Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 25 Sayı: 4, 1086 - 1101, 30.08.2021
https://doi.org/10.16984/saufenbilder.897660

Öz

Kaynakça

  • Referance [1] R.S. Singh, K. Chauhan, J.F..A Kennedy, “Panorama of bacterial inulinases: production, purification, characterization and industrial applications,” International journal of biological macromolecules, vol. 96, pp. 312-322, 2017.
  • Referance [2] F. Gong, T. Zhang, Z. Chi, J. Sheng, J. Li, and X. Wang, “Purification and characterization of extracellular inulinase from marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase,” Biotechnol Bioproc E., vol. 34, pp. 179-185, 2008.
  • Referance [3] P.K. Gill, R.K. Manhas, and P. Singh, “Purification and properties of a heat-stable exoinulinase isoform from Aspergillus fumigatus,” Bioresour Technol, vol. 97, no. 7, pp. 894-902, 2006.
  • Referance [4] M. Germec, and I. Turhan, “Partial purification and characterization of Aspergillus niger inulinase produced from sugar-beet molasses in the shaking incubator and stirred-tank bioreactors,” Int.l J Biol Macromol, vol. 64, pp. 3789-3799, 2020.
  • Referance [5] D. Das, M.R. Bhat and R. Selvaraj, “Review of inulinase production using solid-state fermentation,” Annals of Microbiology, vol. 69, pp. 201–209, 2019.
  • Referance [6] R.A. Pessoni, M.R. Braga, and R.D.C.L. Figueiredo-Ribeiro, “Purification and properties of exo-inulinases from Penicillium janczewskii growing on distinct carbon sources,” Mycologia, vol. 994, pp. 493-503, 2007.
  • Referance [7] M. Beran, J. Pinkrová, M. Urban, and J. Drahoras, “Immobilisation of endoinulinase on polyhydroxybutyrate microfibers,” Czech Journal of Food Sciences, 34, pp. 541-546, 2016.
  • Referance [8] S.M. Basheer, S. Chellappan, P.S. Beena, R.K. Sukumaran, K.K. Elyas. and M. Chandrasekaran, “Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment,” New Biotechnology, vol. 286, pp. 627-638, 2011.
  • Referance [9] Y. Zhang, X. Zhang, W. Qi, J. Xu, Z. Yuan, and Z. Wang, “Ann and Rsm Based Optimization of Cellulase Production by Hypocrea sp Z28 by Submerged Fermentation,” Cell Chem Technol, vol. 523, no. 4, pp. 259-264, 2018.
  • Referance [10] M. Hasegawa, H. Kishino, and T. Yano, “Dating the human-ape split by a molecular clock of mitochondrial DNA,” J. Mol. Evol, 22, 160-174, 1985.
  • Referance [11] J. Felsenstein, “Confidence limits on phylogenies, an approach using the bootstrap,” Evolution, vol. 39, pp. 783-791, 1985.
  • Referance [12] S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms,” Molecular Biology and Evolution, vol. 35, pp. 1547-1549, 2018.
  • Referance [13] J.J Allais, S. Kammoun, P. Blanc, C. Girard, and J. C. Baratti, “Isolation and characterization of bacterial strains with inulinase activity,” App Environ Microbiol, vol 52, pp. 1086-1090, 1986.
  • Referance [14] A.X. Li, L.Z. Guo, Q. Fu, and W.D. Lu, A simple and rapid plate assay for screening of inulin degrading microorganisms using Lugol’s iodine solution," Afr J Biotechnol, 1046, pp. 9518-9521, 2011.
  • Referance [15] K. Keto, T. Araki, T. Kitamura, N. Morita, M. Moori, and Y. Suzuki, “Purification and Properties of a Thermostable Inulinase β‐d‐Fructan Fructohydrolase from Bacillus stearothermophilus KP1289,” Starch‐Stärke, vol. 517, pp. 253-258, 1999.
  • Referance [16] E.Y. Tohamy, “Purification and characterization of exoinulinase enzyme from Sterptomyces grisenus,” Pakistan Journal of Biological Sciences, vol. 95, pp. 911-916, 2006.
  • Referance [17] W. Gao, Y. Bao, Y. Liu, X. Zhang, J. Wang, and L. An, “Characterization of thermo-stable endoinulinase from a new strain Bacillus smithii T7,” Applied biochemistry and biotechnology, vol. 1573, pp. 498-506, 2009.
  • Referance [18] S. Gavrailov, and V. Ivanova, “Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113,” Acta Scientifica Naturalis, vol. 31, pp. 69-74, 2016.
  • Referance [19] S. Jeza, S.B. Maseko and J. Lin, “Purification and characterization of exo-inulinase from Paenibacillus sp. d9 strain,” Protein J., vol. 37, no. 1, pp. 70-81, 2018.
  • Referance [20] R. Ramapriya, A. Thirumurugan, T. Sathishkumar, and D.R. Manimaran, “Partial purification and characterization of exoinulinase produced from Bacillus sp.,” Journal of Genetic Engineering and Biotechnology, vol. 162, pp. 363-367, 2018.
