Araştırma Makalesi
BibTex RIS Kaynak Göster

Gharyan Şehri (Libya) Rüzgar Verilerine Dayalı Dikey Eksenli Rüzgar Türbini Kurulumu

Yıl 2022, Cilt: 25 Sayı: 3, 975 - 984, 01.10.2022
https://doi.org/10.2339/politeknik.781397

Öz

Rüzgar enerjisinin değerlendirilmesi, herhangi bir yerde bulunan potansiyel rüzgar enerjisi hakkında uzmanları bilgilendiren entegre analizlerin bir biçimidir. Bu tür değerlendirmenin başlangıç noktası, belirli bir yerde yaygın olarak meydana gelen rüzgar modellerini anlamaktır. Bunu, rüzgar verileri toplama ve toplanan verileri analiz etme izler. Bu makale, birinci ve ikinci bölgelerin kapsamlı bir çalışmasıdır. Bu nedenle, ortalama rüzgar hızı, yön verisi, kısa vadeli varyasyonlar (veya rüzgarlar), yıllık, mevsimsel ve hatta günlük değişiklikler / varyasyonlar ve yüksekliğe bağlı varyasyonlar gibi birkaç parametre dikkate alınmalıdır. Bahsedilen tüm parametreler sahaya özgü olduğundan, uzun bir süre boyunca yerinde ölçümlerle doğru bir şekilde belirlenebilir. Bu çalışma, rüzgar değerlendirmesi ve potansiyel rüzgar enerjisi üzerine odaklandığından Gharyan şehri bir konum olarak seçildi ve alt konumları Gharyan 1, 2, 3 ve 4 olarak adlandırıldı. İlk olarak, rüzgar enerjisi kaynağı ile ilgili konumun yakınında bulunan meteoroloji istasyonlarından alınan veriler arka planda toplandı. Genellikle, her bir konum için 3 saatlik uzun vadeli rüzgar verileri kullanılır ve daha sonra, göbek yüksekliğindeki gerçek rüzgar hızını bulmak için rüzgar verilerinin yeniden hesaplanması yapılır. Önemli hesaplama parametreleri arasında, önerilen her bir saha için hesaplanması gereken Weibull dağılımı, ortalama rüzgar hızı, yıllık kapasite faktörü ve yıllık enerji faktörü yer alır. Yıllık kapasite ve enerji faktörlerinin hesaplanması, genellikle Vestas (V60, 850kW) olarak adlandırılan rüzgar türbinini seçmek için gereklidir. Bu makale, Libya'daki bazı tesislerin, özellikle yıllık enerji, kapasite faktörü ve kabul edilebilir enerji üretim kapasitesinin kaydedildiği Gharyan'da bulunan dört bölgede yeterli rüzgar enerjisine sahip olduğunu açıkça göstermektedir.

