Nano SiO2 katkılı polihidroksietilmetakrilat (PHEMA) filmlerinin mekanik, termal ve biyobozunur davranış özellikleri
Yıl 2023,
, 117 - 128, 01.04.2023
Sinan Temel
,
Elif Yaman
,
Mehmet Fatih Gözükızıl
,
Fatma Özge Gökmen
Öz
Bu çalışmada, polihidroksi etil metakrilat (PHEMA) ile nano-SiO2’nin kimyasal modifikasyonu gerçekleştirilerek nanokompozit malzemelerin hazırlanması gerçekleştirilmiştir. Çalışma kapsamında; PHEMA tabanlı nano-SiO2 katkılı nanokompozit hidrojeller, radikalik başlatıcı ve çapraz bağlayıcı eşliğinde in-situ (yerinde) serbest radikal polimerleştirme tekniği ile üretilmiştir. Katalizör olarak N,N,N′,N′-tetrametil etilendiamin (TEMED) kullanılmıştır. Seçilen takviye malzemesi (SiO2) polimer (PHEMA) ile etkileşimi ve yapısal özelliklerinin uygulama alanına yönelik geliştirilmesi sağlanmıştır. Elde edilen malzemelerin kimyasal yapısı, morfoloji özellikleri, mekanik, termal ve biyobozunur davranışları incelenmiştir. Filmlerin üzerine katkılanan nano takviye malzemesinin; mekanik dayanımı artırdığı, biyobozunurluk özelliğini iyileştirdiği ve ısıl dayanımını en fazla miktarda nano SiO2 ilavesi olan filmde 4 °C artırdığı gözlemlenmiştir.
Kaynakça
- Althues, H., Henle, J., Kaskel, S. (2007). Functional inorganic nanofillers for transparent polymers. Chemical Society Reviews, 36, 1454–1465. https://doi.org/10.1039/b608177k
- Althues, H., Simon, P., Philipp, F., Kaskel, S. (2006). Integration of zinc oxide nanoparticles into transparent poly(butanediolmonoacrylate) via Photopolymerisation. Journal of Nanoscience and Nanotechnology, 6, 409-413. https://doi.org/10.1166/jnn.2006.917
- Batista, R.A., Espitia, P.J.P., Quintans, J.S.S., Freitas, M.M., Cerqueira, M.Â., Teixeira, J.A., Cardoso, J.C. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 205, 106-116. https://doi.org/10.1016/j.carbpol.2018.10.006
- Baum, M., Brittain, W.J. (2002). Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules, 35, 610-615. https://doi.org/10.1021/ma0112467
- Chae, D.W., Kim, B.C. (2005). Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polymers for Advanced Technologies, 16, 846-850. https://doi.org/10.1002/pat.673
- Cheema, T.A., Lichtner, A., Weichert, C., Böl, M., Garnweitner, G. (2012). Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles. Journal of Materials Science, 47, 2665-2574. https://doi.org/10.1007/s10853-011-6092-5
- Cheng, P.S., Zeng, K.M., Chen, J.H. (2014). Preparation and characterization of transparent and UV-Shielding Epoxy/SR-494/APTMS/ZnO nanocomposites with high heat resistance and anti-static properties. Journal of the Chinese Chemical Society, 61, 320-328. https://doi.org/10.1002/jccs.201300477
- Croisier, F., Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49, 780-792. https://doi.org/10.1016/j.eurpolymj.2012.12.009
- Edmondson, S., V Osborne, L., Huck, W.T.S. (2004). Polymer brushes via surface-initiated polymerizations. Chemical Society Reviews, 33, 14-22. https://doi.org/10.1039/b210143m
- Evora, V.M.F., Shukla, A. (2003). Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Materials Science and Engineering: A, 361, 358-366.
