Derleme
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 3 Sayı: 1, 14 - 22, 04.01.2023

Öz

Kaynakça

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018; 68: 394-424.
  • 2. Dyba T, Randi G, Bray F, Martos C, Giusti F, Nicholson N, et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer. 2021; 157: 308-47.
  • 3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71: 209-49.
  • 4. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008; 73: 994-1007.
  • 5. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019; 88: 102925.
  • 6. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 2014; 740: 364-78.
  • 7. Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiology and oncology. 2019; 53(2): 148-58.
  • 8. Zhang J, Ye Z-w, Tew KD, Townsend DM. Cisplatin chemotherapy and renal function. Adv. Cancer Res. 2021; 152: 305-27.
  • 9. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 2007; 33: 9-23. 10. Hakiminia B, Goudarzi A, Moghaddas A. Has vitamin E any shreds of evidence in cisplatin‐induced toxicity. J. Biochem. Mol. Toxicol. 2019; 33: e22349.
  • 11. Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J. Am. Soc. Nephrol. 2003; 14: 1-10.
  • 12. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin‐induced nephrotoxicity. Clin. Pharmacol. Ther. 2009; 86: 396-402.
  • 13. Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol. 2009; 296: F505-F11.
  • 14. Davoudi M, Jadidi Y, Moayedi K, Farrokhi V, Afrisham R. Ameliorative impacts of polymeric and metallic nanoparticles on cisplatin-induced nephrotoxicity: a 2011–2022 review. J. Nanobiotechnology. 2022; 20: 1-33.
  • 15. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010; 2: 2490-518.
  • 16. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 2019; 26: 1-14.
  • 17. Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, Madsen K, et al. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am. J. Physiol. Renal Physiol. 2000; 278: F726-F36.
  • 18. Tang C, Livingston MJ, Safirstein R, Dong Z. Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol. 2022: 1-20.
  • 19. Huang Z, Guo F, Xia Z, Liang Y, Lei S, Tan Z, et al. Activation of GPR120 by TUG891 ameliorated cisplatin-induced acute kidney injury via repressing ER stress and apoptosis. Biomed. Pharmacother. 2020; 126: 110056.
  • 20. Zhang Q, Sun Q, Tong Y, Bi X, Chen L, Lu J, et al. Leonurine attenuates cisplatin nephrotoxicity by suppressing the NLRP3 inflammasome, mitochondrial dysfunction, and endoplasmic reticulum stress. Int Urol Nephrol. 2022: 1-10.
  • 21. Chen X, Wei W, Li Y, Huang J, Ci X. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem. Biol. Interact. 2019; 308: 269-78.
  • 22. Oh G-S, Kim H-J, Shen A, Lee S-B, Yang S-H, Shim H, et al. New therapeutic concept of NAD redox balance for cisplatin nephrotoxicity. BioMed Res. Int. 2016; 2016.
  • 23. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015; 21: 677-87.
  • 24. Ramesh G, Reeves WB. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Investig. 2002; 110: 835-42.
  • 25. Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am. J. Physiol. Renal Physiol. 2003; 285: F610-F8.
