx Emission Regarding CoFiring. J Appl Emerg Sci 2017;7:34–39.
  • [5] Jatoi AS. To investigate the optimized conditions of salt bridge for bio-electricity generation from distillery wastewater using microbial fuel cell. NUST J Eng Sci 2016;9:29–34.
  • [6] Siddique M. Lignin rich energy recovery from lignocellulosic plant biomass into biofuel production. J Nat Appl Res 2021;1:57–70.
  • [7] Baloch A. Removal of Zinc (II) from municipal wastewater using chemically modified activated carbon developed from Rice husk and Kikar charcoal. J Appl Emerg Sci 2019;9:41. [CrossRef]
  • [8] Neelam A. Analysis of physical, mechanical and thermal degradation of gelatin-based film–exploring the biopolymer for plastic advancement. J Appl Emerg Sci 2018;8:39–47. [CrossRef]
  • [9] Kakar G. Experimental Evaluation of Corrosion for Aluminum Alloy in Aerated NaCl Solutions under Turbulent Hydrodynamic Conditions. J Appl Emerg Sci 2018;7:172–177.
  • [10] Siddique M. Effect of Blending Ratio of Coal and Biomass on NOx Emission Regarding Co-Firing. J Appl Emerg Sci 2017;7:34–39.
  • [11] Akhter F. Pollutant Removal efficiency of electrocoagulation method from industrial wastewater: Comparison with other treatment methods and key operational parameters—a comparative study review. Water Air Soil Pollut 2021;232:1–13. [CrossRef]
  • [12] Amin M. Effect of coagulant extracted from almond nutshell (Prunus amygdalus) on synthetic turbid water. In: Proceedings of the RSEA2016; 2016; Colombo, Sri Lanka. Int Res Sympo Engi Advance (IRSEA) SAITM, Malabe.
  • [13] Zhang Y, Wang H. Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties. Eur Polym J 2021;150:110389. [CrossRef]
  • [14] Siddique M, Soomro SA, Aziz S, Suri SUK, Akhter F, Naeem Qaisrani Z. Potential Techniques for Conversion of Lignocellulosic Biomass into Biofuels. Pak J Anal Environ Chem. 2022;23:21–31. [CrossRef]
  • [15] Melro E, Filipe A. Dissolution of kraft lignin in alkaline solutions. Int J Biol Macromol 2020;148:688–695. [CrossRef]
  • [16] Su C, Gan T. Enhancement of the antioxidant abilities of lignin and lignin-carbohydrate complex from wheat straw by moderate depolymerization via LiCl/DMSO solvent catalysis. Int J Biol Macromol 2021;184:369–379. [CrossRef]
  • [17] Nassar HN. Sustainable ecofriendly recruitment of bioethanol fermentation lignocellulosic spent waste biomass for the safe reuse and discharge of petroleum production produced water via biosorption and solid biofuel production. J Hazard Mater 2022;422:126845. [CrossRef]
  • [18] Vieira S, Barros MV. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour Technol 2020;299:122635. [CrossRef]
  • [19] Chen J. Efficient conversion of raw lignocellulose to levulinic acid and lignin nano-spheres in acidic lithium bromide-water system by two-step process. Bioresour Technol 2022;343:126130. [CrossRef]
  • [20] Langsdorf A. Material utilization of green waste: a review on potential valorization methods. Bioresour Bioprocess 2021;8:1–26. [CrossRef]
  • [21] Huang C. Lignin-enzyme interaction: a roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew Sustain Energy Rev 2022;154:111822. [CrossRef]
  • [22] Nayak S, Mukherjee AK. Management of agricultural wastes using microbial agents. Waste Manag Chall Threat Oppor 2015;65–91.
  • [23] Çolakoğlu B. Tarımsal atıkların alternatif kullanım alanları konusunda üretici eğilimleri. Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. Tekirdag, Türkiye. 2018.
  • [24] Jadhav AR, Girde AV, More SM, More SB, Khan S. Cellulase production by utilizing agricultural wastes. Res J Agric Biol Sci 2013;1:6–9. [CrossRef]
