Araştırma Makalesi
BibTex RIS Kaynak Göster

Defne (Laurus nobilis L.) Uçucu Yağının Balık Patojeni Pseudomonas Türlerine Karşı Antibakteriyel ve Antibiyofilm Aktivitelerinin Belirlenmesi

Yıl 2023, Cilt: 9 Sayı: 1, 25 - 33, 27.06.2023
https://doi.org/10.58626/menba.1289033

Öz

Yüksek biyoaktif bileşen konsantrasyonuna sahip olması nedeniyle Defne (Laurus nobilis) esansiyel yağının, çeşitli terapötik özelliklere sahip olduğu bilinmektedir. Bu çalışma ile Laurus nobilis yapraklarından ekstrakte edilen esansiyel yağın kimyasal bileşiminin yanı sıra antipsödomonal ve antibiyofilm etkileri de dahil olmak üzere biyolojik özelliklerinin analiz edilmesi amaçlanmıştır. Minimum İnhibasyon Konsantrasyonu (MİK) değerlerinin, P. fluorescens için 31,25 µg/mL, P. putida için 31,25 µg/mL ve P. aeruginosa için 62,5 µg/mL olduğu tespit edilmiştir. P. fluorescens ve P. putida biyofilmlerinin, MİK altı dozlarda Laurus nobilis esansiyel yağının anti-biyofilm aktivitesi tarafından baskılandığı görülmüştür. Sonuçlar, minimum inhibasyon konsantrasyonlarında esansiyel yağın, Pseudomonas türü biyofilm oluşumunu etkili bir şekilde önlediğini ortaya koymuştur. Sonuç olarak, Laurus nobilis esansiyel yağlarının, antibiyofilm potansiyeline sahip muhtemel antibakteriyel ajan kaynakları olduğu sonucuna varılmıştır.