  • 26. Cummings BS, Schnellmann RG. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and-independent pathways. J. Pharmacol. Exp. Ther. 2002; 302: 8-17.
  • 27. Hajian S, Rafieian-Kopaei M, Nasri H. Renoprotective effects of antioxidants against cisplatin nephrotoxicity. J. nephropharmacology. 2014; 3: 39.
  • 28. Fang C-y, Lou D-y, Zhou L-q, Wang J-c, Yang B, He Q-j, et al. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol. Sin. 2021; 42: 1951-69.
  • 29. Katsuda H, Yamashita M, Katsura H, Yu J, Waki Y, Nagata N, et al. Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity. Biol. Pharm. Bull. 2010; 33: 1867-71.
  • 30. Humanes B, Camaño S, Lara JM, Sabbisetti V, González-Nicolás MÁ, Bonventre JV, et al. Cisplatin-induced renal inflammation is ameliorated by cilastatin nephroprotection. Nephrol. Dial. Transplant. 2017; 32: 1645-55.
  • 31. Eid AH, Abdelkader NF, El-Raouf A, Ola M, Fawzy HM, El-Denshary E-E-DS. Carvedilol alleviates testicular and spermatological damage induced by cisplatin in rats via modulation of oxidative stress and inflammation. Arch. Pharm. Res. 2016; 39: 1693-702.
  • 32. Guo D, Yang H, Li Q, Bae HJ, Obianom O, Zeng S, et al. Selective inhibition on organic cation transporters by carvedilol protects mice from cisplatin-induced nephrotoxicity. Pharm. Res. 2018; 35: 1-10.
  • 33. Hosseinian S, Roshan NM, Khazaei M, Shahraki S, Mohebbati R, Rad AK. Renoprotective effect of Nigella sativa against cisplatin-induced nephrotoxicity and oxidative stress in rat. Saudi j. kidney dis. transplant. 2018; 29: 19.
  • 34. Kumar M, Dahiya V, Kasala ER, Bodduluru LN, Lahkar M. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence. Biomed. Pharmacother. 2017; 89: 1207-15.
  • 35. Amini N, Badavi M, Mard SA, Dianat M, Moghadam MT. The renoprotective effects of gallic acid on cisplatin-induced nephrotoxicity through anti-apoptosis, anti-inflammatory effects, and downregulation of lncRNA TUG1. Naunyn Schmiedebergs Arch. Pharmacol. 2022; 395: 691-701.
  • 36. Ugur S, Ulu R, Dogukan A, Gurel A, Yigit IP, Gozel N, et al. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail. 2015; 37: 332-6.
  • 37. El-Gizawy MM, Hosny EN, Mourad HH, Razik A-E, Amira N. Curcumin nanoparticles ameliorate hepatotoxicity and nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020; 393: 1941-53.
  • 38. Mohamed ME, Abduldaium YS, Younis NS. Ameliorative effect of linalool in cisplatin-induced nephrotoxicity: the role of HMGB1/TLR4/NF-κB and Nrf2/HO1 pathways. Biomolecules. 2020; 10: 1488.
  • 39. Un H, Ugan RA, Gurbuz MA, Bayir Y, Kahramanlar A, Kaya G, et al. Phloretin and phloridzin guard against cisplatin-induced nephrotoxicity in mice through inhibiting oxidative stress and inflammation. Life Sci. 2021; 266: 118869.
  • 40. Un H, Ugan RA, Kose D, Bayir Y, Cadirci E, Selli J, et al. A novel effect of Aprepitant: Protection for cisplatin-induced nephrotoxicity and hepatotoxicity. Eur. J. Pharmacol. 2020; 880: 173168.
  • 41. Salem N, Helmi N, Assaf N. Renoprotective effect of platelet-rich plasma on cisplatin-induced nephrotoxicity in rats. Oxid. Med. Cell. Longev. 2018; 2018.

