Derleme
BibTex RIS Kaynak Göster

Production of Microbial Vitamins by Biotechnological Tecniques

Yıl 2020, Cilt: 3 Sayı: 2, 227 - 240, 15.08.2020
https://doi.org/10.38001/ijlsb.669770

Öz

İnsan sağlığı için son derece önemli olan vitaminlerin metabolizmada çok çeşitli işlevleri bulunmaktadır. Vitaminler özellikle metabolik yollarda rol alan biyokimyasal reaksiyonların gerçekleşmesi için gerekli enzimlerin yapısına katılırlar. Bu önemli rolleri nedeniyle vitaminler farklı işlevlere sahip organların fonksiyonlarını gerçekleştirmede katkı sağlayan bileşiklerdir. İnsan sağlığı için bu denli önemli bileşiklerin üretimi önem arz etmektedir. Ekonomik değeri yüksek biyoteknolojik ürünler arasında yer alan vitaminlerin gıda katkı maddesi, terapötik ve medikal ajan olarak kullanımlarının yanı sıra kozmetik ürün üretimi gibi geniş bir kullanım alanına sahiptir. Bu derleme çalışmasında ekonomik değeri yüksek vitaminlerin önemi ve bu vitaminlerin biyoteknolojik olarak mikroorganizmalar kullanılarak üretim teknikleri incelenmiştir.

Kaynakça

  • 1. Kavak, M., E. Şeker, ve M. Dörücü, Balıklarda Beslenme Hastalıkları. Int. J. Pure Appl. Sci., 2016. 2(1): p.1- 12. 2. Aydın, A., Vitamin ve Mineraller. İ.Ü. Cerrahpafla Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri. Sağlam Çocuk izlemi Sempozyum Dizisi No: 35 • Ekim 2003: p. 93-97. 3. Shimizu, S., Vitamins and Related Compounds: Microbial Production. SAKAYU SHIMIZU Kyoto, Japan Published Online: 7 MAY 2008 4. Reporterlink 2019: http://www.reportlinker.com/ci02037/Vitamin-and-Supplement.html 5. Ünver Alçay, A., K. Bostan, E. Dinçel, ve C. Varlık, Alglerin İnsan Gıdası Olarak Kullanımı. Aydın Gastronomy, 2017. 1 (1): p.47-59. 6. Sato, T., et al., Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J. Biosci. Bioeng., 2010. p. 9116–20. 7. Hancock, R.D., ve R. Viola., Biotechnological approaches for L-ascorbic acid production. Trends Biotechnol, 2002. 20: p. 299–305. 8. Gökpınar, Ş., et al., Algal Antioksidanlar. E.U. Journal of Fisheries & Aquatic Sciences, 2006. 23(1/1): p. 85-89. 9. Gloeckler, R., I. et al., Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiyotin. Gene, 1990. 87: p.63–70. 10. Horiuchi, J., and K., Hiraga, Industrial application of fuzzy control to large-scale recombinant vitamin B2 production. J. Biosci. Bioeng., 1999. 87: p.365–371. 11.Marwaha, S.S., R.P., Sethi, and J.F. Kennedy, Role of amino acids, betaine and choline in Vitamin B12 biosynthesis by strains of Propionibacterium. Enzyme Microb. Technol., 1983. 5: 454–456. 12. Demir, A., Seyis, F., ve Kurt, O., Genetik Yapısı Değiştirilmiş Organizmalar: I. Bitkiler. OMÜ Zir. Fak. Dergisi, 2006. 21(2): p.249-260. 13. El-Mansi, E.M.T. Fermentation Microbiology and Biotechnology, Second Edition. Taylor & Francis, 2006. 14. V. Pujari et al., New and emerging prophylactic agents of migraine. CNS Drugs, 2002. 16: p.611–634. 15. Kato, T., and E.Y. Park., Riboflavin production by Ashbya gossypii.. Biotechnology Letters, 2011. 34(4): p.611-618. 16. Xia, W. et al., Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioprocess Biosyst Eng., 2015. 38(6): p.1065-73. 17. Deptula, P., et al., Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation. Front. Microbiol., 2017. 8: p.368. 18. Survase, S.A., et al., Production of Vitamins. Food Technol. Biotechnol., 2006. 44(3): p.381–396. 19. Izah, S.C., E.B., Enaregha, and J.O., Epidi, Vitamin content of Saccharomyces cerevisiae biomass cultured in cassava wastewater. MOJ Toxicol. 2019. 5(1): p.42‒45. 20. Branduardi, P., et al., Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS One, 2007. 2(10): p.e1092. 21. Gardner, N., and C.P. Champagne. Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. Journal of Applied Microbiology, 2005. 99(5): p.1236-1245. 22. Drewke, C., and E., Leistner. Biosynthesis of vitamin B6 and structurally related derivatives. Vitamins & Hormones, 2001. 61: p.121-155. 23. Padh, H., Cellular functions of ascorbic acid. Biochem. Cell Biol., 1990. 68: p.1166–1173. 24. Padh, H., Vitamin C: Newer insight into its biochemical functions. Nutr. Rev., 1991. 49: p.65–70. 25. Chauhan, A.S., R.S. Ramteke, and W.E. Eipeson, Properties of ascorbic acid and its applications in food processing: A critical appraisal. J. Food Sci. Technol., 1998. 35: p.381–392. 26. Smitha, M.S., S., Singh, and R., Singh, Microbial bio transformation: a process for chemical alterations. J Bacteriol Mycol Open Access, 2017. 4(2): p. 47-51. 27. