Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Genotoxic and Development Effects of Tetramethrin on Drosophila melanogaster

Yıl 2024, Cilt: 27 Sayı: 2, 304 - 315, 01.04.2024
https://doi.org/10.18016/ksutarimdoga.vi.1224968

Öz

The adverse effects of tetramethrin residues, a synthetic pyrethroid used in many insecticide formulations, on environmental health and living organisms are a matter of concern. The aim of this study was to evaluate the genotoxic and developmental effects of tetramethrin in a non-target organism, Drosophila melanogaster. Thus, its effect on DNA damage was evaluated using the Comet assay in hemocytes, and its mutagenic and recombinogenic effects were evaluated using Drosophila wing SMART. Also, the effects of tetramethrin on Drosophila development were evaluated by measuring larval weight, larval length, and fecundity. Results showed that tetramethrin induced a decrease in the larval weight and length only at a high concentration. Moreover, a decrease in fecundity in a dose-dependent manner was observed. According to the Comet assay results, DNA damage was not induced because there was no significant increase in % DNA. However, tetramethrin caused genotoxicity by inducing mitotic recombination in the SMART assay.

Kaynakça

  • Abdulbaki H, & Al-Deeb M.A (2023). Neuroprotective effects of ferulic acid and thymoquinone against deltamethrin-induced neurotoxicity in Drosophila melanogaster. Advancements in life sciences, 10(2), 289-297.
  • Abeyasuriya K.G.T.N, Nugapola N.W.N.P, Perera M.D.B, Karunaratne W.A.I.P & Karunaratne S.H.P.P. (2017). Effect of dengue mosquito control insecticide thermal fogging on non-target insects. International Journal of Tropical Insect Science, 37(1), 11–18. https://doi.org/10.1017/S1742758416 000254.
  • Abrahams, P.J., Houweling, A., Schouten, R., van der Eb, A.J. & Terleth, C. (2003). Abnormal kinetics of induction of UV-stimulated recombination in human DNA repair disorders. DNA Repair, 2(11), 1211-1225. https://doi.org/10.1016/S1568-7864 (03) 00141-1.
  • Anushree, Ali, M. Z., Bilgrami, A. L., & Ahsan, J. (2023). Acute exposure to arsenic affects pupal development and neurological functions in Drosophila melanogaster. Toxics, 11(4), 327. https://doi.org/10.3390/toxics11040327
  • Arias, M., Bonetto, C., & Mugni, H. (2020). Sublethal effects on Simocephalus vetulus (Cladocera: Daphnidae) of pulse exposures of cypermethrin. Ecotoxicology and environmental safety, 196, 110546. https://doi.org/10.1016/j.ecoenv.2020. 110546
  • Arslan, P. (2022). Determinations of the effects of cyfluthrin on the hemocytes parameters of freshwater mussel (Unio delicatus). Ege Journal of Fisheries and Aquatic Sciences, 39(1), 39-45. https://doi.org/10.12714/egejfas.39.1.06
  • Ballesteros, M. L., Boyle, R. L., Kellar, C. R., Miglioranza, K. S. B., Bistoni, M. A., Pettigrove, V., & Long, S. M. (2020). What types of enzyme activities are useful biomarkers of bifenthrin exposure on Chironomus sp. (Diptera, Chironomidae) larvae under laboratory and field-based microcosm conditions? Aquatic toxicology (Amsterdam, Netherlands), 228, 105618. https://doi.org/10.1016/j.aquatox.2020.105618
  • Barrios-Arpi, L., Arias, Y., Lopez-Torres, B., Ramos-Gonzalez, M., Ticli, G., Prosperi, E., & Rodríguez, J. L. (2022). In vitro neurotoxicity of flumethrin pyrethroid on SH-SY5Y neuroblastoma cells: Apoptosis associated with oxidative stress. Toxics, 10(3), 131. https://doi.org/10.3390/toxics10030131
  • Batiste-Alentorn, M., Xamena, N., Velázquez, A., Creus, A., & Marcos, R. (1986). Mutagenicity testing of the pyrethroid insecticide cypermethrin in Drosophila. Mutagenesis, 1(5), 343–346. https://doi.org/10.1093/mutage/1.5.343
  • Bej, S., Ghosh, K., Chatterjee, A., & Saha, N. C. (2021). Assessment of biochemical, hematological and behavioral biomarkers of Cyprinus carpio on exposure to a type-II pyrethroid insecticide Alpha-cypermethrin. Environmental toxicology and pharmacology, 87, 103717. https://doi.org/10.1016/ j.etap.2021.103717
  • Beken, A. T., Saka, Ş., Aydın, İ., Fırat, K., Suzer, C., Benzer, F., Erişir, M., Özden, O., Hekimoğlu, M. A., Engin, S., & Antepli, O. (2022). In vivo and in vitro evolution of the effects of cypermethrin on turbot (Scophthalmus maximus, Linnaeus, 1758) spermatozoa. Comparative biochemistry and physiology Part C: Toxicology & Pharmacology, 256, 109298. https://doi.org/10.1016/j.cbpc.2022.109298
  • Berry-III, R. & Lopez-Martinez, G. (2020). A dose of experimental hormesis: When mild stress protects and improves animal performance. Comparative Biochemistry and Physiology, Part A, 242, 110658. https://doi.org/10.1016/j.cbpa.2020.110658.
  • Çavuşoğlu, K., Kaya, A., Yilmaz, F., & Yalçin, E. (2012). Effects of cypermethrin on Allium cepa. Environmental toxicology, 27(10), 583–589. https://doi.org/10.1002/tox.20681
  • Charpentier, G., Louat, F., Bonmatin, J. M., Marchand, P. A., Vanier, F., Locker, D., & Decoville, M. (2014). Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environmental science & technology, 48(7), 4096–4102. https://doi.org/10.1021/es405331c
  • Charreton, M., Decourtye, A., Henry, M., Rodet, G., Sandoz, J. C., Charnet, P., & Collet, C. (2015). A locomotor deficit induced by sublethal doses of pyrethroid and neonicotinoid insecticides in the honeybee Apis mellifera. PloS one, 10(12), e0144879. https://doi.org/10.1371/journal.pone. 0144879
  • Chedik, L., Bruyere, A., Vee, M.L., Stieger, B., Denizot, C., Parmentier, Y., Potin, S. & Fardel, O. (2017). Inhibition of human drug transporter activities by the pyrethroid pesticides allethrin and tetramethrin. PLoS One, 12(1), e0169480. https://doi.org/10.1371/journal.pone.0169480.
  • Chen, X., Wang, Y., Wu, W., Dong, K., & Hu, Z. (2018). DSC1 channel-dependent developmental regulation of pyrethroid susceptibility in Drosophila melanogaster. Pesticide biochemistry and physiology, 148, 190–198. https://doi.org/10.1016/ j.pestbp.2018.04.014
  • Corcellas, C., Andreu, A., Manez, M., Sergio, F., Hiraldo, F., Eljarrat, E. & Barcelo, D. (2017). Pyrethroid insecticides in wild bird eggs from a World Heritage Listed Park: A case study in Donana National Park (Spain). Environmental Pollution, 228, 321-330. https://doi.org/10.1016/ j.envpol.2017.05.035.
  • Cruces, M. P., Pimentel, E., Vidal, L. M., Jiménez, E., Suárez, H., Camps, E., & Campos-González, E. (2023). Genotoxic action of bifenthrin nanoparticles and its effect on the development, productivity, and behavior of Drosophila melanogaster. Journal of toxicology and environmental health. Part A, 86(18), 661–677. https://doi.org/10.1080/15287394. 2023.2234408
  • Demir, E., Kocaoğlu, S. & Kaya, B. (2008). Genotoxicity testing of four benzyl derivaties in the Drosophila wing spot test. Food and Chemical Toxicology, 46(3), 1034-1041. https://doi.org/10.1016/ j.fct.2007. 10.035.
  • Dhawan, A., Bajpayee, M. & Parmar, D. (2009). Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biology and Toxicology, 25(1), 5–32. https://doi.org/10.1007/ s10565-008-9072-z.
  • Dikmen, B.Y., Vejselova, D., Kutlu, H.M., Filazi, A, & Erkoç, F. (2018). Effects of synthetic pyrethroids on RTG-2 cells. Toxin Reviews, 37(4), 304-312. https://doi.org/10.1080/15569543.2017.1366922.
  • Elser, B. A., Hing, B., & Stevens, H. E. (2022). A narrative review of converging evidence addressing developmental toxicity of pyrethroid insecticides. Critical reviews in toxicology, 52(5), 371–388. https://doi.org/10.1080/10408444.2022.2122769
  • Frei, H. & Würgler, F.E. (1988). Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive results. Mutation Research/ Environmental Mutagenesis and Related Subjects, 203(4), 297–308. https://doi.org/10.1016/ 0165-1161(88)90019-2.
  • Frei, H., Clements, J., Howe, D. & Würgler, F.E. (1992). The genotoxicity of the anticancer drug mitoxantrone in somatic and germ cells of Drosophila melanogaster. Mutation Research, 279(1), 21-33. https://doi.org/10.1016/0165-1218(92)90262-x.