  • [25] El-Dalatony MM, Salama ES, Kurade MB, Hassan SH, Oh SE, Kim S, Jeon BH. Utilization of microalgal biofractions for bioethanol, higher alcohols, and biodiesel production: A review. Energies 2017;10:2110. [CrossRef]
  • [26] Papini A, Simeone MC. Forest resources for second-generation biofuel production. Scand J For Res 2010;25:126–133. [CrossRef]
  • [27] Harding KJ, Twine TE, VanLoocke A, Bagley JE, Hill J. Impacts of second‐generation biofuel feedstock production in the central US on the hydrologic cycle and global warming mitigation potential. Geophys Res Lett 2016;43:10–773. [CrossRef]
  • [28] Demain AL, Newcomb M, Wu JD. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005;69:124–154. [CrossRef]
  • [29] Akkaya A. Kara Nadas-Buğday/Arpa Üretim Sistemi Yerine Sürdürülebilir Sistemler İkame Edilmelidir. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 2016;25:280–291. [CrossRef]
  • [30] Açıkgöz E. Yem bitkileri. Uludağ Üniversitesi Güçlendirme Vakfı Yayın. Yayın No:182. 2001.
  • [31] Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 2002;59:529–534. [CrossRef]
  • [32] Singh DP, Prabha R. Bioconversion of agricultural wastes into high-value biocompost: a route to livelihood generation for farmers. Adv Recycl Waste Manag 2017;137.
  • [33] Kadarmoidheen M, Saranraj P, Stella D. Effect of cellulolytic fungi on the degradation of cellulosic agricultural wastes. Int J Curr Microbiol Appl Sci 2012;1:13–23.
  • [34] Kümmerer K. Resistance in the environment. J Antimicrob Chemother 2004;54:311–320. [CrossRef] [35] Iqbal N, Agrawal A, Dubey S, Kumar J. Role of Decomposers in Agricultural Waste Management. In: Biomass. IntechOpen. 2020. [CrossRef]
  • [36] Leow CW, Van Fan Y, Chua LS, Muhamad II, Klemes JJ, Lee CT. A review on application of microorganisms for organic waste management. Chem Eng Trans 2018;63:85–90.
  • [37] Singh S, Nain L. Microorganisms in the conversion of agricultural wastes to compost. Proc Indian Natl Sci Acad 2014;80:473–481. [CrossRef]
  • [38] Soundar S, Chandra TS. Cellulose degradation by a mixed bacterial culture. J Ind Microbiol 1987;2:257–265. [CrossRef]
  • [39] Bayar R, Yılmaz M. Ayaş İlçesi arazi örtüsü içerisinde tarım alanlarının değerlendirilmesi. In: Ayaş Sempozyumu Kitabı. 2018;2:105119.
  • [40] Bayar R. Ayaş İlçesinde Arazi Örtüsü ve Arazi Kullanımı. Eskişehir: Pegem Akademi; 2018. [CrossRef]
  • [41] Afzal I, Shah AA, Makhdum Z, Hameed A, Hasan F. Isolation and characterization of cellulase producing Bacillus cereus MRLB1 from soil. Minerva Biotecnol 2012;24:101–109.
  • [42] Venkata NRE, Goli D, Rajesh T, Asra P. Screening and isolation of cellulase producing bacteria from dump yards of vegetable wastes. World J Pharm Pharm Sci 2013;3:428–435.
  • [43] Manzanera M, Narváez-Reinaldo JJ, García-Fontana C, Vílchez JI, González-López J. Genome sequence of Arthrobacter koreensis 5J12A, a plant growth-promoting and desiccation- tolerant strain. Genome Announc 2015;3:e00648–15. [CrossRef]
  • [44] Jana GA, Al-Yahyai R, Yaish MW. Genome sequencing of Microbacterium sp. Yaish 1, a bacterial strain isolated from the rhizosphere of date palm trees affected by salinity. Genome Announc 2017;5:e01247–17. [CrossRef]
  • [45] Ortíz-Castro R, Valencia-Cantero E, López-Bucio J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 2008;3:263–265. [CrossRef]
  • [46] Martinez SA, Dussan J. Lysinibacillus sphaericus plant growth promoter bacteria and lead phytoremediation enhancer with Canavalia ensiformis. Environ Prog Sustain Energy 2017;37:276– 282. [CrossRef]
  • [47] Chirak EL, Orlova OV, Aksenova TS, Kichko AA, Chirak ER, Provorov NA, Andronov EE. Dynamics of chernozem microbial community during biodegradation of cellulose and barley straw. Sel’skokhozyaistvennaya Biologiya (Agricultural Biology) 2017;52:588–596. [CrossRef]