Kaynakça

  • Alfred, O., Shaahu, A., Orban, D. A., & Egwenomhe, M. (2020). An overview on understanding the basic concept of fish diseases in aquaculture. IRE Journals, 4(6), 83-91.
  • Algammal, A. M., Mabrok, M., Sivaramasamy, E., Youssef, F. M., Atwa, M. H., El-Kholy, A. W., Hetta, H. F., & Hozzein, W. N. (2020). Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Scientific Reports, 10(1), 15961. https://doi.org/10.1038/s41598-020-72264-4
  • Arumugam, G., Swamy, M. K., & Sinniah, U. R. (2016). Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules, 21(4), 369. https://doi.org/10.3390/molecules21040369
  • Assefa, A., & Abunna, F. (2018). Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Veterinary medicine international, 2018, 5432497. https://doi.org/10.1155/2018/5432497
  • Austin, B., & Austin, D.A. (2012). Pseudomonadaceae Representatives. In: Bacterial Fish Pathogens. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4884-2_10
  • Badawy, M. E., Marei, G. I. K., Rabea, E. I., & Taktak, N. E. (2019). Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pesticide Biochemistry and Physiology, 158, 185-200. https://doi.org/10.1016/j.pestbp.2019.05.008
  • Bektaş, S., & Özdal, M. (2022). Antimicrobial Activity of Eucalyptus (Eucalyptus camaldulensis) Essential Oil Against Fish Pathogen Bacterium, Aeromonas caviae. Marine Science and Technology Bulletin, 11(4), 467-474. https://doi.org/10.33714/masteb.1184165
  • Bektaş, S., & Ayik, O. (2009). Hematological parameters and erythrocyte osmotic fragility in rainbow trout, Oncorhynchus mykiss, experimentally infected with Pseudomonas putida. Journal of Fisheries and Aquatic Science, 4(5), 246-253. https://doi.org/10.3923/jfas.2009.246.253
  • Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., & De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 22(6), 930. https://doi.org/10.3390/molecules22060930
  • Chen, J., Rossman M.L., & Pawar, D.M. (2007). Attachment of enterohemorragic Escherichia coli to the surface of beef and a culture medium. LWT-Food Science and Technology, 40(2), 249-254. https://doi.org/10.1016/j.lwt.2005.10.011
  • Chmit, M., Kanaan, H., Habib, J., Abbass, M., Mcheik, A., & Chokr, A. (2014). Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pacific Journal of Tropical Medicine, 7(1), 546-552. https://doi.org/10.1016/S1995-7645(14)60288-1
  • Da Cunha, J. A., Heinzmann, B. M., & Baldisserotto, B. (2018). The effects of essential oils and their major compounds on fish bacterial pathogens - a review. Journal of applied microbiology, 125(2), 328–344. https://doi.org/10.1111/jam.13911
  • Dadalioglu, I., & Evrendilek, G. A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agricultural and Food Chemistry, 52(26), 8255–8260. https://doi.org/10.1021/jf049033e
  • Derwich, E., Benziane, Z., & Boukir, A. (2009). Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Australian journal of basic and applied sciences, 3, 3818-3824.
  • Eissa, N., Elsayed, A.E., Shaheen, A., & Abbass, A. (2010). Characterization of Pseudomonas Species Isolated from Tilapia "Oreochromis niloticus" in Qaroun and Wadi-El-Rayan Lakes, Egypt. Global Veterinaria. 5(2), 116-121. https://doi.org/10.13140/2.1.5002.4961
  • Ertürk, Ö. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia, 61(3), 275-278. https://doi.org/10.2478/s11756-006-0050-8
  • Fidan, H., Stefanova, G., Kostova, I., Stankov, S., Damyanova, S., Stoyanova, A., & Zheljazkov, V. D. (2019). Chemical Composition and Antimicrobial Activityof Laurus nobilis L. Essential Oils from Bulgaria. Molecules, 24(4), 804. MDPI AG. http://dx.doi.org/10.3390/molecules24040804
  • Francis- Floyd, R. (2005) Introduction to fish health management. IFAS Extension. Fisheries and Aquatic Sciences Department University of Florida US CIR 921: 1-4.
  • Ghalem, B.R., & Mohamed, B. (2008) Antibacterial Activity of Leaf Essential Oils of Eucalyptus globulus and Eucalyptus camaldulensis. African Journal of Pharmacy and Pharmacology, 2(10), 211-215.