  • Referance [21] Y. Suberu, I. Akande, T. Samuel, A. Lawal, and A. Olaniran, “Optimization of protease production in indigenous Bacillus species isolated from soil samples in Lagos, Nigeria using response surface methodology,” Biocatalysis and Agricultural Biotechnology, vol. 18, 101011, 2019, https://doi.org/10.1016/j.bcab.2019.01.049.
  • Referance [22] M. Ilgın, M. Germec, and I. Turhan, “Inulinase production and mathematical modeling from carob extract by using Aspergillus niger,” Biotechnol Prog, vol. 36, p. e2919, 2019.
  • Referance [23] H. Sattar, Z. Bibi, A. Kamran, A. Aman, and S.A.U. Qader, “Degradation of complex casein polymer: Production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36,” Biocatalysis and Agricultural Biotechnology, 21, p. 101256, 2019.
  • Referance [24] S. Jain, P. Jain, and N. Kango, “Production of inulinase from Kluyvermyces marxianus using dahlia tubers extract,” Brazilian J Microbiol,vol. 43, no. 1, pp. 62-69, 2012.
  • Referance [25] S.N. Muslim, A.M. Ali, I.A. Salman, I.M. AL Kadmy, and S.N. Muslim, “Detection of the optimal conditions for inulinase productivity and activity by Acinetobacter baumannii isolated from agricultural rhizosphere soil,” Biological Sciences, vol. 21, pp. 1-7, 2015.
  • Referance [26] R. Singh and R. Singh, “Inulinases. Current Developments in Biotechnology and Bioengineering- Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products,” Elsevier, pp. 423-446, http://dx.doi.org/10.1016/B978-0-444-63662-1.00018-X.
  • Referance [27] C. Xiong, W. Jinhua, and L. Dongsheng, “Optimization of solid-state medium for the production of inulinase by Kluyveromyces S120 using response surface methodology,” Biochemical Engineering Journal, vol. 342, pp. 179-184, 2007.
  • Referance [28] P.P. Kamble, M.V. Kore, S.A. Patil, J.P. Jadhav, and Y.C. Attar, “Statistical optimization of process parameters for inulinase production from Tithonia weed by Arthrobacter mysorens strain no.1,” J Microbiol Methods, vol. 149, pp. 55-66, 2018.
  • Referance [29] H.K. Rawat, S. Chand Jain, and N. Kango, Production and properties of inulinase from Penicillium sp. NFCC 2768 grown on inulin-rich vegetal infusions,” Biocatalysis and Biotransformation, vol. 331, pp. 61-68, 2015.
  • Referance [30] P.P. Kamble, S.S. Suryawanshi, J.P. Jadhav, and Y.C. Attar, “Enhanced inulinase production by Fusarium solani JALPK from invasive weed using response surface methodology,” J Microbiol methods, vol. 159, pp. 99-111, 2019.
  • Referance [31] S. Trivedi, J. Divecha, and A. Shah, “Optimization of inulinase production by newly isolated Aspergillus tubingensis CR16 using low cost substrates,”.Carbohydr Poly, vol. 901, pp. 483-490, 2012.
  • Referance [32] K. Naidoo, M. Ayyachamy, K. Permaul, and S. Singh, “Enhanced fructooligosaccharides and inulinase production by a Xanthomonas campestris pv.phaseoli KM 24 mutant,” Bioprocess and Biosystems Engineering, vol. 325, pp. 689-695, 2009.
  • Referance [33] N.A. Zherebtsov, S.A. Shelamova, and I.N. Abramova, “Biosynthesis of inulinases by Bacillus bacteria,” Applied Biochemistry and Microbiology, vol. 386, pp. 544-548, 2002.
  • Referance [34] A.X. Li, L.Z. Guo, and W.D. Lu, “Alkaline inulinase production by a newly isolated bacterium Marinimicrobium sp. LS–A18 and inulin hydrolysis by the enzyme,” World Journal of Microbiology and Biotechnology, vol. 281, pp. 81-89, 2012.
  • Referance [35] A.A. Onilude, I.F. Fadaunsi, and E.O. Garuba, “Inulinase production by Saccharomyces sp. in solid state fermentation using wheat bran as substrate,” Annal Microbiol, vol. 622, pp. 843-848, 2012.
  • Referance [36] Y. Tambara, J.V. Hormaza, C.,Perez, A. Leon, J. Arrieta, and L. Hernandez, “Structural analysis and optimized production of fructo-olgiosaccharides by levansucrase from Acetobacter diazotrophicus SRT4,” Biotechnol.Lett., vol. 21, pp. 117–121, 1999.
  • Referance [37] H.J. Kwon, S.J. Jeon, D.J. You, K.H. Kim, Y.K. Jeong, Y.H. Kim, Y.M. Kim, and B.W. Kim, “Cloning and characterization of an exoinulinase from Bacillus polymyxa,” Biotechnol Lett., vol. 25, pp. 155-159, 2003.