  • Göl, E., Çok, İ., Battal, D., & Şüküroğlu, A. A. (2023). Assessment of preschool children's exposure levels to organophosphate and pyrethroid pesticide: A human biomonitoring study in two Turkish provinces. Archives of environmental contamination and toxicology, 84(3), 318–331. https://doi.org/10.1007/s00244-023-00986-3
  • Graf, U., Würgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C. B. & Kale, P.G. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environmental Mutagenesis, 6(2), 153-188. https://doi.org/10.1002/em.2860060206.
  • Greno, M., Amariei, G., Boltes, K., Castro-Puyana, M., García, M. A., & Marina, M. L. (2021). Ecotoxicity evaluation of tetramethrin and analysis in agrochemical formulations using chiral electrokinetic chromatography. The Science of the total environment, 800, 149496. https://doi.org/ 10.1016/j.scitotenv.2021.149496
  • Horton, M.K., Jacobson, J.B., Mckelvey, W., Holmes, D., Fincher, B., Quantano, A., Diaz, B.P., Shabbazz, F., Shepard, P., Rundle, A. & Whyatt, R.M. (2011). Characterization of residential pest control products used in inner-city communities in New York City. Journal of Exposure Science and Environmental Epidemiology, 21(3), 291-301. https://doi.org/10.1038/jes.2010.18.
  • Huff Hartz, K. E., Weston, D. P., Johanif, N., Poynton, H. C., Connon, R. E., & Lydy, M. J. (2021). Pyrethroid bioaccumulation in field-collected insecticide-resistant Hyalella azteca. Ecotoxicology, 30(3), 514–523. https://doi.org/10.1007/s10646-021-02361-1
  • Ileriturk, M., & Kandemir, F. M. (2023). Carvacrol protects against λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity by modulating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy. Environmental toxicology, 38(7), 1535-1547. https://doi.org/10.1002/tox.23784
  • Ileriturk, M., Kandemir, O., & Kandemir, F. M. (2022). Evaluation of protective effects of quercetin against cypermethrin-induced lung toxicity in rats via oxidative stress, inflammation, apoptosis, autophagy, and endoplasmic reticulum stress pathway. Environmental toxicology, 37(11), 2639–2650. https://doi.org/10.1002/tox.23624
  • Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C. & Meister, M. (2005). New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cellular Microbiology, 7(3), 335-350. https://doi.org/10.1111/j.1462-5822. 2004. 00462.x.
  • Jameel, M., Alam, M. F., Younus, H., Jamal, K., & Siddique, H. R. (2019). Hazardous sub-cellular effects of Fipronil directly influence the organismal parameters of Spodoptera litura. Ecotoxicology and environmental safety, 172, 216–224. https://doi.org/ 10.1016/j.ecoenv.2019.01.076
  • Kadala, A., Charreton, M., Charnet, P., Cens, T., Rousset, M., Chahine, M., Vaissière, B. E., & Collet, C. (2019). Voltage-gated sodium channels from the bees Apis mellifera and Bombus terrestris are differentially modulated by pyrethroid insecticides. Scientific reports, 9(1), 1078. https://doi.org/ 10.1038/s41598-018-37278-z
  • Kadala, A., Charreton, M., Jakob, I., Cens, T., Rousset, M., Chahine, M., Le Conte, Y., Charnet, P., & Collet, C. (2014). Pyrethroids differentially alter voltage-gated sodium channels from the honeybee central olfactory neurons. PloS one, 9(11), e112194. https://doi.org/10.1371/journal.pone.0112194
  • Kadala, A., Charreton, M., Jakob, I., Le Conte, Y., & Collet, C. (2011). A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons. Neurotoxicology, 32(3), 320–330. https://doi.org/10.1016/j.neuro.2011.02.007
  • Karadeniz, A., Kaya, B., Savaş, B. & Topcuoğlu, Ş.F. (2011). Effects of two plant growth regulators, indole-3-acetic acid and beta-naphthoxyacetic acid, on genotoxicity in Drosophila SMART assay and on proliferation and viability of HEK293 cells from the perspective of carcinogenesis. Toxicology and Industrial Health, 27(9), 840-848. https://doi.org/ 10.1177/0748233711399314.
  • Karataş, A., & Bahçeci, Z. (2009). Effect of cypermethrin on some developmental stages of Drosophila melanogaster. Bulletin of environmental contamination and toxicology, 82(6), 738–742. https://doi.org/10.1007/s00128-008-9604-5
  • Kastenbaum, M.A. & Bowman, K.O. (1970). Tables for determining the statistical significance of mutation frequencies. Mutation Research, 9(5), 527-549. https://doi.org/10.1016/0027-5107(70)90038-2.
  • Kaya, B., Kocaoğlu, S. & Demir, E. (2006). Analysis of UV-stimulated recombination in the Drosophila SMART assay. Environmental and Molecular Mutagenesis, 47(5), 357-361. https://doi.org/ 10.1002/em.20215.
  • Kaya, B., Marcos, R., Yanıkoğlu, A. & Creus, A. (2004). Evaluation of the genotoxicity of four herbicides in the wing spot test of Drosophila melanogaster using two different strains. Mutation Research. 557(1), 53-62. https://doi.org/10.1016/ j.mrgentox.2003. 09.010.
  • Kaya, B., Yanıkoğlu, A. & Marcos, R. (1999). Genotoxicity studies on the phenoxyacetates 2,4-D and 4-CPA in the Drosophila wing spot test. Teratagen Careinagen and Mutagen, 19, 305-312.
  • Kim, S.S., Kwack, S.J., Lee, R.D., Lim, K.J., Rhee, G.S., Seok, J.H., Kim, B.H., Won, Y.H., Lee, G.S., Jeung, E.B., Lee, B.M. & Park, K.L. (2005). Assessment of estrogenic and androgenic activities of tetramethrin in vitro and in vivo assays. Journal of Toxicology and Environmental Health Part A, 68(23-24), 2277-2289. https://doi.org/10.1080/ 15287390500182453.
  • Kissoum, N., Gheraibia, H.B., Hamida, Z.C. & Soltani, N. (2020). Evaluation of the pesticide Oberon on a model organism Drosophila melanogaster via topical toxicity test on biochemical and reproductive parameters. Comparative Biochemistry and Physiology, Part C Pharmacolgy, 228, 108666. https://doi.org/10.1016/j.cbpc.2019.108666.
  • Klopic, I., Kolsek, K. & Dolenc, M.S. (2015). Glucocorticoid-like activity of propylparaben, butylparaben, diethylhexyl phthalate and tetramethrin mixtures studied in the MDA-kb2 cell line. Toxicology Letters, 232(2), 376–383. https://doi.org/10.1016/j.toxlet.2014.11.019.
  • Kumaravel, T.S. & Jha, A.N. (2006). Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutation Research, 605(1-2), 7–16. https://doi.org/ 10.1016/j.mrgentox.2006.03.002.
  • Kuzukiran, O., Simsek, I., Yorulmaz, T., Dikmen, B.Y., Ozkan, O. & Filazi, A. (2021). Multiresidues of environmental contaminants in bats from Turkey. Chemosphere, 282, 131022. https://doi.org/ 10.1016/j.chemosphere.2021.131022.
  • Lesseur, C., Kaur, K., Kelly, S. D., Hermetz, K., Williams, R., Hao, K., Marsit, C. J., Caudle, W. M., & Chen, J. (2023). Effects of prenatal pesticide exposure on the fetal brain and placenta transcriptomes in a rodent model. Toxicology, 490, 153498. https://doi.org/10.1016/j.tox.2023.153498
  • Li, H., Cheng, F., Wei, Y., Lydy, M.J. & You, J. (2017). Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials, 324(part B), 258-271. https://doi.org/10.1016/j.jhazmat.2016.10.056.
  • Lindsley, D.L. & Zimm, G.G. (1992). The genome of Drosophila melanogaster. San Diego, CA: Academic Press; 1992.
  • Luo, G., Santoro, I.M., McDaniel, L.D., Nishijima, I., Mills, M., Youssoufian, H., Vogel, H., Schultz, R.A. & Bradley, A. (2000). Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genetics, 26(4), 424-429. https://doi.org/ 10.1038/82548.
  • Mendis, J. C., Tennakoon, T. K., & Jayasinghe, C. D. (2018). Zebrafish embryo toxicity of a binary mixture of pyrethroid insecticides: d-tetramethrin and cyphenothrin. Journal of Toxicology, 2018, 4182694. https://doi.org/10.1155/2018/4182694
  • Mukhopadhyay, I., Chowdhuri, D. K., Bajpayee, M., & Dhawan, A. (2004). Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline Comet assay. Mutagenesis, 19(2), 85–90. https://doi.org/10.1093/ mutage/geh007
  • Mukhopadhyay, I., Siddique, H. R., Bajpai, V. K., Saxena, D. K., & Chowdhuri, D. K. (2006). Synthetic pyrethroid cypermethrin induced cellular damage in reproductive tissues of Drosophila melanogaster: Hsp70 as a marker of cellular damage. Archives of environmental contamination and toxicology, 51(4), 673–680. https://doi.org/ 10.1007/ s00244-005-0169-6