  • Gholipourkanani, H., Buller, N., & Lymbery, A. (2019). In vitro antibacterial activity of four nano‐encapsulated herbal essential oils against three bacterial fish pathogens. Aquaculture Research, 50(3), 871-875. https://doi.org/10.1111/are.13959
  • Goudjil, M. B., Ladjel, S., Bencheikh, S. E., Zighmi, S., & Hamada, D. (2015). Study of the chemical composition, antibacterial and antioxidant activities of the essential oil extracted from the leaves of Algerian Laurus nobilis Lauraceae. Journal of Chemical and Pharmaceutical Research, 7(1), 379-385.
  • Insuan, W., & Chahomchuen, T. (2020). Chemical Composition and Antimicrobial Activity of Essential Oil Extracted from Eucalyptus citriodora Leaf. Microbiology and Biotechnology Letters, 48(2), 148-157. https://doi.org/10.4014/mbl.1912.12016
  • Iseppi, R., Sabia, C., Bondi, M., Mariani, M., & Messi, P. (2020). Virulence factors, drug resistance and biofilm formation in Pseudomonas species isolated from healthcare water systems. Current Microbiology, 77, 1737-1745. https://doi.org/10.1007/s00284-020-01990-9
  • Jacobo, A. J. L., Carezzano, M. E., Quiroga, P. R., & Grosso, N. R. (2022). Fractions of laurel essential oil obtained by molecular distillation with greater antioxidant and antimicrobial activities. Agriscientia, 39(1), 105-116. https://doi.org/10.31047/1668.298x.v39.n1.35407
  • Kozioł, A., Stryjewska, A., Librowski, T., Sałat, K., Gaweł, M., Moniczewski, A., & Lochyński, S. (2014). An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini reviews in medicinal chemistry, 14(14), 1156–1168. https://doi.org/10.2174/1389557514666141127145820
  • Kunová, S., Sendra, E., Haščík, P., Vukovic, N. L., Vukic, M., & Kačániová, M. (2021). Influence of Essential Oils on the Microbiological Quality of Fish Meat during Storage. Animals, 11(11), 3145. https://doi.org/10.3390/ani11113145 Lim, A. C., Tang, S. G. H., Zin, N. M., Maisarah, A. M., Ariffin, I. A., Ker, P. J., & Mahlia, T. M. I. (2022). Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules, 27(15), 4895. http://dx.doi.org/10.3390/molecules27154895
  • Liu, Y., Yan, Y., Dong, P., Ni, L., Luo, X., Zhang, Y., & Zhu, L. (2022). Inhibitory effects of clove and oregano essential oils on biofilm formation of Salmonella Derby isolated from beef processing plant. Lebensmittel-Wissenschaft + Technologie, 162, 113486. https://doi.org/10.1016/j.lwt.2022.113486
  • Loza-Tavera, H. (1999). Monoterpenes in Essential Oils. In: Shahidi, F., Kolodziejczyk, P., Whitaker, J.R., Munguia, A.L., Fuller, G. (eds) Chemicals via Higher Plant Bioengineering. Advances in Experimental Medicine and Biology, vol 464. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4729-7_5
  • Lu, J., Hu, X., & Ren, L. (2022). Biofilm control strategies in food industry: Inhibition and utilization. Trends in Food Science & Technology, 123, 103-113. https://doi.org/10.1016/j.tifs.2022.03.007
  • Mączka, W., Duda-Madej, A., Górny, A., Grabarczyk, M., & Wińska, K. (2021). Can Eucalyptol Replace Antibiotics? Molecules, 26(16), 4933. https://doi.org/10.3390/molecules26164933
  • Mazumder, A., Choudhury, H., Dey, A., & Sarma, D. (2020). Bactericidal Activity of Essential Oil and its Major Compound from Leaves of Eucalyptus maculata Hook. Against Two Fish Pathogens. Journal of Essential Oil Bearing Plants, 23(12), 1-7. https://doi.org/10.1080/0972060X.2020.1729248
  • Merghni, A., Marzouki, H., Hentati, H., Aouni, M., & Mastouri, M. (2016). Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Current Research in Translational Medicine, 64(1), 29-34. https://doi.org/10.1016/j.patbio.2015.10.003
  • Moo, C. L., Osman, M. A., Yang, S. K., Yap, W. S., Ismail, S., Lim, S. H., Chong, C. M., & Lai, K. S. (2021). Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae. Scientific Reports, 11(1), 20824. https://doi.org/10.1038/s41598-021-00249-y
  • Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451
  • Osman, K., Orabi, A., Elbehiry, A., Hanafy, M. H., & Ali, A. M. (2019). Pseudomonas species isolated from camel meat: quorum sensing-dependent virulence, biofilm formation and antibiotic resistance. Future Microbiology, 14(7), 609-622. https://doi.org/10.2217/fmb-2018-0293
  • Ozdal, M., Gurkok, S., & Ozdal, O. G. (2017). Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech, 7, 1-8. https://doi.org/10.1007/s13205-017-0774-x
  • Peixoto, L. R., Rosalen, P. L., Ferreira, G. L. S., Freires, I. A., de Carvalho, F. G., Castellano, L. R., & de Castro, R. D. (2017). Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Archives of Oral Biology, 73, 179-185. https://doi.org/10.1016/j.archoralbio.2016.10.013
  • Ramos, C., Teixeira, B., Batista, I., Matos, O., Serrano, C., Neng, N. R., Nogueira, J. M., Nunes, M. L., & Marques, A. (2012). Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Natural Product Research, 26(6), 518–529. https://doi.org/10.1080/14786419.2010.531478
  • Řebíčková, K., Bajer, T., Šilha, D., Ventura, K., & Bajerová, P. (2020). Comparison of chemical composition and biological properties of essential oils obtained by hydrodistillation and steam distillation of Laurus nobilis L. Plant Foods for Human Nutrition, 75(4), 495-504.
  • Rath, C. C., & Priyadarshanee, M. (2017). Evaluation of in-vitro antibacterial activity of selected essential oils. Journal of Essential Oil-Bearing Plants, 20(2), 359-367. https://doi.org/ 10.1080/0972060X.2017.1326321
  • Romero, J., Feijoo, C. G., & Navarrete, P. (2012). Antibiotics in Aquaculture – Use, Abuse and Alternatives. In E. D. Carvalho, G. S. David, & R. J. Silva (Eds.), Health and Environment in Aquaculture. Intech Open. https://doi.org/10.5772/28157
  • Sabo, V.A., & Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products, 132, 413–429. https://doi.org/10.1016/j.indcrop.2019.02.051 Santoyo, S., Lloria, R., Jaime, L., Ibanez, E., Senorans, F. J., & Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization. European Food Research and Technology, 222(5), 565-571. https://doi.org/10.1007/s00217-005-0027-9
  • Sevindik, E., Abacı, Z.T., Yamaner, C., & Ayvaz, M. (2016). Determination of the chemical composition and antimicrobial activity of the essential oils of Teucrium polium and Achillea millefolium grown under North Anatolian ecological conditions. Biotechnology & Biotechnological Equipment, 30(2), 375-380. https://doi.org/10.1080/13102818.2015.1131626.
  • Shahbazi, Y. (2019). Antioxidant, antibacterial, and antifungal properties of nanoemulsion of clove essential oil. Nanomedicine Research Journal, 4(4), 204-208. https://doi.org/10.22034/nmrj.2019.04.001
  • Simoes, M., Bennett, R. N., & Rosa, E. A. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 26(6), 746-757. https://doi.org/10.1039/b821648g
  • Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414. https://doi.org/10.3390/molecules21101414
  • Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-based complementary and alternative medicine: eCAM, 2016, 3012462. https://doi.org/10.1155/2016/3012462
  • Taban, A., Saharkhiz, M.J., & Niakousari, M. (2018). Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustainable Chemistry and Pharmacy, 9(9), 12-18. https://doi.org/10.1016/j.scp.2018.05.001
  • Tendencia, E. A., & Lavilla-Pitogo, C. R. (2004). Bacterial diseases. In K. Nagasawa & E. R. Cruz-Lacierda (Eds.), Diseases of cultured groupers (pp. 19-28). Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center.
  • Vaičiulytė, V., Ložienė, K., Švedienė, J., Raudonienė, V., & Paškevičius, A. (2021). α-Terpinyl Acetate: Occurrence in Essential Oils Bearing Thymus pulegioides, Phytotoxicity, and Antimicrobial Effects. Molecules, 26(4), 1065. https://doi.org/10.3390/molecules26041065 World Health Organization, “Antibiotic Resistance,” accessed June 15, 2020, https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance.

Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species

Yıl 2023, Cilt: 9 Sayı: 1, 25 - 33, 27.06.2023
https://doi.org/10.58626/menba.1289033

Öz

The essential oil derived from Laurus nobilis exhibits a high concentration of bioactive components, imparting various therapeutic characteristics. This study aimed to analyze the chemical composition of the essential oil extracted from Laurus nobilis leaves as well as its biological properties, including its antipseudomonal and antibiofilm actions. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that 1,8-cineole (%48.43) and α-terpinyl acetate (14.78) were the major compounds present in the essential oil (EO). While, the minimum inhibitory concentration (MIC) values of Laurus nobilis essential oils (LEO) against P. fluorescens and P. putida were determined as 31.25 µg/mL, it was 62.5 µg/mL for P. aeruginosa. LEO, at a MIC level of 31,25µg/mL, exhibited significant inhibition of Pseudomonas species biofilm formation except for P. aeruginosa. Based on its demonstrated antibacterial and antibiofilm potential, LEO holds promise as a prospective source of antibacterial agents.

Kaynakça

  • Alfred, O., Shaahu, A., Orban, D. A., & Egwenomhe, M. (2020). An overview on understanding the basic concept of fish diseases in aquaculture. IRE Journals, 4(6), 83-91.
  • Algammal, A. M., Mabrok, M., Sivaramasamy, E., Youssef, F. M., Atwa, M. H., El-Kholy, A. W., Hetta, H. F., & Hozzein, W. N. (2020). Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Scientific Reports, 10(1), 15961. https://doi.org/10.1038/s41598-020-72264-4
  • Arumugam, G., Swamy, M. K., & Sinniah, U. R. (2016). Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules, 21(4), 369. https://doi.org/10.3390/molecules21040369
  • Assefa, A., & Abunna, F. (2018). Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Veterinary medicine international, 2018, 5432497. https://doi.org/10.1155/2018/5432497
  • Austin, B., & Austin, D.A. (2012). Pseudomonadaceae Representatives. In: Bacterial Fish Pathogens. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4884-2_10
  • Badawy, M. E., Marei, G. I. K., Rabea, E. I., & Taktak, N. E. (2019). Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pesticide Biochemistry and Physiology, 158, 185-200. https://doi.org/10.1016/j.pestbp.2019.05.008
  • Bektaş, S., & Özdal, M. (2022). Antimicrobial Activity of Eucalyptus (Eucalyptus camaldulensis) Essential Oil Against Fish Pathogen Bacterium, Aeromonas caviae. Marine Science and Technology Bulletin, 11(4), 467-474. https://doi.org/10.33714/masteb.1184165
  • Bektaş, S., & Ayik, O. (2009). Hematological parameters and erythrocyte osmotic fragility in rainbow trout, Oncorhynchus mykiss, experimentally infected with Pseudomonas putida. Journal of Fisheries and Aquatic Science, 4(5), 246-253. https://doi.org/10.3923/jfas.2009.246.253
  • Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., & De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 22(6), 930. https://doi.org/10.3390/molecules22060930
  • Chen, J., Rossman M.L., & Pawar, D.M. (2007). Attachment of enterohemorragic Escherichia coli to the surface of beef and a culture medium. LWT-Food Science and Technology, 40(2), 249-254. https://doi.org/10.1016/j.lwt.2005.10.011
  • Chmit, M., Kanaan, H., Habib, J., Abbass, M., Mcheik, A., & Chokr, A. (2014). Antibacterial and antibiofilm activities of polysaccharides, essential oil, and fatty oil extracted from Laurus nobilis growing in Lebanon. Asian Pacific Journal of Tropical Medicine, 7(1), 546-552. https://doi.org/10.1016/S1995-7645(14)60288-1
  • Da Cunha, J. A., Heinzmann, B. M., & Baldisserotto, B. (2018). The effects of essential oils and their major compounds on fish bacterial pathogens - a review. Journal of applied microbiology, 125(2), 328–344. https://doi.org/10.1111/jam.13911
  • Dadalioglu, I., & Evrendilek, G. A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agricultural and Food Chemistry, 52(26), 8255–8260. https://doi.org/10.1021/jf049033e
  • Derwich, E., Benziane, Z., & Boukir, A. (2009). Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Australian journal of basic and applied sciences, 3, 3818-3824.
  • Eissa, N., Elsayed, A.E., Shaheen, A., & Abbass, A. (2010). Characterization of Pseudomonas Species Isolated from Tilapia "Oreochromis niloticus" in Qaroun and Wadi-El-Rayan Lakes, Egypt. Global Veterinaria. 5(2), 116-121. https://doi.org/10.13140/2.1.5002.4961