Kaynakça

  • [1] Mathew, S., "Fundamentals, Resource Analysis and Economics", Wind Energy: 1st Ed. New York: Springer, (2006).
  • [2] Manwell, J. F., McCowan, J. G., and Rogers, A. L., "Wind Energy Explained: theory, design and application", Wind Engineering, 30 (2): 169 (2006).
  • [3] Christofferson, R. D. and Gillette, D. A., "A simple estimator of the shape factor of the two-parameter Weibull distribution", Journal Of Climate And Applied Meteorology, 26 (2): 323–325 (1987).
  • [4] DuPont, B. L., Cagan, J., and Moriarty, P., "Optimization of Wind Farm Layout and Wind Turbine Geometry Using a Multi-Level Extended Pattern Search Algorithm That Accounts for Variation in Wind Shear Profile Shape", ASME 2012 International Design Engineering Technical Conferences And Computers And Information In Engineering Conference, 3: 243–252 (2012).
  • [5] Garcia, A., Torres, J. L., Prieto, E., and De Francisco, A., "Fitting wind speed distributions: a case study", Solar Energy, 62 (2): 139–144 (1998).
  • [6] George, M. and Banerjee, R., "Analysis of impacts of wind integration in the Tamil Nadu grid", Energy Policy, 37 (9): 3693–3700 (2009).
  • [7] Patel, M. R., "Wind and solar power systems: design, analysis, and operation, 2nd edn, CRC Taylor & Francis", ISBN-10: 0-8493-1570-0, ISBN-13, 970–978 (2006).
  • [8] Conradsen, K., Nielsen, L. B., and Prahm, L. P., "Review of Weibull statistics for estimation of wind speed distributions", Journal Of Climate And Applied Meteorology, 23 (8): 1173–1183 (1984).
  • [9] ISHIHARA, T. and YAMAGUCHI, A., "The State-Of-The-Art on Wind Climate Assessment and Wind Power Forecasting", Wind Engineers, JAWE, 2006 (106): 43–49 (2006).
  • [10] Jamil, M., Parsa, S., and Majidi, M., "Wind power statistics and an evaluation of wind energy density", Renewable Energy, 6 (5–6): 623–628 (1995).
  • [11] Jaramillo, O. A., Saldaña, R., and Miranda, U., "Wind power potential of baja california sur, mexico", Renewable Energy, 29 (13): 2087–2100 (2004).
  • [12] Lun, I. Y. F. and Lam, J. C., "A study of Weibull parameters using long-term wind observations", Renewable Energy, 20 (2): 145–153 (2000).
  • [13] Manwell, J. F., McGowan, J. G., and Rogers, A. L., "Wind Energy Explained: Theory, Design and Application", John Wiley & Sons, (2010).
  • [14] Kanagavel, P., Gomathinayagam, S., Srinivasaragavan, S., and Ramasamy, R. U., "A Scientometric Assessment of Wind Energy Research Productivity: A Scientometric Study", International Journal Of Scientific Research, 2 (5): 333–336 (2012).
  • [15] Ranganathan, C. R., Ramanathan, M., and Swaminathan, K. R., "Estimation of wind power availability in Tamil Nadu", Renewable Energy, 1 (3–4): 429–434 (1991).
  • [16] Hansen, M. O. L., "Aerodynamics of Wind Turbines", Routledge, (2015).
  • [17] Ohunakin, O. S., "Assessment of wind energy resources for electricity generation using WECS in North-Central region, Nigeria", Renewable And Sustainable Energy Reviews, 15 (4): 1968–1976 (2011).
  • [18] Pindado, S., Vega, E., Martínez, A., Meseguer, E., Franchini, S., and Sarasola, I. P., "Analysis of calibration results from cup and propeller anemometers. Influence on wind turbine Annual Energy Production (AEP) calculations", Wind Energy, 14 (1): 119–132 (2011).
  • [19] Internet: The Wind Power, "Manufacturers and Turbines Technical Data", https://www.thewindpower.net/turbine_en_113_vestas_v60-850.php.
  • [20] Rajpurohit, B. S., Singh, S. N., and Wang, L., "Electric grid connection and system operational aspect of wind power generation", Wind Energy Conversion Systems, Springer, 267–293 (2012).
  • [21] Ahwide, F., Spena, A., and El-Kafrawy, A., "Estimation of electricity generation in libya using processing technology of wind available data: The case study in derna", APCBEE Procedia, 5: 451–467 (2013).
  • [22] S. Rehman, T.O. Halawani, M. Mohandes, “Wind power cost assessment at twenty locations in the kingdom of Saudi Arabia” Renew. Energy, 28: 573-583 (2003).
  • [23] F. Ahwide, A. Spena, and A. El-Kafrawy, Estimation of Electricity Generation in Libya Using Processing Technology of Wind Available Data: The Case study in Derna”, APCBEE Procedia, 5: 451-567 (2013).
  • [24] Satyanarayana G. and Shiva P. K. K., “Wind energy potential and cost estimation of wind energy conversion systems (WECSs) for electricity generation in the eight selected locations of Tigray region (Ethiopia)”, Renewables: wind, water and solar, 3: 10 (2016).

Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya

Yıl 2022, Cilt: 25 Sayı: 3, 975 - 984, 01.10.2022
https://doi.org/10.2339/politeknik.781397

Öz

Assessing the potential of wind energy involves an integrated analysis approach, the conclusions of which inform the experts of the field about the possibilities of harnessing wind energy on a certain location. This type of analysis is made of multiple steps, starting from observing and understanding commonly occurring wind patterns at the designated site, followed by collection of data and finally analysis. The current paper is an extended study on the first two steps where several parameters such as wind’s average speed and its direction, as well as various changes such as short-term ones (or gusts), yearly, seasonal, and even daily changes, and height-related variations were collected. Since the above-mentioned parameters are site-specific, they can be accurately determined through on-site measurements during extended time periods. The site for this study is the city of Gharyan in Libya which was divided into four sub-locations. Data were gathered from meteorological stations located in the vicinity of the designated area in three-hours periods, and they were then used to recalculate wind’s real speed and height at a specific hub. Among the important calculation parameters were Weibull's distribution, average wind speed, annual capacity factor, and the annual energy factor, all of them required for each proposed site. The calculations of the annual capacity and energy factors are necessary for choosing the appropriate wind turbine, generally named Vestas (V60, 850kW). The current study clearly shows that some sites, in particular four locations in Ghayran where feasible annual energy, capacity factor, and acceptable power generation capacity were recorded have wind energy for civilian purposes.

Kaynakça

  • [1] Mathew, S., "Fundamentals, Resource Analysis and Economics", Wind Energy: 1st Ed. New York: Springer, (2006).
  • [2] Manwell, J. F., McCowan, J. G., and Rogers, A. L., "Wind Energy Explained: theory, design and application", Wind Engineering, 30 (2): 169 (2006).
  • [3] Christofferson, R. D. and Gillette, D. A., "A simple estimator of the shape factor of the two-parameter Weibull distribution", Journal Of Climate And Applied Meteorology, 26 (2): 323–325 (1987).
  • [4] DuPont, B. L., Cagan, J., and Moriarty, P., "Optimization of Wind Farm Layout and Wind Turbine Geometry Using a Multi-Level Extended Pattern Search Algorithm That Accounts for Variation in Wind Shear Profile Shape", ASME 2012 International Design Engineering Technical Conferences And Computers And Information In Engineering Conference, 3: 243–252 (2012).
  • [5] Garcia, A., Torres, J. L., Prieto, E., and De Francisco, A., "Fitting wind speed distributions: a case study", Solar Energy, 62 (2): 139–144 (1998).
  • [6] George, M. and Banerjee, R., "Analysis of impacts of wind integration in the Tamil Nadu grid", Energy Policy, 37 (9): 3693–3700 (2009).
  • [7] Patel, M. R., "Wind and solar power systems: design, analysis, and operation, 2nd edn, CRC Taylor & Francis", ISBN-10: 0-8493-1570-0, ISBN-13, 970–978 (2006).
  • [8] Conradsen, K., Nielsen, L. B., and Prahm, L. P., "Review of Weibull statistics for estimation of wind speed distributions", Journal Of Climate And Applied Meteorology, 23 (8): 1173–1183 (1984).
  • [9] ISHIHARA, T. and YAMAGUCHI, A., "The State-Of-The-Art on Wind Climate Assessment and Wind Power Forecasting", Wind Engineers, JAWE, 2006 (106): 43–49 (2006).
  • [10] Jamil, M., Parsa, S., and Majidi, M., "Wind power statistics and an evaluation of wind energy density", Renewable Energy, 6 (5–6): 623–628 (1995).
  • [11] Jaramillo, O. A., Saldaña, R., and Miranda, U., "Wind power potential of baja california sur, mexico", Renewable Energy, 29 (13): 2087–2100 (2004).
  • [12] Lun, I. Y. F. and Lam, J. C., "A study of Weibull parameters using long-term wind observations", Renewable Energy, 20 (2): 145–153 (2000).
  • [13] Manwell, J. F., McGowan, J. G., and Rogers, A. L., "Wind Energy Explained: Theory, Design and Application", John Wiley & Sons, (2010).
  • [14] Kanagavel, P., Gomathinayagam, S., Srinivasaragavan, S., and Ramasamy, R. U., "A Scientometric Assessment of Wind Energy Research Productivity: A Scientometric Study", International Journal Of Scientific Research, 2 (5): 333–336 (2012).
  • [15] Ranganathan, C. R., Ramanathan, M., and Swaminathan, K. R., "Estimation of wind power availability in Tamil Nadu", Renewable Energy, 1 (3–4): 429–434 (1991).
  • [16] Hansen, M. O. L., "Aerodynamics of Wind Turbines", Routledge, (2015).
  • [17] Ohunakin, O. S., "Assessment of wind energy resources for electricity generation using WECS in North-Central region, Nigeria", Renewable And Sustainable Energy Reviews, 15 (4): 1968–1976 (2011).
  • [18] Pindado, S., Vega, E., Martínez, A., Meseguer, E., Franchini, S., and Sarasola, I. P., "Analysis of calibration results from cup and propeller anemometers. Influence on wind turbine Annual Energy Production (AEP) calculations", Wind Energy, 14 (1): 119–132 (2011).
  • [19] Internet: The Wind Power, "Manufacturers and Turbines Technical Data", https://www.thewindpower.net/turbine_en_113_vestas_v60-850.php.
  • [20] Rajpurohit, B. S., Singh, S. N., and Wang, L., "Electric grid connection and system operational aspect of wind power generation", Wind Energy Conversion Systems, Springer, 267–293 (2012).
  • [21] Ahwide, F., Spena, A., and El-Kafrawy, A., "Estimation of electricity generation in libya using processing technology of wind available data: The case study in derna", APCBEE Procedia, 5: 451–467 (2013).
  • [22] S. Rehman, T.O. Halawani, M. Mohandes, “Wind power cost assessment at twenty locations in the kingdom of Saudi Arabia” Renew. Energy, 28: 573-583 (2003).
  • [23] F. Ahwide, A. Spena, and A. El-Kafrawy, Estimation of Electricity Generation in Libya Using Processing Technology of Wind Available Data: The Case study in Derna”, APCBEE Procedia, 5: 451-567 (2013).
  • [24] Satyanarayana G. and Shiva P. K. K., “Wind energy potential and cost estimation of wind energy conversion systems (WECSs) for electricity generation in the eight selected locations of Tigray region (Ethiopia)”, Renewables: wind, water and solar, 3: 10 (2016).
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Nagi Nassir 0000-0003-4040-1004