  • Nozawa, H., Minakata, K., Hasegawa, K., Yamagishi, I., Suzuki, M., Kitamoto, T., Watanabe, K. & Suzuki, O. (2021). A fatal case involved in pyrethroid insecticide ingestion: Quantification of tetramethrin and resmethrin in body fluids of a deceased by LC–MS/MS. Forensic Toxicology, 40, 189-198. https://doi.org/10.1007/s11419-021-00594-7.
  • Official Journal of the European Union (EU). (2018). Commission Regulation 2018/1480; 2018.
  • Ormerod, K.G., LePine, O.K., Abbineni, P.S., Bridgeman, J.M., Coorssen, J.R., Mercier, A.J. & Tattersall, G.J. (2017). Drosophila development, physiology, behaviour, and lifespan are influenced by altered dietary composition. Fly, 11(3), 153–170. https://doi.org/10.1080/19336934.2017.1304331.
  • Orsolin, P.C., Silva-Oliveira, R.G. & Nepomuceno, J.C. (2012). Assessment of the mutagenic, recombinagenic and carcinogenic potential of orlistat in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 50, 2598–2604. https://doi.org/10.1016/j.fct.2012.05.008.
  • Pandey, U.B. & Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews, 63(2), 411–436. https://doi.org/10.1124/pr.110.003293.
  • Parimi, D., Sundararajan, V., Sadak, O., Gunasekaran, S., Mohideen, S.S. & Sundaramurthy, A. (2019). Synthesis of positively and negatively charged CeO2 nanoparticles: Investigation of the role of surface charge on growth and development of Drosophila melanogaster. ACS Omega, 4(1), 104−113. https://doi.org/10.1021/ acsomega.8b02747.
  • QYResearch Group, (2021). Global Synthetic Pyrethroids Market Growth 2021-2026. [cited 2022 Dec 24]. Available from: https://www. marketresearch.com/LP-Information-Inc-v4134/ Global-Synthetic-Pyrethroids-Growth-14812096/
  • Reiter, L.T., Potocki, L., Chien, S., Gribskov, M. & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11(6), 1114-25. https://doi.org/10.1101/gr.169101.
  • Saillenfait, A.M., Ndiaye, D. & Sabate, JP. (2015). Pyrethroids: Exposure and health effects – An update. International Journal of Hygiene and Environmental Health, 218(3), 281-292. https://doi.org/10.1016/j.ijheh.2015.01.002.
  • Sanchez-Alarcon, J., Milic, M., Arroyo, S.G., Goncalez, J.M.R.M. & Valencia, R. (2016). Assessment of DNA damage by Comet assay in buccal epithelial cells: Problems, achievement, perspectives. Environmental Health Risk - Hazardous Factors to Living Species, 77-135. https://doi.org/ 10.5772/ 62760.
  • Shashikumar, S., & Rajini, P. S. (2010). Cypermethrin elicited responses in heat shock protein and feeding in Caenorhabditis elegans. Ecotoxicology and environmental safety, 73(5), 1057–1062. https://doi.org/10.1016/j.ecoenv.2010.02.003
  • Shen, P., Hsieh, T. H., Yue, Y., Sun, Q., Clark, J. M., & Park, Y. (2017). Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food and chemical toxicology, 101, 149–156. https://doi.org/ 10.1016/j.fct.2017.01.015
  • Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. (2014). The Comet assay in Drosophila: Neuroblast and hemocyte cells. In: L.M. Sierra, & I. Gaivao (Eds.), Genotoxicity and DNA repair: A practical approach, methods in pharmacology and toxicology. Springer Science+Business Media, New York, p. 269-282. https://doi.org/10.1007/978-1-4939-1068-7_15.
  • Simaremare, S.R.S., Hung, C.C., Yu, T.H., Hsieh, C.J. & Yiin, L.M. (2021). Association between pesticides in house dust and residential proximity to farmland in a rural region of Taiwan. Toxics, 9(8), 180. https://doi.org/10.3390/toxics9080180.
  • Singh, P., Lata, P., Patel, S., Pandey, A. K., Jain, S. K., Shanker, R., & Dhawan, A. (2011). Expression profiling of toxicity pathway genes by real-time PCR array in cypermethrin-exposed mouse brain. Toxicology mechanisms and methods, 21(3), 193–199. https://doi.org/10.3109/15376516.2010.538939
  • Siudeja, K. & Bardin, A.J. (2017). Somatic recombination in adult tissues: What is there to learn? Fly, 11(2), 121-128. https://doi.org/ 10.1080/19336934.2016.1249073.
  • Szabad, J., Soos, I., Polgar, G. & Hejja, G. (1983). Testing the mutagenicity of malondialdehyde and formaldehyde by the Drosophila mosaic and the sex-linked recessive lethal tests. Mutation Research, 113(2), 117-133. https://doi.org/ 10.1016/0165-1161(83)90224-8.
  • Tasman, K., Rands, S.A. & Hodge, J.J.L. (2021). The power of Drosophila melanogaster for modeling neonicotinoid effects on pollinators and identifying novel mechanisms. Frontiers in Physiology, 12, 659440. https://doi.org/10.3389/fphys.2021.659440.
  • United States Environmental Protection Agency (US EPA). (2010). Reregistration Eligibility Decision (RED) Document for Tetramethrin. Prevention, Pesticides and Toxic Substances. EPA 738-R-08-012; 2010.
  • United States Environmental Protection Agency (US EPA). (2016). Washington, D.C. 20460, Office of Chemical Safety and Pollution Prevention. Preliminary Comparative Environmental Fate and Ecological Risk Assessment for the Registration Review of Eight Synthetic Pyrethroids and Pyrethrins DP No. D425791; 2016.
  • United States Environmental Protection Agency (US EPA). (2019). Washington, D.C. 20460, Office of Chemical Safety and Pollution Prevention. Tetramethrin Updated Human Health Risk Assessment. DP No. 453657; 2019.
  • United States Environmental Protection Agency (US EPA). (2020). Tetramethrin. Interim Registration Review Decision, Case Number 2660; 2020.
  • Wang, W., Warren, M. & Bradley, A. (2007). Induced mitotic recombination of p53 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4501–4505. https://doi.org/10.1073/pnas.0607953104
  • Würgler, F.E. & Vogel, E.W. (1986). In vivo mutagenicity testing using somatic cells of Drosophila melanogaster. In: F.J. de Serres (Ed.), Chemical Mutagens, Vol. 10, Plenum, New York, p. 1-72.
  • Yan, Y., Yang, Y., You, J., Yang, G., Xu, Y., Huang, N., Wang, X., Ran, D., Yuan, X., Jin, Y., Fan, Y., Lei, J., Li, W., & Gu, H. (2011). Permethrin modulates cholinergic mini-synaptic currents by partially blocking the calcium channel. Toxicology letters, 201(3), 258–263. https://doi.org/10.1016/j.toxlet. 2011.01.009
  • Yavuz, O., Aksoy, A., Das, Y. K., Gulbahar, M. Y., Guvenc, D., Atmaca, E., Yarim, F. G., & Cenesiz, M. (2015). Subacute oral toxicity of combinations of selected synthetic pyrethroids, piperonyl butoxide, and tetramethrin in rats. Toxicology and industrial health, 31(4), 289–297. https://doi.org/ 10.1177/ 0748233712469651
  • Yavuz, O., Aksoy, A., Das, Y. K., Gulbahar, M. Y., Yarim, G. F., Cenesiz, M., Atmaca, E., & Guvenc, D. (2010). Repeated-dose 14-day dermal toxicity of different combinations of some synthetic pyrethroid insecticides, piperonyl butoxide, and tetramethrin in rats. Cutaneous and ocular toxicology, 29(1), 16–25. https://doi.org/10.3109/15569520903415076
  • Yuan, L., Lin, J., Xu, Y., Peng, Y., Clark, J. M., Gao, R., Park, Y., & Sun, Q. (2019). Deltamethrin promotes adipogenesis via AMPKα and ER stress-mediated pathway in 3T3- L1 adipocytes and Caenorhabditis elegans. Food and chemical toxicology, 134, 110791. https://doi.org/ 10.1016/j.fct.2019.110791
  • Zaller, J.G. & Brühl, C.A. (2019). Editorial: Non-target effects of pesticides on organisms inhabiting agroecosystems. Frontiers in Environmental Science, 7, 75. https://doi.org/10.3389/fenvs. 2019.00075.
  • Zhang, D., Park, Z.Y., Park, J.A., Kim, S.K., Jeong, D., Cho, S.H., Shim, J.H., Kim, J.S., El-Aty, A.M. & Shin, H.C. (2016). A combined liquid chromatography-triple-quadrupole mass spectrometry method for the residual detection of veterinary drugs in porcine muscle, milk, and eggs. Environmental Monitoring and Assessment, 188(6), 348. https://doi.org/10.1007/s10661-016-5344-x.
  • Zhong, M., Zhai, Q., Zhang, R., Yin, H., Li, J., Ma, Z., Fang, L., Zhang, C., & Li, Y. (2021). Effect of pyrethroid pesticides on the testis of male rats: A meta-analysis. Toxicology and industrial health, 37(4), 229–239. https://doi.org/10.1177/074823372 11000979
  • Zordan, M., Osti, M., Pesce, M. & Costa, R. (1994). Chloral hydrate is recombinogenic in the wing spot test in Drosophila melanogaster. Mutation Research, 322(2), 111-116. https://doi.org/10.1016/ 0165-1218(94)00017-4.

