Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 9 Sayı: 2, 324 - 331, 15.10.2021

Öz

Kaynakça

  • [1] M.T.Hagan,M.B.Menhaj,TrainingfeedforwardnetworkswiththeMarquardtalgorithm.IEEETrans.NeuralNetw.,5(1994),989–993.
  • [2] MuratKayri,PredictiveAbilitiesofBayesianRegularizationandLevenberg–MarquardtAlgorithmsinArtificialNeuralNetworks:AComparative Empirical Study on Social Data, Math. Comput. Appl. 21, (2016), 20, DOI:10.3390/mca21020020
  • [3] R.Dybowski,V.Gant,ClinicalApplicationsofArtificialNeuralNetworks,CambridgeUniversityPress,2007.
  • [4] V. Arbabi, B. Pouran, G. Campoli, H. Weinans, A.A. Zadpoor, Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks, J Biomech. 49, (2016), ,631–637.
  • [5] J.Dolz,L.Massoptier,M.Vermandel,SegmentationalgorithmsofsubcorticalbrainstructuresonMRIforradiotherapyandradiosurgery:asurvey, IRBM, 36(4), (2015), 200–212.
  • [6] O.Er,N.Yumusak,F.Temurtas,Chestdiseasediagnosisusingartificialneuralnetworks,ExpertSystemswithApplications,37,(2010),7648–7655.
  • [7] O. Er, F. Temurtas, A.C. Tanrikulu, Tuberculosis Disease Diagnosis Using Artificial Neural Networks, J Med Syst, 34, (2010), 299–302, DOI: 10.1007/s10916-008-9241-x
  • [8] J.M.Haglin,G.Jimenez,A.E.M.Eltorai,Artificialneuralnetworksinmedicine,HealthandTechnology,9,(2019),1–6,DOI:10.1007/s12553-018- 0244-4
  • [9] M. Kirisci, H. Yilmaz, M.U. Saka, An ANFIS perspective for the diagnosis of type II diabetes, Annals of Fuzzy Mathematics and Informatics, 17, (2019), 101–113, DOI: 10.30948/afmi.2019.17.2.101
  • [10] M.Kirisci,Comparisonofartificialneuralnetworkandlogisticregressionmodelforfactorsaffectingbirthweight,SNAppl.Sci.,1,(2019),378,DOI: 10.1007/s42452-019-0391-x
  • [11] M. Kirisci, H. Yilmaz, Artificial Neural Networks for Analysis of Factors Affecting Birth Weight, American Journal of Information Science and Computer Engineering, 5, (2019), 17–24.
  • [12] J.Kojuri,R.Boostani,P.Dehghani,F.Nowroozipour,N.Saki,Predictionofacutemyocardialinfarctionwithartificialneuralnetworksinpatientswith nondiagnostic electrocardiogram, Journal of Cardiovascular Disease Research, 6(2), (2015), 51–59.
  • [13] C.C.Lin,Y.K.Ou,S.H.Chen,Y.C.Liu,J.Lin,Comparisonofartificialneuralnetworkandlogisticregressionmodelsforpredictingmortalityinelderly patients with hip fracture, Injury. 41(9), (2010), 869–873.
  • [14] I.M.Nasser,S.S.Abu-Naser,PredictingTumorCategoryUsingArtificialNeuralNetworks,InternationalJournalofAcademicHealthandMedical Research, 3, (2019), 1–7.
  • [15] T.Nowikiewicz,P.Wnuk,B.Małkowski,A.Kurylcio,J.Kowalewski,W.Zegarski,Applicationofartificialneuralnetworksforpredictingpresenceof non-sentinel lymph node metastases in breast cancer patients with positive sentinel lymph node biopsies, Archives of Medical Science, 13, (2017), 1399-–1407.
  • [16] M.Shioji,T.Yamamoto,T.Ibata,T.Tsuda,K.Adachi,N.Yoshimura,Artificialneuralnetworkstopredictfuturebonemineraldensityandboneloss rate in Japanese postmenopausal women, BMC Research Notes, 10, (2017), 590.
  • [17] H. Yu, D.C. Samuels, Y.Y. Zhao, Y. Guo, Architectures and accuracy of artificial neural network for disease classification from omics data, BMC Genomics, 20, (2019), 167, DOI:10.1186/s12864-019-5546-z
  • [18] W.S.McCulloch,W.Pitts,Alogicalcalculusoftheideasimmanentinnervousactivity,BulletinofMath.Biophysics,5,(1943),115–133.
  • [19] J.j.Hopfield,Neuralnetworksandphysicalsystemswithemergentcollectivecomputationalabilities,Proc.Nat.Acad.Sci.,79,(1982),2554–2558.
  • [20] T.Kohonen,Self-organisedformationoftopologicallycorrectfeaturemaps,BiologicalCybernetics,43,(1982),59–69.

Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases based on COVID-19

Yıl 2021, Cilt: 9 Sayı: 2, 324 - 331, 15.10.2021

Öz

Dermatological diseases are frequently encountered in children and adults for various reasons. There are many factors that cause the onset of these diseases and different symptoms are generally seen in each age group.
Artificial neural networks can provide expert-level accuracy in the diagnosis of dermatological findings of patients with COVID-19 disease. Therefore, the use of neural network classification methods can give the best estimation method in dermatology. In this study, the prediction of cutaneous diseases caused by COVID-19 was analyzed by Scaled Conjugate Gradient, Levenberg Marquardt, Bayesian Regularization neural networks. At some points, Bayesian Regularization and Levenberg Marquardt were almost equally effective, but Bayesian Regularization performed better than Levenberg Marquard and called Conjugate Gradient in performance. It is seen that neural network model predictions achieve the highest accuracy. For this reason, artificial neural networks are able to classify these diseases as accurately as human experts in an experimental setting.

Kaynakça

  • [1] M.T.Hagan,M.B.Menhaj,TrainingfeedforwardnetworkswiththeMarquardtalgorithm.IEEETrans.NeuralNetw.,5(1994),989–993.
  • [2] MuratKayri,PredictiveAbilitiesofBayesianRegularizationandLevenberg–MarquardtAlgorithmsinArtificialNeuralNetworks:AComparative Empirical Study on Social Data, Math. Comput. Appl. 21, (2016), 20, DOI:10.3390/mca21020020
  • [3] R.Dybowski,V.Gant,ClinicalApplicationsofArtificialNeuralNetworks,CambridgeUniversityPress,2007.
  • [4] V. Arbabi, B. Pouran, G. Campoli, H. Weinans, A.A. Zadpoor, Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks, J Biomech. 49, (2016), ,631–637.
  • [5] J.Dolz,L.Massoptier,M.Vermandel,SegmentationalgorithmsofsubcorticalbrainstructuresonMRIforradiotherapyandradiosurgery:asurvey, IRBM, 36(4), (2015), 200–212.
  • [6] O.Er,N.Yumusak,F.Temurtas,Chestdiseasediagnosisusingartificialneuralnetworks,ExpertSystemswithApplications,37,(2010),7648–7655.
  • [7] O. Er, F. Temurtas, A.C. Tanrikulu, Tuberculosis Disease Diagnosis Using Artificial Neural Networks, J Med Syst, 34, (2010), 299–302, DOI: 10.1007/s10916-008-9241-x
  • [8] J.M.Haglin,G.Jimenez,A.E.M.Eltorai,Artificialneuralnetworksinmedicine,HealthandTechnology,9,(2019),1–6,DOI:10.1007/s12553-018- 0244-4
  • [9] M. Kirisci, H. Yilmaz, M.U. Saka, An ANFIS perspective for the diagnosis of type II diabetes, Annals of Fuzzy Mathematics and Informatics, 17, (2019), 101–113, DOI: 10.30948/afmi.2019.17.2.101
  • [10] M.Kirisci,Comparisonofartificialneuralnetworkandlogisticregressionmodelforfactorsaffectingbirthweight,SNAppl.Sci.,1,(2019),378,DOI: 10.1007/s42452-019-0391-x
  • [11] M. Kirisci, H. Yilmaz, Artificial Neural Networks for Analysis of Factors Affecting Birth Weight, American Journal of Information Science and Computer Engineering, 5, (2019), 17–24.
  • [12] J.Kojuri,R.Boostani,P.Dehghani,F.Nowroozipour,N.Saki,Predictionofacutemyocardialinfarctionwithartificialneuralnetworksinpatientswith nondiagnostic electrocardiogram, Journal of Cardiovascular Disease Research, 6(2), (2015), 51–59.
  • [13] C.C.Lin,Y.K.Ou,S.H.Chen,Y.C.Liu,J.Lin,Comparisonofartificialneuralnetworkandlogisticregressionmodelsforpredictingmortalityinelderly patients with hip fracture, Injury. 41(9), (2010), 869–873.
  • [14] I.M.Nasser,S.S.Abu-Naser,PredictingTumorCategoryUsingArtificialNeuralNetworks,InternationalJournalofAcademicHealthandMedical Research, 3, (2019), 1–7.
  • [15] T.Nowikiewicz,P.Wnuk,B.Małkowski,A.Kurylcio,J.Kowalewski,W.Zegarski,Applicationofartificialneuralnetworksforpredictingpresenceof non-sentinel lymph node metastases in breast cancer patients with positive sentinel lymph node biopsies, Archives of Medical Science, 13, (2017), 1399-–1407.
  • [16] M.Shioji,T.Yamamoto,T.Ibata,T.Tsuda,K.Adachi,N.Yoshimura,Artificialneuralnetworkstopredictfuturebonemineraldensityandboneloss rate in Japanese postmenopausal women, BMC Research Notes, 10, (2017), 590.
  • [17] H. Yu, D.C. Samuels, Y.Y. Zhao, Y. Guo, Architectures and accuracy of artificial neural network for disease classification from omics data, BMC Genomics, 20, (2019), 167, DOI:10.1186/s12864-019-5546-z
  • [18] W.S.McCulloch,W.Pitts,Alogicalcalculusoftheideasimmanentinnervousactivity,BulletinofMath.Biophysics,5,(1943),115–133.
  • [19] J.j.Hopfield,Neuralnetworksandphysicalsystemswithemergentcollectivecomputationalabilities,Proc.Nat.Acad.Sci.,79,(1982),2554–2558.
  • [20] T.Kohonen,Self-organisedformationoftopologicallycorrectfeaturemaps,BiologicalCybernetics,43,(1982),59–69.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik
Bölüm Articles
Yazarlar