https://doi.org/10.1016/S0921-5093(03)00536-7
- Gökmen, F.Ö. (2022). PVP/PVA blended hydrogels as a biofilm for use in food packaging applications. Food and Health, 8(3), 172-180. https://doi.org/10.3153/FH22017
- Gokmen, F.O., Yaman, E., Temel, S. (2021). Eco-friendly polyacrylic acid based porous hydrogel for heavy metal ions adsorption: characterization, adsorption behavior, thermodynamic and reusability studies. Microchemical Journal, 168, 106357. https://doi.org/10.1016/j.microc.2021.106357
- Husseman, M., Malmström, E.E., McNamara, M., Mate, M., Mecerreyes, D., Benoit, D.G., et al. (1999). Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules, 32, 1424-1431. https://doi.org/10.1021/ma981290v
- Jlassi, K., Chandran, S., Micusik, M., Benna-Zayani, M., Yagci, Y., Thomas, S., et al. (2015). Poly(glycidyl methacrylate)-grafted clay nanofiller for highly transparent and mechanically robust epoxy composites. European Polymer Journal, 72, 89-101. https://doi.org/10.1016/j.eurpolymj.2015.09.004
- Kerker, M. (1969). The scattering of light and other electromagnetic radiation. New York: John Wiley and Sons Inc., 688. https://doi.org/10.1016/B978-0-12-404550-7.50008-7
- Loste, J., Lopez-Cuesta, J.M., Billon, L., Garay, H., Save, M. (2019). Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Progress in Polymer Science, 89, 133-158. https://doi.org/10.1016/j.progpolymsci.2018.10.003
- Li, S., Lin, M.M., Toprak, M.S., Kim, D.K., Muhammed, M. (2010). Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Reviews, 1, 1-19. https://doi.org/10.3402/nano.v1i0.5214
- Li, Y., Tao, P., Viswanath, A., Benicewicz, B.C., Schadler, L.S. (2013). Bimodal surface ligand engineering: the key to tunable nanocomposites. Langmuir, 29, 1211-1220. https://doi.org/10.1021/la3036192
- Li, Y.Q, Fu, S.Y, Mai, Y.W. (2006). Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer, 47, 2127-2132.
https://doi.org/10.1016/j.polymer.2006.01.071
- Li, Y.Q, Yang, Y., Fu, S.Y. (2007). Photo-stabilization properties of transparent inorganic UV-filter/epoxy nanocomposites. Composites Science and Technology, 67, 3465-3471. https://doi.org/10.1021/jp901501z
- Luo, Y., Yang, J., Dai, X., Yang, Y., Fu, S. (2009). Preparation and optical properties of novel transparent Al-Doped-ZnO/Epoxy nanocomposites. The Journal of Physical Chemistry C, 113, 9406-9411. https://doi.org/10.1002/adma.200502404
- Lü, C., Cheng, Y., Liu, Y., Liu, F., Yang, B. (2006). A facile route to ZnS–Polymer nanocomposite optical materials with high nanophase content via X-Ray irradiation initiated bulk polymerization. Advanced Materials, 18, 1188-1192. https://doi.org/10.1002/adma.200502404
- Mallakpour, S., Dinari, M. (2013). Nanocomposites of poly (vinyl alcohol) reinforced with chemically modified Al2O3: synthesis and characterization. Journal of Macromolecular Science, Part B, 52, 1651-1661. https://doi.org/10.1080/00222348.2013.789349
- Marentette, J.M., Brown, G. (1998). The crystallization of poly (ethylene oxide) in blends with neat and plasticized poly (vinyl chloride). Polymer, 39, 1415-1427. https://doi.org/10.1016/S0032-3861(97)00154-7
- Margaritis, A., Kalfoglou, N. (1988). Compatibility of poly (vinyl chloride) with epoxidized polybutadiene. European Polymer Journal, 24, 1043-1047. https://doi.org/10.1016/0014-3057(88)90063-8
- Matyjaszewski, K., Xia, J. (2001). Atom transfer radical polymerization. Chemical Reviews, 101, 2921-2990. https://doi.org/10.1021/cr940534g
- Neiro, S.M.S., Dragunski, D.C., Rubira, A.F., Muniz, E.C. (2000). Miscibility of PVC/PEO blends by viscosimetric, microscopic and thermal analyses. European Polymer Journal, 36, 583-589. https://doi.org/10.1016/S0014-3057(99)00082-8