Tetramethrin'in Drosophila melanogaster’ de Genotoksik ve Gelişim Üzerine Etkilerinin Araştırılması

Yıl 2024, Cilt: 27 Sayı: 2, 304 - 315, 01.04.2024
https://doi.org/10.18016/ksutarimdoga.vi.1224968

Öz

Birçok insektisit formülasyonunda kullanılan sentetik bir piretroid olan tetramethrin kalıntılarının çevre sağlığı ve canlı organizmalar üzerindeki olumsuz etkileri endişe konusudur. Bu çalışmanın amacı, tetrametrin'in hedef dışı bir organizma olan Drosophila melanogaster üzerindeki genotoksik ve gelişimsel etkilerini değerlendirmektir. Bu nedenle Drosophila hemositlerinde komet testi kullanılarak DNA hasarı üzerindeki etkisi, Drosophila kanat SMART kullanılarak da mutasjenik ve rekombinojenik etkileri değerlendirilmiştir. Ayrıca tetramethrin'in Drosophila gelişimi üzerindeki etkileri larva ağırlığı, larva uzunluğu ve yumurta verimi ölçülerek değerlendirilmiştir. Sonuçlar, tetrametrin'in sadece yüksek konsantrasyonda larva ağırlığında ve uzunluğunda bir azalmaya neden olduğunu göstermiştir. Ayrıca yumurta veriminde konsantrasyona bağlı bir şekilde azalma gözlenmiştir. Komet testi sonuçlarına göre, % DNA'da anlamlı bir artış olmadığı için DNA hasarı indüklenmemiştir. Ancak tetrametrin, SMART testinde mitotik rekombinasyonu indükleyerek genotoksisiteye neden olmuştur.

