Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 6 Sayı: 1, 1 - 5, 07.05.2022

Öz

Kaynakça

  • Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food Chem., 52, 7970-81. doi.org/10.1021/jf048741x.
  • Arshad, N., Lin, T. S., Yahaya, M. F. (2020). Stingless bee honey reduces anxiety and improves memory of the metabolic disease-induced rats. CNS & Neurological Disorders: Drug Targets, 19(2), 115-126. doi:10.2174/1871527319666200117105133.
  • Baranowska-Wójcik, E., Szwajgier, D., Winiarska-Mieczan, A. (2020). Honey as the Potential Natural Source of Cholinesterase Inhibitors in Alzheimer’s Disease. Plant Foods Hum Nutr, 75:30–32. doi.org/10.1007/s11130-019-00791-1.
  • Blois, M. (1958). Antioxidant determinations by the use of a stable free radical. Nature. 181, 1199–1200. https://doi.org/10.1038/1811199a0.
  • Bonta, V., Dezmirean, D. S., Marghitas, L. A., Urcan, A. C., Bobis, O. (2020). Sugar spectrum, hydroxymethylfurfural and diastase activity in honey: a validated approach as indicator of possible adulteration. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Animal Science and Biotechnologies, 77(2), 44-53. doi:10.15835/buasvmcn-asb:2020.0008.
  • Boutoub, O., El-Guendouz, S., Estevinho, L. M., Paula, V. B., Aazza, S., El Ghadraoui, L., Rodrigues, B., Raposo, S., Carlier, J., Costa, M.C., Miguel, M. G. (2021). Antioxidant activity and enzyme inhibitory potential of Euphorbia resinifera and E. officinarum honeys from Morocco and plant aqueous extracts. Environ. Sci. Pollut. Res, 28(1), 503-517. doi:10.1007/s11356-020-10489-6.
  • Chen, X., Liu, B., Li, X., An, T. T., Zhou, Y., Li, G., Wu-Smart, J., Alvarez, S., Naldrett, M. J., Eudy, J., Kubik, G., Wilson, R. A., Kachman, S. D., Cui, J., Yu, J. (2021). Identification of anti-inflammatory vesicle-like nanoparticles in honey, J. Extracell. Vesicles, 10 (4), e12069. doi: 10.1002/jev2.12069.
  • Decker, E.A., and Welch, B., (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38, 674–677. doi:10.1021/jf00093a019.
  • Erban, T., Shcherbachenko, E., Talacko, P., Harant, K. (2021). A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey. Journal of Proteomics, 239, 104157. doi.org/10.1016/j.jprot.2021.104157.
  • Filho, C. B., Jesse, C. R., Donato, F., Del Fabbro, L., Gomes de Gomes, M., Rossito Goes, A. T., Souza, L. C., Boeira, S. P. (2016). Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice. Chem.-Biol. Interact, 260, 154-162. doi:10.1016/j.cbi.2016.11.005.
  • Goes, A. T. R., Jesse, C. R., Antunes, M. S., Lobo Ladd, F. V., Lobo Ladd, A. A. B., Luchese, C., Paroul, N., Boeira, S. P. (2018). Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson's disease: Involvement of neuroinflammation and neurotrophins. Chem.-Biol. Interact, 279, 111-120. doi:10.1016/j.cbi.2017.10.019.
  • Gul, A., and Pehlivan, T. (2018). Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci, 25(6), 1056–1065. https://doi.org/10.1016/j.sjbs.2018.02.011.
  • Maric, A., Jovanov, P., Sakac, M., Novakovic, A., Hadnadjev, M., Pezo, L., Mandic, A., Milicevic, N., Djurovic, A., Gadzuric, S. (2021). A comprehensive study of parameters correlated with honey health benefits. RSC Advances, Ahead of Print. doi:10.1039/d0ra10887a.
  • Miller, H.E. (1971). A simplified method for the evaluation of antioxidants. J. Am. Oil Chem. Soc. 48, 91. doi.org/10.1007/BF02635693. Parin, F. N., Terzioglu, P., Sicak, Y., Yildirim, K., Ozturk, M. (2021) Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties. J Text I, Vol. 112, No. 4, 628–635. doi.org/10.1080/00405000.2020.1773199.
  • Pisoschi, A. M., Pop, A., Cimpeanu, C., Turcus, V., Predoi, G., Iordache, F. (2018). Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity – A critical view. Eur. J. Med. Chem, 157, 1326–1345. doi.org/10.1016/j.ejmech.2018.08.076.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. doi.org/10.1016/S0891-5849(98)00315-3.
  • Rostami, M. R., Yousefi, M., Khezerlou, A., Mohammadi, M. A., Jafari, S. M. (2019). Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids, 97, 105170. doi.org/10.1016/j.foodhyd.
  • Sabudak, T., Ozturk, M., Goren, A.C., Kolak, U., Topçu, G. (2009). Fatty Acids and Other Lipid Composition of five Trifolium Species with Antioxidant Activity. Pharm. Biol. 47, 137–141. doi.org/10.1080/13880200802439343.
  • Sarhan, W. A., and Azzazy, H. M. E. (2015). High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym, 122 135–143. doi.org/10.1016/j.carbpol.2014.12.051.
  • Tel, G., Ozturk, M., Duru, M.E., Dogan, B., Harmandar, M. (2013). Fatty acid composition, antioxidant, anticholinesterase and tyrosinase inhibitory activities of four Serratula species from Anatolia. Rec. Nat. Prod, 7, 86-95.