CISPLATIN NEFROTOXICITY AND TREATMENT APPROACHES

Yıl 2023, Cilt: 3 Sayı: 1, 14 - 22, 04.01.2023

Öz

Cancer is one of the most important health problem in the world. Cisplatin is an effective chemotherapeutic drug that is widely used in many cancer types such as lung, cervical, head and neck cancer, stomach cancer, testicular, ovarian, breast cancer. However, the clinical use of cisplatin is limited due to serious side effects and drug-induced resistance. Acute kidney injury (AKI) develops in 20-35% of patients after cisplatin administration. Long-term use of cisplatin results in tubular kidney damage, acute kidney failure, and chronic kidney disease in patients. Mechanisms of kidney injury induced by cisplatin use include proximal tubular damage, oxidative stress, ER stress, apoptosis, and inflammation in the kidneys. There is no completely effective drug or method for kidney damage due to cisplatin use. In vitro and in vivo studies have proven that many natural products and chemicals are effective against cisplatin-induced kidney damage in recent years. In this review, the molecular mechanisms of nephrotoxicity due to the use of cisplatin are described and the findings on current treatment approaches against cisplatin-induced kidney injury are summarized.

Kaynakça

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018; 68: 394-424.
  • 2. Dyba T, Randi G, Bray F, Martos C, Giusti F, Nicholson N, et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer. 2021; 157: 308-47.
  • 3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71: 209-49.
  • 4. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008; 73: 994-1007.
  • 5. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019; 88: 102925.
  • 6. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 2014; 740: 364-78.
  • 7. Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiology and oncology. 2019; 53(2): 148-58.
  • 8. Zhang J, Ye Z-w, Tew KD, Townsend DM. Cisplatin chemotherapy and renal function. Adv. Cancer Res. 2021; 152: 305-27.
  • 9. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 2007; 33: 9-23. 10. Hakiminia B, Goudarzi A, Moghaddas A. Has vitamin E any shreds of evidence in cisplatin‐induced toxicity. J. Biochem. Mol. Toxicol. 2019; 33: e22349.
  • 11. Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J. Am. Soc. Nephrol. 2003; 14: 1-10.
  • 12. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. Contribution of organic cation transporter 2 (OCT2) to cisplatin‐induced nephrotoxicity. Clin. Pharmacol. Ther. 2009; 86: 396-402.
  • 13. Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol. 2009; 296: F505-F11.
  • 14. Davoudi M, Jadidi Y, Moayedi K, Farrokhi V, Afrisham R. Ameliorative impacts of polymeric and metallic nanoparticles on cisplatin-induced nephrotoxicity: a 2011–2022 review. J. Nanobiotechnology. 2022; 20: 1-33.
  • 15. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010; 2: 2490-518.
  • 16. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 2019; 26: 1-14.
  • 17. Shiraishi F, Curtis LM, Truong L, Poss K, Visner GA, Madsen K, et al. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am. J. Physiol. Renal Physiol. 2000; 278: F726-F36.
  • 18. Tang C, Livingston MJ, Safirstein R, Dong Z. Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol. 2022: 1-20.
  • 19. Huang Z, Guo F, Xia Z, Liang Y, Lei S, Tan Z, et al. Activation of GPR120 by TUG891 ameliorated cisplatin-induced acute kidney injury via repressing ER stress and apoptosis. Biomed. Pharmacother. 2020; 126: 110056.
  • 20. Zhang Q, Sun Q, Tong Y, Bi X, Chen L, Lu J, et al. Leonurine attenuates cisplatin nephrotoxicity by suppressing the NLRP3 inflammasome, mitochondrial dysfunction, and endoplasmic reticulum stress. Int Urol Nephrol. 2022: 1-10.
  • 21. Chen X, Wei W, Li Y, Huang J, Ci X. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem. Biol. Interact. 2019; 308: 269-78.