Bacterial populations metabolizing barley straw from agricultural soils

Yıl 2023, Cilt: 41 Sayı: 6, 1209 - 1220, 29.12.2023

Öz

The aim of this study was to determinate the bacterial communities that have potential to use and metabolize barley straw wastes at agricultural soils. Combination of different techniques; traditional isolation methods, metabolism-based methods such as Biolog Ecoplate and high-throughput sequencing of amplified 16S rRNA gene method were used for detailed analysis of samples taken from agricultural fields. Groups of bacteria isolated using barley straw-containing media belonged to the genus Arthrobacter and Bacillus. The Biolog Ecoplate analysis revealed the bacterial metabolic diversity. The AWCD, R, H index results showed that a great potential of substrate utilization ability of the barley straw metabolizing microbial community and greater functional diversity of samples. The Illumina MiSeq sequencing was used to analyse diversity of microbial community associated with barley straw degradation. 16S rRNA gene amplicons indicated that samples showed great bacterial richness. At the phylum level, members of the phyla Proteobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, Actinobacteria and Firmicutes were found to be intense. However, there were differences among the examples. At genus level Luteimonas and Sphingomonas were dominant in L1-30 and L2-15, in addition Bacillus was in high rate in L1-15 and Brevundimonas, Flavisolibacter and Altererythrobacter were detected in high rate in L2-30 sample. According to these results, the bacterial community can be used for properly decomposition of barley straw wastes which are common wastes in agricultural strategy.