Sunflower Honey Produced in Turkey Scavenges Singlet Oxygen and Inhibits Lipid Peroxidation via Antiradical Activity

Yıl 2022, Cilt: 6 Sayı: 1, 1 - 5, 07.05.2022

Öz

HHoney is a spectacular food due to its great ingredients and bioactivity. Since antic times, it has been known and used by the people as food and medicine. Herein, the antiradical and lipid peroxidation inhibitory activities of sunflower honey produced in four regions of Adana city and various wholesalers through Turkey were studied. The antiradical activity was performed using ABTS and DPPH assays, while lipid peroxidation inhibitory activity was carried out using the β-carotene-linoleic acid test. All sunflower honey samples exhibited excellent antioxidant and lipid peroxidation inhibitory activity. The honey samples scavenged DPPH and ABTS radicals in the range of 27-30 and 15-18 µg/mL, IC50 values, respectively. The sunflower honey samples from various wholesalers served 46-60 and 31-45 µg/mL IC50 values, respectively. The sunflower honey inhibited lipid peroxidation dose-dependently. The IC50 values were calculated in the range of 5-7 µg/mL. On the other hand, the sunflower honey purchased from various wholesalers displayed 11-14 µg/mL inhibitory activity. The results of antiradical activities supported those results of lipid peroxidation inhibitory activity. The activities of processed sunflower honey samples exhibited less activity than those of produced ones. It was concluded that the filtering process and honey sample's shelf life might affect the lesser antiradical and lipid peroxidation inhibitory activity. Moreover, the possibilities such as storage and processing of honey are among the factors that affect the composition of honey. Consuming or using honey freshly, therefore, advised to be benefited from the medicinal properties of honey.