  • Ertürk, Ö. (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia, 61(3), 275-278. https://doi.org/10.2478/s11756-006-0050-8
  • Fidan, H., Stefanova, G., Kostova, I., Stankov, S., Damyanova, S., Stoyanova, A., & Zheljazkov, V. D. (2019). Chemical Composition and Antimicrobial Activityof Laurus nobilis L. Essential Oils from Bulgaria. Molecules, 24(4), 804. MDPI AG. http://dx.doi.org/10.3390/molecules24040804
  • Francis- Floyd, R. (2005) Introduction to fish health management. IFAS Extension. Fisheries and Aquatic Sciences Department University of Florida US CIR 921: 1-4.
  • Ghalem, B.R., & Mohamed, B. (2008) Antibacterial Activity of Leaf Essential Oils of Eucalyptus globulus and Eucalyptus camaldulensis. African Journal of Pharmacy and Pharmacology, 2(10), 211-215.
  • Gholipourkanani, H., Buller, N., & Lymbery, A. (2019). In vitro antibacterial activity of four nano‐encapsulated herbal essential oils against three bacterial fish pathogens. Aquaculture Research, 50(3), 871-875. https://doi.org/10.1111/are.13959
  • Goudjil, M. B., Ladjel, S., Bencheikh, S. E., Zighmi, S., & Hamada, D. (2015). Study of the chemical composition, antibacterial and antioxidant activities of the essential oil extracted from the leaves of Algerian Laurus nobilis Lauraceae. Journal of Chemical and Pharmaceutical Research, 7(1), 379-385.
  • Insuan, W., & Chahomchuen, T. (2020). Chemical Composition and Antimicrobial Activity of Essential Oil Extracted from Eucalyptus citriodora Leaf. Microbiology and Biotechnology Letters, 48(2), 148-157. https://doi.org/10.4014/mbl.1912.12016
  • Iseppi, R., Sabia, C., Bondi, M., Mariani, M., & Messi, P. (2020). Virulence factors, drug resistance and biofilm formation in Pseudomonas species isolated from healthcare water systems. Current Microbiology, 77, 1737-1745. https://doi.org/10.1007/s00284-020-01990-9
  • Jacobo, A. J. L., Carezzano, M. E., Quiroga, P. R., & Grosso, N. R. (2022). Fractions of laurel essential oil obtained by molecular distillation with greater antioxidant and antimicrobial activities. Agriscientia, 39(1), 105-116. https://doi.org/10.31047/1668.298x.v39.n1.35407
  • Kozioł, A., Stryjewska, A., Librowski, T., Sałat, K., Gaweł, M., Moniczewski, A., & Lochyński, S. (2014). An overview of the pharmacological properties and potential applications of natural monoterpenes. Mini reviews in medicinal chemistry, 14(14), 1156–1168. https://doi.org/10.2174/1389557514666141127145820
  • Kunová, S., Sendra, E., Haščík, P., Vukovic, N. L., Vukic, M., & Kačániová, M. (2021). Influence of Essential Oils on the Microbiological Quality of Fish Meat during Storage. Animals, 11(11), 3145. https://doi.org/10.3390/ani11113145 Lim, A. C., Tang, S. G. H., Zin, N. M., Maisarah, A. M., Ariffin, I. A., Ker, P. J., & Mahlia, T. M. I. (2022). Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules, 27(15), 4895. http://dx.doi.org/10.3390/molecules27154895
  • Liu, Y., Yan, Y., Dong, P., Ni, L., Luo, X., Zhang, Y., & Zhu, L. (2022). Inhibitory effects of clove and oregano essential oils on biofilm formation of Salmonella Derby isolated from beef processing plant. Lebensmittel-Wissenschaft + Technologie, 162, 113486. https://doi.org/10.1016/j.lwt.2022.113486
  • Loza-Tavera, H. (1999). Monoterpenes in Essential Oils. In: Shahidi, F., Kolodziejczyk, P., Whitaker, J.R., Munguia, A.L., Fuller, G. (eds) Chemicals via Higher Plant Bioengineering. Advances in Experimental Medicine and Biology, vol 464. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4729-7_5
  • Lu, J., Hu, X., & Ren, L. (2022). Biofilm control strategies in food industry: Inhibition and utilization. Trends in Food Science & Technology, 123, 103-113. https://doi.org/10.1016/j.tifs.2022.03.007
  • Mączka, W., Duda-Madej, A., Górny, A., Grabarczyk, M., & Wińska, K. (2021). Can Eucalyptol Replace Antibiotics? Molecules, 26(16), 4933. https://doi.org/10.3390/molecules26164933
  • Mazumder, A., Choudhury, H., Dey, A., & Sarma, D. (2020). Bactericidal Activity of Essential Oil and its Major Compound from Leaves of Eucalyptus maculata Hook. Against Two Fish Pathogens. Journal of Essential Oil Bearing Plants, 23(12), 1-7. https://doi.org/10.1080/0972060X.2020.1729248
  • Merghni, A., Marzouki, H., Hentati, H., Aouni, M., & Mastouri, M. (2016). Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Current Research in Translational Medicine, 64(1), 29-34. https://doi.org/10.1016/j.patbio.2015.10.003