Kaynakça

  • REFERENCES
  • [1] Siddique M. Potential Effect of Biomass Addition with Pakistani Low Rank Coal on Emission of SO2. J Appl Emerg Sci 2016;6:6–8.
  • [2] Siddique M, Soomro S. An Overview of Recent Advances and Novel Synthetic Approaches for Lignocellulosic derived Biofuels. Jurnal Kejuruteraan 2021;33:165–173. [CrossRef]
  • [3] Siddique M. Effective Use of Tree Leaves With Pakistani Coal Through Co-Firing. EESD 2016;167.
  • [4] Siddique M. Effect of Blending Ratio of Coal and Biomass on NOx Emission Regarding CoFiring. J Appl Emerg Sci 2017;7:34–39.
  • [5] Jatoi AS. To investigate the optimized conditions of salt bridge for bio-electricity generation from distillery wastewater using microbial fuel cell. NUST J Eng Sci 2016;9:29–34.
  • [6] Siddique M. Lignin rich energy recovery from lignocellulosic plant biomass into biofuel production. J Nat Appl Res 2021;1:57–70.
  • [7] Baloch A. Removal of Zinc (II) from municipal wastewater using chemically modified activated carbon developed from Rice husk and Kikar charcoal. J Appl Emerg Sci 2019;9:41. [CrossRef]
  • [8] Neelam A. Analysis of physical, mechanical and thermal degradation of gelatin-based film–exploring the biopolymer for plastic advancement. J Appl Emerg Sci 2018;8:39–47. [CrossRef]
  • [9] Kakar G. Experimental Evaluation of Corrosion for Aluminum Alloy in Aerated NaCl Solutions under Turbulent Hydrodynamic Conditions. J Appl Emerg Sci 2018;7:172–177.
  • [10] Siddique M. Effect of Blending Ratio of Coal and Biomass on NOx Emission Regarding Co-Firing. J Appl Emerg Sci 2017;7:34–39.
  • [11] Akhter F. Pollutant Removal efficiency of electrocoagulation method from industrial wastewater: Comparison with other treatment methods and key operational parameters—a comparative study review. Water Air Soil Pollut 2021;232:1–13. [CrossRef]
  • [12] Amin M. Effect of coagulant extracted from almond nutshell (Prunus amygdalus) on synthetic turbid water. In: Proceedings of the RSEA2016; 2016; Colombo, Sri Lanka. Int Res Sympo Engi Advance (IRSEA) SAITM, Malabe.
  • [13] Zhang Y, Wang H. Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties. Eur Polym J 2021;150:110389. [CrossRef]
  • [14] Siddique M, Soomro SA, Aziz S, Suri SUK, Akhter F, Naeem Qaisrani Z. Potential Techniques for Conversion of Lignocellulosic Biomass into Biofuels. Pak J Anal Environ Chem. 2022;23:21–31. [CrossRef]
  • [15] Melro E, Filipe A. Dissolution of kraft lignin in alkaline solutions. Int J Biol Macromol 2020;148:688–695. [CrossRef]
  • [16] Su C, Gan T. Enhancement of the antioxidant abilities of lignin and lignin-carbohydrate complex from wheat straw by moderate depolymerization via LiCl/DMSO solvent catalysis. Int J Biol Macromol 2021;184:369–379. [CrossRef]
  • [17] Nassar HN. Sustainable ecofriendly recruitment of bioethanol fermentation lignocellulosic spent waste biomass for the safe reuse and discharge of petroleum production produced water via biosorption and solid biofuel production. J Hazard Mater 2022;422:126845. [CrossRef]
  • [18] Vieira S, Barros MV. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour Technol 2020;299:122635. [CrossRef]
  • [19] Chen J. Efficient conversion of raw lignocellulose to levulinic acid and lignin nano-spheres in acidic lithium bromide-water system by two-step process. Bioresour Technol 2022;343:126130. [CrossRef]
  • [20] Langsdorf A. Material utilization of green waste: a review on potential valorization methods. Bioresour Bioprocess 2021;8:1–26. [CrossRef]
  • [21] Huang C. Lignin-enzyme interaction: a roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew Sustain Energy Rev 2022;154:111822. [CrossRef]
  • [22] Nayak S, Mukherjee AK. Management of agricultural wastes using microbial agents. Waste Manag Chall Threat Oppor 2015;65–91.
  • [23] Çolakoğlu B. Tarımsal atıkların alternatif kullanım alanları konusunda üretici eğilimleri. Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi. Tekirdag, Türkiye. 2018.
  • [24] Jadhav AR, Girde AV, More SM, More SB, Khan S. Cellulase production by utilizing agricultural wastes. Res J Agric Biol Sci 2013;1:6–9. [CrossRef]
  • [25] El-Dalatony MM, Salama ES, Kurade MB, Hassan SH, Oh SE, Kim S, Jeon BH. Utilization of microalgal biofractions for bioethanol, higher alcohols, and biodiesel production: A review. Energies 2017;10:2110. [CrossRef]