Kaynakça

  • Abdulbaki H, & Al-Deeb M.A (2023). Neuroprotective effects of ferulic acid and thymoquinone against deltamethrin-induced neurotoxicity in Drosophila melanogaster. Advancements in life sciences, 10(2), 289-297.
  • Abeyasuriya K.G.T.N, Nugapola N.W.N.P, Perera M.D.B, Karunaratne W.A.I.P & Karunaratne S.H.P.P. (2017). Effect of dengue mosquito control insecticide thermal fogging on non-target insects. International Journal of Tropical Insect Science, 37(1), 11–18. https://doi.org/10.1017/S1742758416 000254.
  • Abrahams, P.J., Houweling, A., Schouten, R., van der Eb, A.J. & Terleth, C. (2003). Abnormal kinetics of induction of UV-stimulated recombination in human DNA repair disorders. DNA Repair, 2(11), 1211-1225. https://doi.org/10.1016/S1568-7864 (03) 00141-1.
  • Anushree, Ali, M. Z., Bilgrami, A. L., & Ahsan, J. (2023). Acute exposure to arsenic affects pupal development and neurological functions in Drosophila melanogaster. Toxics, 11(4), 327. https://doi.org/10.3390/toxics11040327
  • Arias, M., Bonetto, C., & Mugni, H. (2020). Sublethal effects on Simocephalus vetulus (Cladocera: Daphnidae) of pulse exposures of cypermethrin. Ecotoxicology and environmental safety, 196, 110546. https://doi.org/10.1016/j.ecoenv.2020. 110546
  • Arslan, P. (2022). Determinations of the effects of cyfluthrin on the hemocytes parameters of freshwater mussel (Unio delicatus). Ege Journal of Fisheries and Aquatic Sciences, 39(1), 39-45. https://doi.org/10.12714/egejfas.39.1.06
  • Ballesteros, M. L., Boyle, R. L., Kellar, C. R., Miglioranza, K. S. B., Bistoni, M. A., Pettigrove, V., & Long, S. M. (2020). What types of enzyme activities are useful biomarkers of bifenthrin exposure on Chironomus sp. (Diptera, Chironomidae) larvae under laboratory and field-based microcosm conditions? Aquatic toxicology (Amsterdam, Netherlands), 228, 105618. https://doi.org/10.1016/j.aquatox.2020.105618
  • Barrios-Arpi, L., Arias, Y., Lopez-Torres, B., Ramos-Gonzalez, M., Ticli, G., Prosperi, E., & Rodríguez, J. L. (2022). In vitro neurotoxicity of flumethrin pyrethroid on SH-SY5Y neuroblastoma cells: Apoptosis associated with oxidative stress. Toxics, 10(3), 131. https://doi.org/10.3390/toxics10030131
  • Batiste-Alentorn, M., Xamena, N., Velázquez, A., Creus, A., & Marcos, R. (1986). Mutagenicity testing of the pyrethroid insecticide cypermethrin in Drosophila. Mutagenesis, 1(5), 343–346. https://doi.org/10.1093/mutage/1.5.343
  • Bej, S., Ghosh, K., Chatterjee, A., & Saha, N. C. (2021). Assessment of biochemical, hematological and behavioral biomarkers of Cyprinus carpio on exposure to a type-II pyrethroid insecticide Alpha-cypermethrin. Environmental toxicology and pharmacology, 87, 103717. https://doi.org/10.1016/ j.etap.2021.103717
  • Beken, A. T., Saka, Ş., Aydın, İ., Fırat, K., Suzer, C., Benzer, F., Erişir, M., Özden, O., Hekimoğlu, M. A., Engin, S., & Antepli, O. (2022). In vivo and in vitro evolution of the effects of cypermethrin on turbot (Scophthalmus maximus, Linnaeus, 1758) spermatozoa. Comparative biochemistry and physiology Part C: Toxicology & Pharmacology, 256, 109298. https://doi.org/10.1016/j.cbpc.2022.109298
  • Berry-III, R. & Lopez-Martinez, G. (2020). A dose of experimental hormesis: When mild stress protects and improves animal performance. Comparative Biochemistry and Physiology, Part A, 242, 110658. https://doi.org/10.1016/j.cbpa.2020.110658.
  • Çavuşoğlu, K., Kaya, A., Yilmaz, F., & Yalçin, E. (2012). Effects of cypermethrin on Allium cepa. Environmental toxicology, 27(10), 583–589. https://doi.org/10.1002/tox.20681
  • Charpentier, G., Louat, F., Bonmatin, J. M., Marchand, P. A., Vanier, F., Locker, D., & Decoville, M. (2014). Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environmental science & technology, 48(7), 4096–4102. https://doi.org/10.1021/es405331c
  • Charreton, M., Decourtye, A., Henry, M., Rodet, G., Sandoz, J. C., Charnet, P., & Collet, C. (2015). A locomotor deficit induced by sublethal doses of pyrethroid and neonicotinoid insecticides in the honeybee Apis mellifera. PloS one, 10(12), e0144879. https://doi.org/10.1371/journal.pone. 0144879
  • Chedik, L., Bruyere, A., Vee, M.L., Stieger, B., Denizot, C., Parmentier, Y., Potin, S. & Fardel, O. (2017). Inhibition of human drug transporter activities by the pyrethroid pesticides allethrin and tetramethrin. PLoS One, 12(1), e0169480. https://doi.org/10.1371/journal.pone.0169480.
  • Chen, X., Wang, Y., Wu, W., Dong, K., & Hu, Z. (2018). DSC1 channel-dependent developmental regulation of pyrethroid susceptibility in Drosophila melanogaster. Pesticide biochemistry and physiology, 148, 190–198. https://doi.org/10.1016/ j.pestbp.2018.04.014
  • Corcellas, C., Andreu, A., Manez, M., Sergio, F., Hiraldo, F., Eljarrat, E. & Barcelo, D. (2017). Pyrethroid insecticides in wild bird eggs from a World Heritage Listed Park: A case study in Donana National Park (Spain). Environmental Pollution, 228, 321-330. https://doi.org/10.1016/ j.envpol.2017.05.035.
  • Cruces, M. P., Pimentel, E., Vidal, L. M., Jiménez, E., Suárez, H., Camps, E., & Campos-González, E. (2023). Genotoxic action of bifenthrin nanoparticles and its effect on the development, productivity, and behavior of Drosophila melanogaster. Journal of toxicology and environmental health. Part A, 86(18), 661–677. https://doi.org/10.1080/15287394. 2023.2234408
  • Demir, E., Kocaoğlu, S. & Kaya, B. (2008). Genotoxicity testing of four benzyl derivaties in the Drosophila wing spot test. Food and Chemical Toxicology, 46(3), 1034-1041. https://doi.org/10.1016/ j.fct.2007. 10.035.
  • Dhawan, A., Bajpayee, M. & Parmar, D. (2009). Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biology and Toxicology, 25(1), 5–32. https://doi.org/10.1007/ s10565-008-9072-z.
  • Dikmen, B.Y., Vejselova, D., Kutlu, H.M., Filazi, A, & Erkoç, F. (2018). Effects of synthetic pyrethroids on RTG-2 cells. Toxin Reviews, 37(4), 304-312. https://doi.org/10.1080/15569543.2017.1366922.