Bahadir Acar

Abdel Karim Amar Fahed

Yayımlanma Tarihi 1 Ekim 2022
Gönderilme Tarihi 16 Ağustos 2020
Yayımlandığı Sayı Yıl 2022 Cilt: 25 Sayı: 3

Kaynak Göster

APA Nassir, N., Acar, B., & Fahed, A. K. A. (2022). Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya. Politeknik Dergisi, 25(3), 975-984. https://doi.org/10.2339/politeknik.781397
AMA Nassir N, Acar B, Fahed AKA. Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya. Politeknik Dergisi. Ekim 2022;25(3):975-984. doi:10.2339/politeknik.781397
Chicago Nassir, Nagi, Bahadir Acar, ve Abdel Karim Amar Fahed. “Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya”. Politeknik Dergisi 25, sy. 3 (Ekim 2022): 975-84. https://doi.org/10.2339/politeknik.781397.
EndNote Nassir N, Acar B, Fahed AKA (01 Ekim 2022) Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya. Politeknik Dergisi 25 3 975–984.
IEEE N. Nassir, B. Acar, ve A. K. A. Fahed, “Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya”, Politeknik Dergisi, c. 25, sy. 3, ss. 975–984, 2022, doi: 10.2339/politeknik.781397.
ISNAD Nassir, Nagi vd. “Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya”. Politeknik Dergisi 25/3 (Ekim 2022), 975-984. https://doi.org/10.2339/politeknik.781397.
JAMA Nassir N, Acar B, Fahed AKA. Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya. Politeknik Dergisi. 2022;25:975–984.
MLA Nassir, Nagi vd. “Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya”. Politeknik Dergisi, c. 25, sy. 3, 2022, ss. 975-84, doi:10.2339/politeknik.781397.
Vancouver Nassir N, Acar B, Fahed AKA. Vertical Axis Wind Turbine Installation Based on Wind Data Collected in Gharyan City, Libya. Politeknik Dergisi. 2022;25(3):975-84.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.