- Ogoshi, T., Chujo, Y. (2005). Synthesis of poly (vinylidene fluoride)(PVdF)/silica hybrids having interpenetrating polymer network structure by using crystallization between PVdF chains. Journal of Polymer Science Part A: Polymer Chemistry, 43, 3543-3550. https://doi.org/10.1002/pola.20833
- Sunkara, H.B., Jethmalani, J.M., Ford, W. (1995). Solidification of colloidal crystals of silica. ACS Symposium Series, 585, 181-191. https://doi.org/10.1021/bk-1995-0585.ch014
- Suzuki, N., Zakaria, M.B., Chiang, Y.D., Wu, K.C.W., Yamauchi Y. (2012). Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Physical Chemistry Chemical Physics, 14, 7427-7432. https://doi.org/10.1039/c2cp40356k
- Tsai, C.L., Yen, H.J., Liou, G.S. (2016). Highly transparent polyimide hybrids for optoelectronic applications. Reactive and Functional Polymers, 108, 2-30. https://doi.org/10.1016/j.reactfunctpolym.2016.04.021
- Tsai, C.M., Hsu, S.H., Ho, C.C., Tu, Y.C., Tsai, H.C., Wang, C.A., et al. (2014). High refractive index transparent nanocomposites prepared by in situ polymerization. Journal of Materials Chemistry C, 2, 2251-2258. https://doi.org/10.1039/c3tc32374a
- Vogelsanger, N., Formolo, M.C., Pezzin, A.P.T., Schneider, A.L.S., Furlan, S.A., Bernardo, H.P., Duek, E.A.d.R. (2003). Blendas biodegradáveis de poli (3-hidroxibutirato) / poli (e-caprolactona): Obtenção e estudo da miscibilidade. Materials Research, 6, 359-365. https://doi.org/10.1590/S1516-14392003000300010
- Werne, T., Patten, T.E. (1999). Preparation of structurally well-defined polymer− nanoparticle hybrids with controlled/living radical polymerizations. Journal of the American Chemical Society, 121, 7409-7410. https://doi.org/10.1021/ja991108l
- Werne, T., Patten, T.E. (2001). Atom Transfer Radical Polymerization from Nanoparticles: A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled / “Living” Radical Polymerizations from Surfaces. Journal of the American Chemical Society, 123, 7497-7505. https://doi.org/10.1021/ja010235q
- Zhi, S.H., Xu, J., Deng, R., Wan, L.S., Xu, Z.K. (2014). Poly (vinylidene fluoride) ultrafiltration membranes containing hybrid silica nanoparticles: Preparation, characterization and performance. Polymer, 55, 1333-1340. https://doi.org/10.1016/j.polymer.2013.12.035
- Zhou, H., Wang, H., Tian, X., Zheng, K., Wu, Z., Ding, X., et al. (2014). Preparation of UV-curable transparent poly (urethane acrylate) nanocomposites with excellent UV/IR shielding properties. Composites Science and Technology, 94, 105–110. https://doi.org/10.1016/j.compscitech.2014.01.022
Mechanical, thermal and biodegradable behavior properties of nano SiO2 doped polyhydroxyethylmethacrylate (PHEMA) films
Yıl 2023,
, 117 - 128, 01.04.2023
Sinan Temel
,
Elif Yaman
,
Mehmet Fatih Gözükızıl
,
Fatma Özge Gökmen
Öz
In this study, nanocomposite materials were prepared by chemical modification of polyhydroxy ethyl methacrylate (PHEMA) and nano-SiO2. Scope of work; PHEMA-based nano-SiO2 doped nanocomposite hydrogels were produced by in-situ free radical polymerization technique with radical initiator and crosslinker. N,N,N′,N′-tetramethyl ethylenediamine (TEMED) was used as a catalyst. The interaction of the selected reinforcement material (SiO2) with the polymer (PHEMA) and the development of its structural properties for the application area are provided. The chemical structure, morphology, mechanical, thermal and biodegradable behavior of the obtained materials were investigated. It was observed that the nano reinforcement material doped on the films increased the mechanical strength, improved the biodegradable property and increased the thermal stability by 4 °C in the film with the highest amount of nano SiO2 addition.