  • Elser, B. A., Hing, B., & Stevens, H. E. (2022). A narrative review of converging evidence addressing developmental toxicity of pyrethroid insecticides. Critical reviews in toxicology, 52(5), 371–388. https://doi.org/10.1080/10408444.2022.2122769
  • Frei, H. & Würgler, F.E. (1988). Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive results. Mutation Research/ Environmental Mutagenesis and Related Subjects, 203(4), 297–308. https://doi.org/10.1016/ 0165-1161(88)90019-2.
  • Frei, H., Clements, J., Howe, D. & Würgler, F.E. (1992). The genotoxicity of the anticancer drug mitoxantrone in somatic and germ cells of Drosophila melanogaster. Mutation Research, 279(1), 21-33. https://doi.org/10.1016/0165-1218(92)90262-x.
  • Göl, E., Çok, İ., Battal, D., & Şüküroğlu, A. A. (2023). Assessment of preschool children's exposure levels to organophosphate and pyrethroid pesticide: A human biomonitoring study in two Turkish provinces. Archives of environmental contamination and toxicology, 84(3), 318–331. https://doi.org/10.1007/s00244-023-00986-3
  • Graf, U., Würgler, F.E., Katz, A.J., Frei, H., Juon, H., Hall, C. B. & Kale, P.G. (1984). Somatic mutation and recombination test in Drosophila melanogaster. Environmental Mutagenesis, 6(2), 153-188. https://doi.org/10.1002/em.2860060206.
  • Greno, M., Amariei, G., Boltes, K., Castro-Puyana, M., García, M. A., & Marina, M. L. (2021). Ecotoxicity evaluation of tetramethrin and analysis in agrochemical formulations using chiral electrokinetic chromatography. The Science of the total environment, 800, 149496. https://doi.org/ 10.1016/j.scitotenv.2021.149496
  • Horton, M.K., Jacobson, J.B., Mckelvey, W., Holmes, D., Fincher, B., Quantano, A., Diaz, B.P., Shabbazz, F., Shepard, P., Rundle, A. & Whyatt, R.M. (2011). Characterization of residential pest control products used in inner-city communities in New York City. Journal of Exposure Science and Environmental Epidemiology, 21(3), 291-301. https://doi.org/10.1038/jes.2010.18.
  • Huff Hartz, K. E., Weston, D. P., Johanif, N., Poynton, H. C., Connon, R. E., & Lydy, M. J. (2021). Pyrethroid bioaccumulation in field-collected insecticide-resistant Hyalella azteca. Ecotoxicology, 30(3), 514–523. https://doi.org/10.1007/s10646-021-02361-1
  • Ileriturk, M., & Kandemir, F. M. (2023). Carvacrol protects against λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity by modulating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy. Environmental toxicology, 38(7), 1535-1547. https://doi.org/10.1002/tox.23784
  • Ileriturk, M., Kandemir, O., & Kandemir, F. M. (2022). Evaluation of protective effects of quercetin against cypermethrin-induced lung toxicity in rats via oxidative stress, inflammation, apoptosis, autophagy, and endoplasmic reticulum stress pathway. Environmental toxicology, 37(11), 2639–2650. https://doi.org/10.1002/tox.23624
  • Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C. & Meister, M. (2005). New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cellular Microbiology, 7(3), 335-350. https://doi.org/10.1111/j.1462-5822. 2004. 00462.x.
  • Jameel, M., Alam, M. F., Younus, H., Jamal, K., & Siddique, H. R. (2019). Hazardous sub-cellular effects of Fipronil directly influence the organismal parameters of Spodoptera litura. Ecotoxicology and environmental safety, 172, 216–224. https://doi.org/ 10.1016/j.ecoenv.2019.01.076
  • Kadala, A., Charreton, M., Charnet, P., Cens, T., Rousset, M., Chahine, M., Vaissière, B. E., & Collet, C. (2019). Voltage-gated sodium channels from the bees Apis mellifera and Bombus terrestris are differentially modulated by pyrethroid insecticides. Scientific reports, 9(1), 1078. https://doi.org/ 10.1038/s41598-018-37278-z
  • Kadala, A., Charreton, M., Jakob, I., Cens, T., Rousset, M., Chahine, M., Le Conte, Y., Charnet, P., & Collet, C. (2014). Pyrethroids differentially alter voltage-gated sodium channels from the honeybee central olfactory neurons. PloS one, 9(11), e112194. https://doi.org/10.1371/journal.pone.0112194
  • Kadala, A., Charreton, M., Jakob, I., Le Conte, Y., & Collet, C. (2011). A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons. Neurotoxicology, 32(3), 320–330. https://doi.org/10.1016/j.neuro.2011.02.007
  • Karadeniz, A., Kaya, B., Savaş, B. & Topcuoğlu, Ş.F. (2011). Effects of two plant growth regulators, indole-3-acetic acid and beta-naphthoxyacetic acid, on genotoxicity in Drosophila SMART assay and on proliferation and viability of HEK293 cells from the perspective of carcinogenesis. Toxicology and Industrial Health, 27(9), 840-848. https://doi.org/ 10.1177/0748233711399314.
  • Karataş, A., & Bahçeci, Z. (2009). Effect of cypermethrin on some developmental stages of Drosophila melanogaster. Bulletin of environmental contamination and toxicology, 82(6), 738–742. https://doi.org/10.1007/s00128-008-9604-5
  • Kastenbaum, M.A. & Bowman, K.O. (1970). Tables for determining the statistical significance of mutation frequencies. Mutation Research, 9(5), 527-549. https://doi.org/10.1016/0027-5107(70)90038-2.
  • Kaya, B., Kocaoğlu, S. & Demir, E. (2006). Analysis of UV-stimulated recombination in the Drosophila SMART assay. Environmental and Molecular Mutagenesis, 47(5), 357-361. https://doi.org/ 10.1002/em.20215.
  • Kaya, B., Marcos, R., Yanıkoğlu, A. & Creus, A. (2004). Evaluation of the genotoxicity of four herbicides in the wing spot test of Drosophila melanogaster using two different strains. Mutation Research. 557(1), 53-62. https://doi.org/10.1016/ j.mrgentox.2003. 09.010.
  • Kaya, B., Yanıkoğlu, A. & Marcos, R. (1999). Genotoxicity studies on the phenoxyacetates 2,4-D and 4-CPA in the Drosophila wing spot test. Teratagen Careinagen and Mutagen, 19, 305-312.
  • Kim, S.S., Kwack, S.J., Lee, R.D., Lim, K.J., Rhee, G.S., Seok, J.H., Kim, B.H., Won, Y.H., Lee, G.S., Jeung, E.B., Lee, B.M. & Park, K.L. (2005). Assessment of estrogenic and androgenic activities of tetramethrin in vitro and in vivo assays. Journal of Toxicology and Environmental Health Part A, 68(23-24), 2277-2289. https://doi.org/10.1080/ 15287390500182453.