  • Moo, C. L., Osman, M. A., Yang, S. K., Yap, W. S., Ismail, S., Lim, S. H., Chong, C. M., & Lai, K. S. (2021). Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae. Scientific Reports, 11(1), 20824. https://doi.org/10.1038/s41598-021-00249-y
  • Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451
  • Osman, K., Orabi, A., Elbehiry, A., Hanafy, M. H., & Ali, A. M. (2019). Pseudomonas species isolated from camel meat: quorum sensing-dependent virulence, biofilm formation and antibiotic resistance. Future Microbiology, 14(7), 609-622. https://doi.org/10.2217/fmb-2018-0293
  • Ozdal, M., Gurkok, S., & Ozdal, O. G. (2017). Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech, 7, 1-8. https://doi.org/10.1007/s13205-017-0774-x
  • Peixoto, L. R., Rosalen, P. L., Ferreira, G. L. S., Freires, I. A., de Carvalho, F. G., Castellano, L. R., & de Castro, R. D. (2017). Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Archives of Oral Biology, 73, 179-185. https://doi.org/10.1016/j.archoralbio.2016.10.013
  • Ramos, C., Teixeira, B., Batista, I., Matos, O., Serrano, C., Neng, N. R., Nogueira, J. M., Nunes, M. L., & Marques, A. (2012). Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Natural Product Research, 26(6), 518–529. https://doi.org/10.1080/14786419.2010.531478
  • Řebíčková, K., Bajer, T., Šilha, D., Ventura, K., & Bajerová, P. (2020). Comparison of chemical composition and biological properties of essential oils obtained by hydrodistillation and steam distillation of Laurus nobilis L. Plant Foods for Human Nutrition, 75(4), 495-504.
  • Rath, C. C., & Priyadarshanee, M. (2017). Evaluation of in-vitro antibacterial activity of selected essential oils. Journal of Essential Oil-Bearing Plants, 20(2), 359-367. https://doi.org/ 10.1080/0972060X.2017.1326321
  • Romero, J., Feijoo, C. G., & Navarrete, P. (2012). Antibiotics in Aquaculture – Use, Abuse and Alternatives. In E. D. Carvalho, G. S. David, & R. J. Silva (Eds.), Health and Environment in Aquaculture. Intech Open. https://doi.org/10.5772/28157
  • Sabo, V.A., & Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products, 132, 413–429. https://doi.org/10.1016/j.indcrop.2019.02.051 Santoyo, S., Lloria, R., Jaime, L., Ibanez, E., Senorans, F. J., & Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. Chemical and functional characterization. European Food Research and Technology, 222(5), 565-571. https://doi.org/10.1007/s00217-005-0027-9
  • Sevindik, E., Abacı, Z.T., Yamaner, C., & Ayvaz, M. (2016). Determination of the chemical composition and antimicrobial activity of the essential oils of Teucrium polium and Achillea millefolium grown under North Anatolian ecological conditions. Biotechnology & Biotechnological Equipment, 30(2), 375-380. https://doi.org/10.1080/13102818.2015.1131626.
  • Shahbazi, Y. (2019). Antioxidant, antibacterial, and antifungal properties of nanoemulsion of clove essential oil. Nanomedicine Research Journal, 4(4), 204-208. https://doi.org/10.22034/nmrj.2019.04.001
  • Simoes, M., Bennett, R. N., & Rosa, E. A. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 26(6), 746-757. https://doi.org/10.1039/b821648g
  • Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21(10), 1414. https://doi.org/10.3390/molecules21101414
  • Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evidence-based complementary and alternative medicine: eCAM, 2016, 3012462. https://doi.org/10.1155/2016/3012462
  • Taban, A., Saharkhiz, M.J., & Niakousari, M. (2018). Sweet bay (Laurus nobilis L.) essential oil and its chemical composition, antioxidant activity and leaf micromorphology under different extraction methods. Sustainable Chemistry and Pharmacy, 9(9), 12-18. https://doi.org/10.1016/j.scp.2018.05.001
  • Tendencia, E. A., & Lavilla-Pitogo, C. R. (2004). Bacterial diseases. In K. Nagasawa & E. R. Cruz-Lacierda (Eds.), Diseases of cultured groupers (pp. 19-28). Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center.
  • Vaičiulytė, V., Ložienė, K., Švedienė, J., Raudonienė, V., & Paškevičius, A. (2021). α-Terpinyl Acetate: Occurrence in Essential Oils Bearing Thymus pulegioides, Phytotoxicity, and Antimicrobial Effects. Molecules, 26(4), 1065. https://doi.org/10.3390/molecules26041065 World Health Organization, “Antibiotic Resistance,” accessed June 15, 2020, https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hidrobiyoloji
Bölüm Araştırmalar
Yazarlar