Response Surface Methodology-Based optimization of Inulinase Production from New Bacillus Isolates

Yıl 2021, Cilt: 25 Sayı: 4, 1086 - 1101, 30.08.2021
https://doi.org/10.16984/saufenbilder.897660

Öz

This study aimed to investigate new bacterial sources with the ability to produce inulinase and to optimize fermentation conditions for inulinase production. The inulinase production was carried out using newly isolated Bacillus licheniformis and Bacillus velezensis among identified sixteen bacterial strains. The four essential variables incubation time (1-3 days), temperature (25-40°C), pH (5-7), and Wheat Bran (WB) level (1-5%) determined by the Plackett–Burman design (PB) were selected for optimization studies with Box-Benhken Design (BBD). These parameters were found to be very effective on inulinase production. The maximum inulinase activities for B. licheniformis and B. velezensis were 401.18 EU/mL and 344.61 EU/mL. Both inulinases sustained 50% of their initial activity at 30°C for 9 days.. The results point out that bacteria are an important source as inulinase producer. The new isolates can be used in production of inulinase for industrial processes.

Kaynakça

  • Referance [1] R.S. Singh, K. Chauhan, J.F..A Kennedy, “Panorama of bacterial inulinases: production, purification, characterization and industrial applications,” International journal of biological macromolecules, vol. 96, pp. 312-322, 2017.
  • Referance [2] F. Gong, T. Zhang, Z. Chi, J. Sheng, J. Li, and X. Wang, “Purification and characterization of extracellular inulinase from marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase,” Biotechnol Bioproc E., vol. 34, pp. 179-185, 2008.
  • Referance [3] P.K. Gill, R.K. Manhas, and P. Singh, “Purification and properties of a heat-stable exoinulinase isoform from Aspergillus fumigatus,” Bioresour Technol, vol. 97, no. 7, pp. 894-902, 2006.
  • Referance [4] M. Germec, and I. Turhan, “Partial purification and characterization of Aspergillus niger inulinase produced from sugar-beet molasses in the shaking incubator and stirred-tank bioreactors,” Int.l J Biol Macromol, vol. 64, pp. 3789-3799, 2020.
  • Referance [5] D. Das, M.R. Bhat and R. Selvaraj, “Review of inulinase production using solid-state fermentation,” Annals of Microbiology, vol. 69, pp. 201–209, 2019.
  • Referance [6] R.A. Pessoni, M.R. Braga, and R.D.C.L. Figueiredo-Ribeiro, “Purification and properties of exo-inulinases from Penicillium janczewskii growing on distinct carbon sources,” Mycologia, vol. 994, pp. 493-503, 2007.
  • Referance [7] M. Beran, J. Pinkrová, M. Urban, and J. Drahoras, “Immobilisation of endoinulinase on polyhydroxybutyrate microfibers,” Czech Journal of Food Sciences, 34, pp. 541-546, 2016.
  • Referance [8] S.M. Basheer, S. Chellappan, P.S. Beena, R.K. Sukumaran, K.K. Elyas. and M. Chandrasekaran, “Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment,” New Biotechnology, vol. 286, pp. 627-638, 2011.
  • Referance [9] Y. Zhang, X. Zhang, W. Qi, J. Xu, Z. Yuan, and Z. Wang, “Ann and Rsm Based Optimization of Cellulase Production by Hypocrea sp Z28 by Submerged Fermentation,” Cell Chem Technol, vol. 523, no. 4, pp. 259-264, 2018.