  • Kissoum, N., Gheraibia, H.B., Hamida, Z.C. & Soltani, N. (2020). Evaluation of the pesticide Oberon on a model organism Drosophila melanogaster via topical toxicity test on biochemical and reproductive parameters. Comparative Biochemistry and Physiology, Part C Pharmacolgy, 228, 108666. https://doi.org/10.1016/j.cbpc.2019.108666.
  • Klopic, I., Kolsek, K. & Dolenc, M.S. (2015). Glucocorticoid-like activity of propylparaben, butylparaben, diethylhexyl phthalate and tetramethrin mixtures studied in the MDA-kb2 cell line. Toxicology Letters, 232(2), 376–383. https://doi.org/10.1016/j.toxlet.2014.11.019.
  • Kumaravel, T.S. & Jha, A.N. (2006). Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutation Research, 605(1-2), 7–16. https://doi.org/ 10.1016/j.mrgentox.2006.03.002.
  • Kuzukiran, O., Simsek, I., Yorulmaz, T., Dikmen, B.Y., Ozkan, O. & Filazi, A. (2021). Multiresidues of environmental contaminants in bats from Turkey. Chemosphere, 282, 131022. https://doi.org/ 10.1016/j.chemosphere.2021.131022.
  • Lesseur, C., Kaur, K., Kelly, S. D., Hermetz, K., Williams, R., Hao, K., Marsit, C. J., Caudle, W. M., & Chen, J. (2023). Effects of prenatal pesticide exposure on the fetal brain and placenta transcriptomes in a rodent model. Toxicology, 490, 153498. https://doi.org/10.1016/j.tox.2023.153498
  • Li, H., Cheng, F., Wei, Y., Lydy, M.J. & You, J. (2017). Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials, 324(part B), 258-271. https://doi.org/10.1016/j.jhazmat.2016.10.056.
  • Lindsley, D.L. & Zimm, G.G. (1992). The genome of Drosophila melanogaster. San Diego, CA: Academic Press; 1992.
  • Luo, G., Santoro, I.M., McDaniel, L.D., Nishijima, I., Mills, M., Youssoufian, H., Vogel, H., Schultz, R.A. & Bradley, A. (2000). Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genetics, 26(4), 424-429. https://doi.org/ 10.1038/82548.
  • Mendis, J. C., Tennakoon, T. K., & Jayasinghe, C. D. (2018). Zebrafish embryo toxicity of a binary mixture of pyrethroid insecticides: d-tetramethrin and cyphenothrin. Journal of Toxicology, 2018, 4182694. https://doi.org/10.1155/2018/4182694
  • Mukhopadhyay, I., Chowdhuri, D. K., Bajpayee, M., & Dhawan, A. (2004). Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline Comet assay. Mutagenesis, 19(2), 85–90. https://doi.org/10.1093/ mutage/geh007
  • Mukhopadhyay, I., Siddique, H. R., Bajpai, V. K., Saxena, D. K., & Chowdhuri, D. K. (2006). Synthetic pyrethroid cypermethrin induced cellular damage in reproductive tissues of Drosophila melanogaster: Hsp70 as a marker of cellular damage. Archives of environmental contamination and toxicology, 51(4), 673–680. https://doi.org/ 10.1007/ s00244-005-0169-6
  • Nozawa, H., Minakata, K., Hasegawa, K., Yamagishi, I., Suzuki, M., Kitamoto, T., Watanabe, K. & Suzuki, O. (2021). A fatal case involved in pyrethroid insecticide ingestion: Quantification of tetramethrin and resmethrin in body fluids of a deceased by LC–MS/MS. Forensic Toxicology, 40, 189-198. https://doi.org/10.1007/s11419-021-00594-7.
  • Official Journal of the European Union (EU). (2018). Commission Regulation 2018/1480; 2018.
  • Ormerod, K.G., LePine, O.K., Abbineni, P.S., Bridgeman, J.M., Coorssen, J.R., Mercier, A.J. & Tattersall, G.J. (2017). Drosophila development, physiology, behaviour, and lifespan are influenced by altered dietary composition. Fly, 11(3), 153–170. https://doi.org/10.1080/19336934.2017.1304331.
  • Orsolin, P.C., Silva-Oliveira, R.G. & Nepomuceno, J.C. (2012). Assessment of the mutagenic, recombinagenic and carcinogenic potential of orlistat in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 50, 2598–2604. https://doi.org/10.1016/j.fct.2012.05.008.
  • Pandey, U.B. & Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews, 63(2), 411–436. https://doi.org/10.1124/pr.110.003293.
  • Parimi, D., Sundararajan, V., Sadak, O., Gunasekaran, S., Mohideen, S.S. & Sundaramurthy, A. (2019). Synthesis of positively and negatively charged CeO2 nanoparticles: Investigation of the role of surface charge on growth and development of Drosophila melanogaster. ACS Omega, 4(1), 104−113. https://doi.org/10.1021/ acsomega.8b02747.
  • QYResearch Group, (2021). Global Synthetic Pyrethroids Market Growth 2021-2026. [cited 2022 Dec 24]. Available from: https://www. marketresearch.com/LP-Information-Inc-v4134/ Global-Synthetic-Pyrethroids-Growth-14812096/
  • Reiter, L.T., Potocki, L., Chien, S., Gribskov, M. & Bier, E. (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Research, 11(6), 1114-25. https://doi.org/10.1101/gr.169101.
  • Saillenfait, A.M., Ndiaye, D. & Sabate, JP. (2015). Pyrethroids: Exposure and health effects – An update. International Journal of Hygiene and Environmental Health, 218(3), 281-292. https://doi.org/10.1016/j.ijheh.2015.01.002.
  • Sanchez-Alarcon, J., Milic, M., Arroyo, S.G., Goncalez, J.M.R.M. & Valencia, R. (2016). Assessment of DNA damage by Comet assay in buccal epithelial cells: Problems, achievement, perspectives. Environmental Health Risk - Hazardous Factors to Living Species, 77-135. https://doi.org/ 10.5772/ 62760.
  • Shashikumar, S., & Rajini, P. S. (2010). Cypermethrin elicited responses in heat shock protein and feeding in Caenorhabditis elegans. Ecotoxicology and environmental safety, 73(5), 1057–1062. https://doi.org/10.1016/j.ecoenv.2010.02.003
  • Shen, P., Hsieh, T. H., Yue, Y., Sun, Q., Clark, J. M., & Park, Y. (2017). Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food and chemical toxicology, 101, 149–156. https://doi.org/ 10.1016/j.fct.2017.01.015
  • Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. (2014). The Comet assay in Drosophila: Neuroblast and hemocyte cells. In: L.M. Sierra, & I. Gaivao (Eds.), Genotoxicity and DNA repair: A practical approach, methods in pharmacology and toxicology. Springer Science+Business Media, New York, p. 269-282. https://doi.org/10.1007/978-1-4939-1068-7_15.