  • [26] Papini A, Simeone MC. Forest resources for second-generation biofuel production. Scand J For Res 2010;25:126–133. [CrossRef]
  • [27] Harding KJ, Twine TE, VanLoocke A, Bagley JE, Hill J. Impacts of second‐generation biofuel feedstock production in the central US on the hydrologic cycle and global warming mitigation potential. Geophys Res Lett 2016;43:10–773. [CrossRef]
  • [28] Demain AL, Newcomb M, Wu JD. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005;69:124–154. [CrossRef]
  • [29] Akkaya A. Kara Nadas-Buğday/Arpa Üretim Sistemi Yerine Sürdürülebilir Sistemler İkame Edilmelidir. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi 2016;25:280–291. [CrossRef]
  • [30] Açıkgöz E. Yem bitkileri. Uludağ Üniversitesi Güçlendirme Vakfı Yayın. Yayın No:182. 2001.
  • [31] Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 2002;59:529–534. [CrossRef]
  • [32] Singh DP, Prabha R. Bioconversion of agricultural wastes into high-value biocompost: a route to livelihood generation for farmers. Adv Recycl Waste Manag 2017;137.
  • [33] Kadarmoidheen M, Saranraj P, Stella D. Effect of cellulolytic fungi on the degradation of cellulosic agricultural wastes. Int J Curr Microbiol Appl Sci 2012;1:13–23.
  • [34] Kümmerer K. Resistance in the environment. J Antimicrob Chemother 2004;54:311–320. [CrossRef] [35] Iqbal N, Agrawal A, Dubey S, Kumar J. Role of Decomposers in Agricultural Waste Management. In: Biomass. IntechOpen. 2020. [CrossRef]
  • [36] Leow CW, Van Fan Y, Chua LS, Muhamad II, Klemes JJ, Lee CT. A review on application of microorganisms for organic waste management. Chem Eng Trans 2018;63:85–90.
  • [37] Singh S, Nain L. Microorganisms in the conversion of agricultural wastes to compost. Proc Indian Natl Sci Acad 2014;80:473–481. [CrossRef]
  • [38] Soundar S, Chandra TS. Cellulose degradation by a mixed bacterial culture. J Ind Microbiol 1987;2:257–265. [CrossRef]
  • [39] Bayar R, Yılmaz M. Ayaş İlçesi arazi örtüsü içerisinde tarım alanlarının değerlendirilmesi. In: Ayaş Sempozyumu Kitabı. 2018;2:105119.
  • [40] Bayar R. Ayaş İlçesinde Arazi Örtüsü ve Arazi Kullanımı. Eskişehir: Pegem Akademi; 2018. [CrossRef]
  • [41] Afzal I, Shah AA, Makhdum Z, Hameed A, Hasan F. Isolation and characterization of cellulase producing Bacillus cereus MRLB1 from soil. Minerva Biotecnol 2012;24:101–109.
  • [42] Venkata NRE, Goli D, Rajesh T, Asra P. Screening and isolation of cellulase producing bacteria from dump yards of vegetable wastes. World J Pharm Pharm Sci 2013;3:428–435.
  • [43] Manzanera M, Narváez-Reinaldo JJ, García-Fontana C, Vílchez JI, González-López J. Genome sequence of Arthrobacter koreensis 5J12A, a plant growth-promoting and desiccation- tolerant strain. Genome Announc 2015;3:e00648–15. [CrossRef]
  • [44] Jana GA, Al-Yahyai R, Yaish MW. Genome sequencing of Microbacterium sp. Yaish 1, a bacterial strain isolated from the rhizosphere of date palm trees affected by salinity. Genome Announc 2017;5:e01247–17. [CrossRef]
  • [45] Ortíz-Castro R, Valencia-Cantero E, López-Bucio J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 2008;3:263–265. [CrossRef]
  • [46] Martinez SA, Dussan J. Lysinibacillus sphaericus plant growth promoter bacteria and lead phytoremediation enhancer with Canavalia ensiformis. Environ Prog Sustain Energy 2017;37:276– 282. [CrossRef]
  • [47] Chirak EL, Orlova OV, Aksenova TS, Kichko AA, Chirak ER, Provorov NA, Andronov EE. Dynamics of chernozem microbial community during biodegradation of cellulose and barley straw. Sel’skokhozyaistvennaya Biologiya (Agricultural Biology) 2017;52:588–596. [CrossRef]
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Research Articles
Yazarlar

Nilgün Poyraz 0000-0002-5861-7922

Suat Sezen 0000-0002-5901-5747

Mehmet Burçin Mutlu 0000-0002-9404-6389

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 10 Aralık 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 41 Sayı: 6

Kaynak Göster

Vancouver Poyraz N, Sezen S, Mutlu MB. Bacterial populations metabolizing barley straw from agricultural soils. SIGMA. 2023;41(6):1209-20.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/