  • Referance [10] M. Hasegawa, H. Kishino, and T. Yano, “Dating the human-ape split by a molecular clock of mitochondrial DNA,” J. Mol. Evol, 22, 160-174, 1985.
  • Referance [11] J. Felsenstein, “Confidence limits on phylogenies, an approach using the bootstrap,” Evolution, vol. 39, pp. 783-791, 1985.
  • Referance [12] S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms,” Molecular Biology and Evolution, vol. 35, pp. 1547-1549, 2018.
  • Referance [13] J.J Allais, S. Kammoun, P. Blanc, C. Girard, and J. C. Baratti, “Isolation and characterization of bacterial strains with inulinase activity,” App Environ Microbiol, vol 52, pp. 1086-1090, 1986.
  • Referance [14] A.X. Li, L.Z. Guo, Q. Fu, and W.D. Lu, A simple and rapid plate assay for screening of inulin degrading microorganisms using Lugol’s iodine solution," Afr J Biotechnol, 1046, pp. 9518-9521, 2011.
  • Referance [15] K. Keto, T. Araki, T. Kitamura, N. Morita, M. Moori, and Y. Suzuki, “Purification and Properties of a Thermostable Inulinase β‐d‐Fructan Fructohydrolase from Bacillus stearothermophilus KP1289,” Starch‐Stärke, vol. 517, pp. 253-258, 1999.
  • Referance [16] E.Y. Tohamy, “Purification and characterization of exoinulinase enzyme from Sterptomyces grisenus,” Pakistan Journal of Biological Sciences, vol. 95, pp. 911-916, 2006.
  • Referance [17] W. Gao, Y. Bao, Y. Liu, X. Zhang, J. Wang, and L. An, “Characterization of thermo-stable endoinulinase from a new strain Bacillus smithii T7,” Applied biochemistry and biotechnology, vol. 1573, pp. 498-506, 2009.
  • Referance [18] S. Gavrailov, and V. Ivanova, “Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113,” Acta Scientifica Naturalis, vol. 31, pp. 69-74, 2016.
  • Referance [19] S. Jeza, S.B. Maseko and J. Lin, “Purification and characterization of exo-inulinase from Paenibacillus sp. d9 strain,” Protein J., vol. 37, no. 1, pp. 70-81, 2018.
  • Referance [20] R. Ramapriya, A. Thirumurugan, T. Sathishkumar, and D.R. Manimaran, “Partial purification and characterization of exoinulinase produced from Bacillus sp.,” Journal of Genetic Engineering and Biotechnology, vol. 162, pp. 363-367, 2018.
  • Referance [21] Y. Suberu, I. Akande, T. Samuel, A. Lawal, and A. Olaniran, “Optimization of protease production in indigenous Bacillus species isolated from soil samples in Lagos, Nigeria using response surface methodology,” Biocatalysis and Agricultural Biotechnology, vol. 18, 101011, 2019, https://doi.org/10.1016/j.bcab.2019.01.049.
  • Referance [22] M. Ilgın, M. Germec, and I. Turhan, “Inulinase production and mathematical modeling from carob extract by using Aspergillus niger,” Biotechnol Prog, vol. 36, p. e2919, 2019.
  • Referance [23] H. Sattar, Z. Bibi, A. Kamran, A. Aman, and S.A.U. Qader, “Degradation of complex casein polymer: Production and optimization of a novel serine metalloprotease from Aspergillus niger KIBGE-IB36,” Biocatalysis and Agricultural Biotechnology, 21, p. 101256, 2019.
  • Referance [24] S. Jain, P. Jain, and N. Kango, “Production of inulinase from Kluyvermyces marxianus using dahlia tubers extract,” Brazilian J Microbiol,vol. 43, no. 1, pp. 62-69, 2012.