Kaynakça

  • Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. J. Agric. Food Chem., 52, 7970-81. doi.org/10.1021/jf048741x.
  • Arshad, N., Lin, T. S., Yahaya, M. F. (2020). Stingless bee honey reduces anxiety and improves memory of the metabolic disease-induced rats. CNS & Neurological Disorders: Drug Targets, 19(2), 115-126. doi:10.2174/1871527319666200117105133.
  • Baranowska-Wójcik, E., Szwajgier, D., Winiarska-Mieczan, A. (2020). Honey as the Potential Natural Source of Cholinesterase Inhibitors in Alzheimer’s Disease. Plant Foods Hum Nutr, 75:30–32. doi.org/10.1007/s11130-019-00791-1.
  • Blois, M. (1958). Antioxidant determinations by the use of a stable free radical. Nature. 181, 1199–1200. https://doi.org/10.1038/1811199a0.
  • Bonta, V., Dezmirean, D. S., Marghitas, L. A., Urcan, A. C., Bobis, O. (2020). Sugar spectrum, hydroxymethylfurfural and diastase activity in honey: a validated approach as indicator of possible adulteration. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Animal Science and Biotechnologies, 77(2), 44-53. doi:10.15835/buasvmcn-asb:2020.0008.
  • Boutoub, O., El-Guendouz, S., Estevinho, L. M., Paula, V. B., Aazza, S., El Ghadraoui, L., Rodrigues, B., Raposo, S., Carlier, J., Costa, M.C., Miguel, M. G. (2021). Antioxidant activity and enzyme inhibitory potential of Euphorbia resinifera and E. officinarum honeys from Morocco and plant aqueous extracts. Environ. Sci. Pollut. Res, 28(1), 503-517. doi:10.1007/s11356-020-10489-6.
  • Chen, X., Liu, B., Li, X., An, T. T., Zhou, Y., Li, G., Wu-Smart, J., Alvarez, S., Naldrett, M. J., Eudy, J., Kubik, G., Wilson, R. A., Kachman, S. D., Cui, J., Yu, J. (2021). Identification of anti-inflammatory vesicle-like nanoparticles in honey, J. Extracell. Vesicles, 10 (4), e12069. doi: 10.1002/jev2.12069.
  • Decker, E.A., and Welch, B., (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38, 674–677. doi:10.1021/jf00093a019.
  • Erban, T., Shcherbachenko, E., Talacko, P., Harant, K. (2021). A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey. Journal of Proteomics, 239, 104157. doi.org/10.1016/j.jprot.2021.104157.
  • Filho, C. B., Jesse, C. R., Donato, F., Del Fabbro, L., Gomes de Gomes, M., Rossito Goes, A. T., Souza, L. C., Boeira, S. P. (2016). Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice. Chem.-Biol. Interact, 260, 154-162. doi:10.1016/j.cbi.2016.11.005.
  • Goes, A. T. R., Jesse, C. R., Antunes, M. S., Lobo Ladd, F. V., Lobo Ladd, A. A. B., Luchese, C., Paroul, N., Boeira, S. P. (2018). Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson's disease: Involvement of neuroinflammation and neurotrophins. Chem.-Biol. Interact, 279, 111-120. doi:10.1016/j.cbi.2017.10.019.
  • Gul, A., and Pehlivan, T. (2018). Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci, 25(6), 1056–1065. https://doi.org/10.1016/j.sjbs.2018.02.011.
  • Maric, A., Jovanov, P., Sakac, M., Novakovic, A., Hadnadjev, M., Pezo, L., Mandic, A., Milicevic, N., Djurovic, A., Gadzuric, S. (2021). A comprehensive study of parameters correlated with honey health benefits. RSC Advances, Ahead of Print. doi:10.1039/d0ra10887a.
  • Miller, H.E. (1971). A simplified method for the evaluation of antioxidants. J. Am. Oil Chem. Soc. 48, 91. doi.org/10.1007/BF02635693. Parin, F. N., Terzioglu, P., Sicak, Y., Yildirim, K., Ozturk, M. (2021) Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties. J Text I, Vol. 112, No. 4, 628–635. doi.org/10.1080/00405000.2020.1773199.
  • Pisoschi, A. M., Pop, A., Cimpeanu, C., Turcus, V., Predoi, G., Iordache, F. (2018). Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity – A critical view. Eur. J. Med. Chem, 157, 1326–1345. doi.org/10.1016/j.ejmech.2018.08.076.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. doi.org/10.1016/S0891-5849(98)00315-3.
  • Rostami, M. R., Yousefi, M., Khezerlou, A., Mohammadi, M. A., Jafari, S. M. (2019). Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocolloids, 97, 105170. doi.org/10.1016/j.foodhyd.
  • Sabudak, T., Ozturk, M., Goren, A.C., Kolak, U., Topçu, G. (2009). Fatty Acids and Other Lipid Composition of five Trifolium Species with Antioxidant Activity. Pharm. Biol. 47, 137–141. doi.org/10.1080/13880200802439343.
  • Sarhan, W. A., and Azzazy, H. M. E. (2015). High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym, 122 135–143. doi.org/10.1016/j.carbpol.2014.12.051.
  • Tel, G., Ozturk, M., Duru, M.E., Dogan, B., Harmandar, M. (2013). Fatty acid composition, antioxidant, anticholinesterase and tyrosinase inhibitory activities of four Serratula species from Anatolia. Rec. Nat. Prod, 7, 86-95.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Research Article
Yazarlar

Bihter Şahin

Yayımlanma Tarihi 7 Mayıs 2022
Kabul Tarihi 11 Nisan 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 1

Kaynak Göster