Kaynakça
- Althues, H., Henle, J., Kaskel, S. (2007). Functional inorganic nanofillers for transparent polymers. Chemical Society Reviews, 36, 1454–1465. https://doi.org/10.1039/b608177k
- Althues, H., Simon, P., Philipp, F., Kaskel, S. (2006). Integration of zinc oxide nanoparticles into transparent poly(butanediolmonoacrylate) via Photopolymerisation. Journal of Nanoscience and Nanotechnology, 6, 409-413. https://doi.org/10.1166/jnn.2006.917
- Batista, R.A., Espitia, P.J.P., Quintans, J.S.S., Freitas, M.M., Cerqueira, M.Â., Teixeira, J.A., Cardoso, J.C. (2019). Hydrogel as an alternative structure for food packaging systems. Carbohydrate Polymers, 205, 106-116. https://doi.org/10.1016/j.carbpol.2018.10.006
- Baum, M., Brittain, W.J. (2002). Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules, 35, 610-615. https://doi.org/10.1021/ma0112467
- Chae, D.W., Kim, B.C. (2005). Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polymers for Advanced Technologies, 16, 846-850. https://doi.org/10.1002/pat.673
- Cheema, T.A., Lichtner, A., Weichert, C., Böl, M., Garnweitner, G. (2012). Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles. Journal of Materials Science, 47, 2665-2574. https://doi.org/10.1007/s10853-011-6092-5
- Cheng, P.S., Zeng, K.M., Chen, J.H. (2014). Preparation and characterization of transparent and UV-Shielding Epoxy/SR-494/APTMS/ZnO nanocomposites with high heat resistance and anti-static properties. Journal of the Chinese Chemical Society, 61, 320-328. https://doi.org/10.1002/jccs.201300477
- Croisier, F., Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49, 780-792. https://doi.org/10.1016/j.eurpolymj.2012.12.009
- Edmondson, S., V Osborne, L., Huck, W.T.S. (2004). Polymer brushes via surface-initiated polymerizations. Chemical Society Reviews, 33, 14-22. https://doi.org/10.1039/b210143m
- Evora, V.M.F., Shukla, A. (2003). Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites. Materials Science and Engineering: A, 361, 358-366.
https://doi.org/10.1016/S0921-5093(03)00536-7
- Gökmen, F.Ö. (2022). PVP/PVA blended hydrogels as a biofilm for use in food packaging applications. Food and Health, 8(3), 172-180. https://doi.org/10.3153/FH22017
- Gokmen, F.O., Yaman, E., Temel, S. (2021). Eco-friendly polyacrylic acid based porous hydrogel for heavy metal ions adsorption: characterization, adsorption behavior, thermodynamic and reusability studies. Microchemical Journal, 168, 106357. https://doi.org/10.1016/j.microc.2021.106357
- Husseman, M., Malmström, E.E., McNamara, M., Mate, M., Mecerreyes, D., Benoit, D.G., et al. (1999). Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules, 32, 1424-1431. https://doi.org/10.1021/ma981290v
- Jlassi, K., Chandran, S., Micusik, M., Benna-Zayani, M., Yagci, Y., Thomas, S., et al. (2015). Poly(glycidyl methacrylate)-grafted clay nanofiller for highly transparent and mechanically robust epoxy composites. European Polymer Journal, 72, 89-101. https://doi.org/10.1016/j.eurpolymj.2015.09.004
- Kerker, M. (1969). The scattering of light and other electromagnetic radiation. New York: John Wiley and Sons Inc., 688. https://doi.org/10.1016/B978-0-12-404550-7.50008-7
- Loste, J., Lopez-Cuesta, J.M., Billon, L., Garay, H., Save, M. (2019). Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Progress in Polymer Science, 89, 133-158. https://doi.org/10.1016/j.progpolymsci.2018.10.003
- Li, S., Lin, M.M., Toprak, M.S., Kim, D.K., Muhammed, M. (2010). Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Reviews, 1, 1-19. https://doi.org/10.3402/nano.v1i0.5214
- Li, Y., Tao, P., Viswanath, A., Benicewicz, B.C., Schadler, L.S. (2013). Bimodal surface ligand engineering: the key to tunable nanocomposites. Langmuir, 29, 1211-1220. https://doi.org/10.1021/la3036192
- Li, Y.Q, Fu, S.Y, Mai, Y.W. (2006). Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer, 47, 2127-2132.