Serdar Bektaş 0000-0002-9620-4969

Murat Özdal 0000-0001-8800-1128

Sümeyra Gürkök 0000-0002-2707-4371

Yayımlanma Tarihi 27 Haziran 2023
Kabul Tarihi 13 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 1

Kaynak Göster

APA Bektaş, S., Özdal, M., & Gürkök, S. (2023). Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 9(1), 25-33. https://doi.org/10.58626/menba.1289033
AMA Bektaş S, Özdal M, Gürkök S. Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. Haziran 2023;9(1):25-33. doi:10.58626/menba.1289033
Chicago Bektaş, Serdar, Murat Özdal, ve Sümeyra Gürkök. “Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus Nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 9, sy. 1 (Haziran 2023): 25-33. https://doi.org/10.58626/menba.1289033.
EndNote Bektaş S, Özdal M, Gürkök S (01 Haziran 2023) Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 9 1 25–33.
IEEE S. Bektaş, M. Özdal, ve S. Gürkök, “Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species”, Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, c. 9, sy. 1, ss. 25–33, 2023, doi: 10.58626/menba.1289033.
ISNAD Bektaş, Serdar vd. “Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus Nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 9/1 (Haziran 2023), 25-33. https://doi.org/10.58626/menba.1289033.
JAMA Bektaş S, Özdal M, Gürkök S. Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2023;9:25–33.
MLA Bektaş, Serdar vd. “Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus Nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, c. 9, sy. 1, 2023, ss. 25-33, doi:10.58626/menba.1289033.
Vancouver Bektaş S, Özdal M, Gürkök S. Determination of Antibacterial and Antibiofilm Activities for Laurel (Laurus nobilis L.) Essential Oil Against the Fish Pathogen Pseudomonas Species. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2023;9(1):25-33.