  • Referance [25] S.N. Muslim, A.M. Ali, I.A. Salman, I.M. AL Kadmy, and S.N. Muslim, “Detection of the optimal conditions for inulinase productivity and activity by Acinetobacter baumannii isolated from agricultural rhizosphere soil,” Biological Sciences, vol. 21, pp. 1-7, 2015.
  • Referance [26] R. Singh and R. Singh, “Inulinases. Current Developments in Biotechnology and Bioengineering- Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products,” Elsevier, pp. 423-446, http://dx.doi.org/10.1016/B978-0-444-63662-1.00018-X.
  • Referance [27] C. Xiong, W. Jinhua, and L. Dongsheng, “Optimization of solid-state medium for the production of inulinase by Kluyveromyces S120 using response surface methodology,” Biochemical Engineering Journal, vol. 342, pp. 179-184, 2007.
  • Referance [28] P.P. Kamble, M.V. Kore, S.A. Patil, J.P. Jadhav, and Y.C. Attar, “Statistical optimization of process parameters for inulinase production from Tithonia weed by Arthrobacter mysorens strain no.1,” J Microbiol Methods, vol. 149, pp. 55-66, 2018.
  • Referance [29] H.K. Rawat, S. Chand Jain, and N. Kango, Production and properties of inulinase from Penicillium sp. NFCC 2768 grown on inulin-rich vegetal infusions,” Biocatalysis and Biotransformation, vol. 331, pp. 61-68, 2015.
  • Referance [30] P.P. Kamble, S.S. Suryawanshi, J.P. Jadhav, and Y.C. Attar, “Enhanced inulinase production by Fusarium solani JALPK from invasive weed using response surface methodology,” J Microbiol methods, vol. 159, pp. 99-111, 2019.
  • Referance [31] S. Trivedi, J. Divecha, and A. Shah, “Optimization of inulinase production by newly isolated Aspergillus tubingensis CR16 using low cost substrates,”.Carbohydr Poly, vol. 901, pp. 483-490, 2012.
  • Referance [32] K. Naidoo, M. Ayyachamy, K. Permaul, and S. Singh, “Enhanced fructooligosaccharides and inulinase production by a Xanthomonas campestris pv.phaseoli KM 24 mutant,” Bioprocess and Biosystems Engineering, vol. 325, pp. 689-695, 2009.
  • Referance [33] N.A. Zherebtsov, S.A. Shelamova, and I.N. Abramova, “Biosynthesis of inulinases by Bacillus bacteria,” Applied Biochemistry and Microbiology, vol. 386, pp. 544-548, 2002.
  • Referance [34] A.X. Li, L.Z. Guo, and W.D. Lu, “Alkaline inulinase production by a newly isolated bacterium Marinimicrobium sp. LS–A18 and inulin hydrolysis by the enzyme,” World Journal of Microbiology and Biotechnology, vol. 281, pp. 81-89, 2012.
  • Referance [35] A.A. Onilude, I.F. Fadaunsi, and E.O. Garuba, “Inulinase production by Saccharomyces sp. in solid state fermentation using wheat bran as substrate,” Annal Microbiol, vol. 622, pp. 843-848, 2012.
  • Referance [36] Y. Tambara, J.V. Hormaza, C.,Perez, A. Leon, J. Arrieta, and L. Hernandez, “Structural analysis and optimized production of fructo-olgiosaccharides by levansucrase from Acetobacter diazotrophicus SRT4,” Biotechnol.Lett., vol. 21, pp. 117–121, 1999.
  • Referance [37] H.J. Kwon, S.J. Jeon, D.J. You, K.H. Kim, Y.K. Jeong, Y.H. Kim, Y.M. Kim, and B.W. Kim, “Cloning and characterization of an exoinulinase from Bacillus polymyxa,” Biotechnol Lett., vol. 25, pp. 155-159, 2003.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Sercan Özbek Yazıcı 0000-0003-3406-4291