  • 22. Oh G-S, Kim H-J, Shen A, Lee S-B, Yang S-H, Shim H, et al. New therapeutic concept of NAD redox balance for cisplatin nephrotoxicity. BioMed Res. Int. 2016; 2016.
  • 23. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015; 21: 677-87.
  • 24. Ramesh G, Reeves WB. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Investig. 2002; 110: 835-42.
  • 25. Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am. J. Physiol. Renal Physiol. 2003; 285: F610-F8.
  • 26. Cummings BS, Schnellmann RG. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and-independent pathways. J. Pharmacol. Exp. Ther. 2002; 302: 8-17.
  • 27. Hajian S, Rafieian-Kopaei M, Nasri H. Renoprotective effects of antioxidants against cisplatin nephrotoxicity. J. nephropharmacology. 2014; 3: 39.
  • 28. Fang C-y, Lou D-y, Zhou L-q, Wang J-c, Yang B, He Q-j, et al. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol. Sin. 2021; 42: 1951-69.
  • 29. Katsuda H, Yamashita M, Katsura H, Yu J, Waki Y, Nagata N, et al. Protecting cisplatin-induced nephrotoxicity with cimetidine does not affect antitumor activity. Biol. Pharm. Bull. 2010; 33: 1867-71.
  • 30. Humanes B, Camaño S, Lara JM, Sabbisetti V, González-Nicolás MÁ, Bonventre JV, et al. Cisplatin-induced renal inflammation is ameliorated by cilastatin nephroprotection. Nephrol. Dial. Transplant. 2017; 32: 1645-55.
  • 31. Eid AH, Abdelkader NF, El-Raouf A, Ola M, Fawzy HM, El-Denshary E-E-DS. Carvedilol alleviates testicular and spermatological damage induced by cisplatin in rats via modulation of oxidative stress and inflammation. Arch. Pharm. Res. 2016; 39: 1693-702.
  • 32. Guo D, Yang H, Li Q, Bae HJ, Obianom O, Zeng S, et al. Selective inhibition on organic cation transporters by carvedilol protects mice from cisplatin-induced nephrotoxicity. Pharm. Res. 2018; 35: 1-10.
  • 33. Hosseinian S, Roshan NM, Khazaei M, Shahraki S, Mohebbati R, Rad AK. Renoprotective effect of Nigella sativa against cisplatin-induced nephrotoxicity and oxidative stress in rat. Saudi j. kidney dis. transplant. 2018; 29: 19.
  • 34. Kumar M, Dahiya V, Kasala ER, Bodduluru LN, Lahkar M. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence. Biomed. Pharmacother. 2017; 89: 1207-15.
  • 35. Amini N, Badavi M, Mard SA, Dianat M, Moghadam MT. The renoprotective effects of gallic acid on cisplatin-induced nephrotoxicity through anti-apoptosis, anti-inflammatory effects, and downregulation of lncRNA TUG1. Naunyn Schmiedebergs Arch. Pharmacol. 2022; 395: 691-701.
  • 36. Ugur S, Ulu R, Dogukan A, Gurel A, Yigit IP, Gozel N, et al. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail. 2015; 37: 332-6.
  • 37. El-Gizawy MM, Hosny EN, Mourad HH, Razik A-E, Amira N. Curcumin nanoparticles ameliorate hepatotoxicity and nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020; 393: 1941-53.
  • 38. Mohamed ME, Abduldaium YS, Younis NS. Ameliorative effect of linalool in cisplatin-induced nephrotoxicity: the role of HMGB1/TLR4/NF-κB and Nrf2/HO1 pathways. Biomolecules. 2020; 10: 1488.
  • 39. Un H, Ugan RA, Gurbuz MA, Bayir Y, Kahramanlar A, Kaya G, et al. Phloretin and phloridzin guard against cisplatin-induced nephrotoxicity in mice through inhibiting oxidative stress and inflammation. Life Sci. 2021; 266: 118869.
  • 40. Un H, Ugan RA, Kose D, Bayir Y, Cadirci E, Selli J, et al. A novel effect of Aprepitant: Protection for cisplatin-induced nephrotoxicity and hepatotoxicity. Eur. J. Pharmacol. 2020; 880: 173168.
  • 41. Salem N, Helmi N, Assaf N. Renoprotective effect of platelet-rich plasma on cisplatin-induced nephrotoxicity in rats. Oxid. Med. Cell. Longev. 2018; 2018.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toksikoloji
Bölüm Reviews
Yazarlar

Nagihan Karagöl 0000-0001-9173-6571

Yayımlanma Tarihi 4 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 1

Kaynak Göster

EndNote Karagöl N (01 Ocak 2023) CISPLATIN NEFROTOXICITY AND TREATMENT APPROACHES. International Journal of PharmATA 3 1 14–22.