  • Simaremare, S.R.S., Hung, C.C., Yu, T.H., Hsieh, C.J. & Yiin, L.M. (2021). Association between pesticides in house dust and residential proximity to farmland in a rural region of Taiwan. Toxics, 9(8), 180. https://doi.org/10.3390/toxics9080180.
  • Singh, P., Lata, P., Patel, S., Pandey, A. K., Jain, S. K., Shanker, R., & Dhawan, A. (2011). Expression profiling of toxicity pathway genes by real-time PCR array in cypermethrin-exposed mouse brain. Toxicology mechanisms and methods, 21(3), 193–199. https://doi.org/10.3109/15376516.2010.538939
  • Siudeja, K. & Bardin, A.J. (2017). Somatic recombination in adult tissues: What is there to learn? Fly, 11(2), 121-128. https://doi.org/ 10.1080/19336934.2016.1249073.
  • Szabad, J., Soos, I., Polgar, G. & Hejja, G. (1983). Testing the mutagenicity of malondialdehyde and formaldehyde by the Drosophila mosaic and the sex-linked recessive lethal tests. Mutation Research, 113(2), 117-133. https://doi.org/ 10.1016/0165-1161(83)90224-8.
  • Tasman, K., Rands, S.A. & Hodge, J.J.L. (2021). The power of Drosophila melanogaster for modeling neonicotinoid effects on pollinators and identifying novel mechanisms. Frontiers in Physiology, 12, 659440. https://doi.org/10.3389/fphys.2021.659440.
  • United States Environmental Protection Agency (US EPA). (2010). Reregistration Eligibility Decision (RED) Document for Tetramethrin. Prevention, Pesticides and Toxic Substances. EPA 738-R-08-012; 2010.
  • United States Environmental Protection Agency (US EPA). (2016). Washington, D.C. 20460, Office of Chemical Safety and Pollution Prevention. Preliminary Comparative Environmental Fate and Ecological Risk Assessment for the Registration Review of Eight Synthetic Pyrethroids and Pyrethrins DP No. D425791; 2016.
  • United States Environmental Protection Agency (US EPA). (2019). Washington, D.C. 20460, Office of Chemical Safety and Pollution Prevention. Tetramethrin Updated Human Health Risk Assessment. DP No. 453657; 2019.
  • United States Environmental Protection Agency (US EPA). (2020). Tetramethrin. Interim Registration Review Decision, Case Number 2660; 2020.
  • Wang, W., Warren, M. & Bradley, A. (2007). Induced mitotic recombination of p53 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4501–4505. https://doi.org/10.1073/pnas.0607953104
  • Würgler, F.E. & Vogel, E.W. (1986). In vivo mutagenicity testing using somatic cells of Drosophila melanogaster. In: F.J. de Serres (Ed.), Chemical Mutagens, Vol. 10, Plenum, New York, p. 1-72.
  • Yan, Y., Yang, Y., You, J., Yang, G., Xu, Y., Huang, N., Wang, X., Ran, D., Yuan, X., Jin, Y., Fan, Y., Lei, J., Li, W., & Gu, H. (2011). Permethrin modulates cholinergic mini-synaptic currents by partially blocking the calcium channel. Toxicology letters, 201(3), 258–263. https://doi.org/10.1016/j.toxlet. 2011.01.009
  • Yavuz, O., Aksoy, A., Das, Y. K., Gulbahar, M. Y., Guvenc, D., Atmaca, E., Yarim, F. G., & Cenesiz, M. (2015). Subacute oral toxicity of combinations of selected synthetic pyrethroids, piperonyl butoxide, and tetramethrin in rats. Toxicology and industrial health, 31(4), 289–297. https://doi.org/ 10.1177/ 0748233712469651
  • Yavuz, O., Aksoy, A., Das, Y. K., Gulbahar, M. Y., Yarim, G. F., Cenesiz, M., Atmaca, E., & Guvenc, D. (2010). Repeated-dose 14-day dermal toxicity of different combinations of some synthetic pyrethroid insecticides, piperonyl butoxide, and tetramethrin in rats. Cutaneous and ocular toxicology, 29(1), 16–25. https://doi.org/10.3109/15569520903415076
  • Yuan, L., Lin, J., Xu, Y., Peng, Y., Clark, J. M., Gao, R., Park, Y., & Sun, Q. (2019). Deltamethrin promotes adipogenesis via AMPKα and ER stress-mediated pathway in 3T3- L1 adipocytes and Caenorhabditis elegans. Food and chemical toxicology, 134, 110791. https://doi.org/ 10.1016/j.fct.2019.110791
  • Zaller, J.G. & Brühl, C.A. (2019). Editorial: Non-target effects of pesticides on organisms inhabiting agroecosystems. Frontiers in Environmental Science, 7, 75. https://doi.org/10.3389/fenvs. 2019.00075.
  • Zhang, D., Park, Z.Y., Park, J.A., Kim, S.K., Jeong, D., Cho, S.H., Shim, J.H., Kim, J.S., El-Aty, A.M. & Shin, H.C. (2016). A combined liquid chromatography-triple-quadrupole mass spectrometry method for the residual detection of veterinary drugs in porcine muscle, milk, and eggs. Environmental Monitoring and Assessment, 188(6), 348. https://doi.org/10.1007/s10661-016-5344-x.
  • Zhong, M., Zhai, Q., Zhang, R., Yin, H., Li, J., Ma, Z., Fang, L., Zhang, C., & Li, Y. (2021). Effect of pyrethroid pesticides on the testis of male rats: A meta-analysis. Toxicology and industrial health, 37(4), 229–239. https://doi.org/10.1177/074823372 11000979
  • Zordan, M., Osti, M., Pesce, M. & Costa, R. (1994). Chloral hydrate is recombinogenic in the wing spot test in Drosophila melanogaster. Mutation Research, 322(2), 111-116. https://doi.org/10.1016/ 0165-1218(94)00017-4.
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm ARAŞTIRMA MAKALESİ (Research Article)
Yazarlar

Burcin Yalcin 0000-0002-9694-5839

Merve Güneş 0000-0003-3278-0542

Ayşen Yağmur Kurşun 0000-0003-1657-6808

Ghada Tagorti 0000-0003-4597-8320

Ezgi Golal 0000-0002-7685-7479

Bülent Kaya 0000-0002-0491-9781

Erken Görünüm Tarihi 21 Ocak 2024
Yayımlanma Tarihi 1 Nisan 2024
Gönderilme Tarihi 3 Ocak 2023
Kabul Tarihi 7 Eylül 2023
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 2

Kaynak Göster

APA Yalcin, B., Güneş, M., Kurşun, A. Y., Tagorti, G., vd. (2024). Investigation of Genotoxic and Development Effects of Tetramethrin on Drosophila melanogaster. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(2), 304-315. https://doi.org/10.18016/ksutarimdoga.vi.1224968

21082



2022-JIF = 0.500

2022-JCI = 0.170

Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

       Dergimiz, herhangi bir başvuru veya yayımlama ücreti almamaktadır. (Free submission and publication)

      Yılda 6 sayı yayınlanır. (Published 6 times a year)


88x31.png 

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.

                 


Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi
e-ISSN: 2619-9149