Selmihan Şahin 0000-0003-0486-3949

Bahadır Törün 0000-0001-5142-1882

Hacı Halil Bıyık 0000-0003-0258-054X

İsmail Özmen 0000-0002-5457-8188

Yayımlanma Tarihi 30 Ağustos 2021
Gönderilme Tarihi 16 Mart 2021
Kabul Tarihi 23 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 25 Sayı: 4

Kaynak Göster

APA Özbek Yazıcı, S., Şahin, S., Törün, B., Bıyık, H. H., vd. (2021). Response Surface Methodology-Based optimization of Inulinase Production from New Bacillus Isolates. Sakarya University Journal of Science, 25(4), 1086-1101. https://doi.org/10.16984/saufenbilder.897660
AMA Özbek Yazıcı S, Şahin S, Törün B, Bıyık HH, Özmen İ. Response Surface Methodology-Based optimization of Inulinase Production from New Bacillus Isolates. SAUJS. Ağustos 2021;25(4):1086-1101. doi:10.16984/saufenbilder.897660
Chicago Özbek Yazıcı, Sercan, Selmihan Şahin, Bahadır Törün, Hacı Halil Bıyık, ve İsmail Özmen. “Response Surface Methodology-Based Optimization of Inulinase Production from New Bacillus Isolates”. Sakarya University Journal of Science 25, sy. 4 (Ağustos 2021): 1086-1101. https://doi.org/10.16984/saufenbilder.897660.
EndNote Özbek Yazıcı S, Şahin S, Törün B, Bıyık HH, Özmen İ (01 Ağustos 2021) Response Surface Methodology-Based optimization of Inulinase Production from New Bacillus Isolates. Sakarya University Journal of Science 25 4 1086–1101.
IEEE S. Özbek Yazıcı, S. Şahin, B. Törün, H. H. Bıyık, ve İ. Özmen, “Response Surface Methodology-Based optimization of Inulinase Production from New Bacillus Isolates”, SAUJS, c. 25, sy. 4, ss. 1086–1101, 2021, doi: 10.16984/saufenbilder.897660.
ISNAD Özbek Yazıcı, Sercan vd. “Response Surface Methodology-Based Optimization of Inulinase Production from New Bacillus Isolates”. Sakarya University Journal of Science 25/4 (Ağustos 2021), 1086-1101. https://doi.org/10.16984/saufenbilder.897660.
JAMA Özbek Yazıcı S, Şahin S, Törün B, Bıyık HH, Özmen İ. Response Surface Methodology-Based optimization of Inulinase Production from New Bacillus Isolates. SAUJS. 2021;25:1086–1101.
MLA Özbek Yazıcı, Sercan vd. “Response Surface Methodology-Based Optimization of Inulinase Production from New Bacillus Isolates”. Sakarya University Journal of Science, c. 25, sy. 4, 2021, ss. 1086-01, doi:10.16984/saufenbilder.897660.
Vancouver Özbek Yazıcı S, Şahin S, Törün B, Bıyık HH, Özmen İ. Response Surface Methodology-Based optimization of Inulinase Production from New Bacillus Isolates. SAUJS. 2021;25(4):1086-101.

Sakarya University Journal of Science (SAUJS)