Murat Kirisci

İbrahim Demir 0000-0002-2734-4116

Necip Şimşek

Yayımlanma Tarihi 15 Ekim 2021
Gönderilme Tarihi 6 Eylül 2021
Kabul Tarihi 13 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kirisci, M., Demir, İ., & Şimşek, N. (2021). Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases based on COVID-19. Konuralp Journal of Mathematics, 9(2), 324-331.
AMA Kirisci M, Demir İ, Şimşek N. Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases based on COVID-19. Konuralp J. Math. Ekim 2021;9(2):324-331.
Chicago Kirisci, Murat, İbrahim Demir, ve Necip Şimşek. “Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases Based on COVID-19”. Konuralp Journal of Mathematics 9, sy. 2 (Ekim 2021): 324-31.
EndNote Kirisci M, Demir İ, Şimşek N (01 Ekim 2021) Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases based on COVID-19. Konuralp Journal of Mathematics 9 2 324–331.
IEEE M. Kirisci, İ. Demir, ve N. Şimşek, “Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases based on COVID-19”, Konuralp J. Math., c. 9, sy. 2, ss. 324–331, 2021.
ISNAD Kirisci, Murat vd. “Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases Based on COVID-19”. Konuralp Journal of Mathematics 9/2 (Ekim 2021), 324-331.
JAMA Kirisci M, Demir İ, Şimşek N. Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases based on COVID-19. Konuralp J. Math. 2021;9:324–331.
MLA Kirisci, Murat vd. “Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases Based on COVID-19”. Konuralp Journal of Mathematics, c. 9, sy. 2, 2021, ss. 324-31.
Vancouver Kirisci M, Demir İ, Şimşek N. Comparative Analysis of Neural Networks in the Diagnosis of Emerging Diseases based on COVID-19. Konuralp J. Math. 2021;9(2):324-31.
Creative Commons License
The published articles in KJM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.