https://doi.org/10.1016/j.polymer.2006.01.071
- Li, Y.Q, Yang, Y., Fu, S.Y. (2007). Photo-stabilization properties of transparent inorganic UV-filter/epoxy nanocomposites. Composites Science and Technology, 67, 3465-3471. https://doi.org/10.1021/jp901501z
- Luo, Y., Yang, J., Dai, X., Yang, Y., Fu, S. (2009). Preparation and optical properties of novel transparent Al-Doped-ZnO/Epoxy nanocomposites. The Journal of Physical Chemistry C, 113, 9406-9411. https://doi.org/10.1002/adma.200502404
- Lü, C., Cheng, Y., Liu, Y., Liu, F., Yang, B. (2006). A facile route to ZnS–Polymer nanocomposite optical materials with high nanophase content via X-Ray irradiation initiated bulk polymerization. Advanced Materials, 18, 1188-1192. https://doi.org/10.1002/adma.200502404
- Mallakpour, S., Dinari, M. (2013). Nanocomposites of poly (vinyl alcohol) reinforced with chemically modified Al2O3: synthesis and characterization. Journal of Macromolecular Science, Part B, 52, 1651-1661. https://doi.org/10.1080/00222348.2013.789349
- Marentette, J.M., Brown, G. (1998). The crystallization of poly (ethylene oxide) in blends with neat and plasticized poly (vinyl chloride). Polymer, 39, 1415-1427. https://doi.org/10.1016/S0032-3861(97)00154-7
- Margaritis, A., Kalfoglou, N. (1988). Compatibility of poly (vinyl chloride) with epoxidized polybutadiene. European Polymer Journal, 24, 1043-1047. https://doi.org/10.1016/0014-3057(88)90063-8
- Matyjaszewski, K., Xia, J. (2001). Atom transfer radical polymerization. Chemical Reviews, 101, 2921-2990. https://doi.org/10.1021/cr940534g
- Neiro, S.M.S., Dragunski, D.C., Rubira, A.F., Muniz, E.C. (2000). Miscibility of PVC/PEO blends by viscosimetric, microscopic and thermal analyses. European Polymer Journal, 36, 583-589. https://doi.org/10.1016/S0014-3057(99)00082-8
- Ogoshi, T., Chujo, Y. (2005). Synthesis of poly (vinylidene fluoride)(PVdF)/silica hybrids having interpenetrating polymer network structure by using crystallization between PVdF chains. Journal of Polymer Science Part A: Polymer Chemistry, 43, 3543-3550. https://doi.org/10.1002/pola.20833
- Sunkara, H.B., Jethmalani, J.M., Ford, W. (1995). Solidification of colloidal crystals of silica. ACS Symposium Series, 585, 181-191. https://doi.org/10.1021/bk-1995-0585.ch014
- Suzuki, N., Zakaria, M.B., Chiang, Y.D., Wu, K.C.W., Yamauchi Y. (2012). Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Physical Chemistry Chemical Physics, 14, 7427-7432. https://doi.org/10.1039/c2cp40356k
- Tsai, C.L., Yen, H.J., Liou, G.S. (2016). Highly transparent polyimide hybrids for optoelectronic applications. Reactive and Functional Polymers, 108, 2-30. https://doi.org/10.1016/j.reactfunctpolym.2016.04.021
- Tsai, C.M., Hsu, S.H., Ho, C.C., Tu, Y.C., Tsai, H.C., Wang, C.A., et al. (2014). High refractive index transparent nanocomposites prepared by in situ polymerization. Journal of Materials Chemistry C, 2, 2251-2258. https://doi.org/10.1039/c3tc32374a
- Vogelsanger, N., Formolo, M.C., Pezzin, A.P.T., Schneider, A.L.S., Furlan, S.A., Bernardo, H.P., Duek, E.A.d.R. (2003). Blendas biodegradáveis de poli (3-hidroxibutirato) / poli (e-caprolactona): Obtenção e estudo da miscibilidade. Materials Research, 6, 359-365. https://doi.org/10.1590/S1516-14392003000300010
- Werne, T., Patten, T.E. (1999). Preparation of structurally well-defined polymer− nanoparticle hybrids with controlled/living radical polymerizations. Journal of the American Chemical Society, 121, 7409-7410. https://doi.org/10.1021/ja991108l
- Werne, T., Patten, T.E. (2001). Atom Transfer Radical Polymerization from Nanoparticles: A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled / “Living” Radical Polymerizations from Surfaces. Journal of the American Chemical Society, 123, 7497-7505. https://doi.org/10.1021/ja010235q
- Zhi, S.H., Xu, J., Deng, R., Wan, L.S., Xu, Z.K. (2014). Poly (vinylidene fluoride) ultrafiltration membranes containing hybrid silica nanoparticles: Preparation, characterization and performance. Polymer, 55, 1333-1340. https://doi.org/10.1016/j.polymer.2013.12.035
- Zhou, H., Wang, H., Tian, X., Zheng, K., Wu, Z., Ding, X., et al. (2014). Preparation of UV-curable transparent poly (urethane acrylate) nanocomposites with excellent UV/IR shielding properties. Composites Science and Technology, 94, 105–110. https://doi.org/10.1016/j.compscitech.2014.01.022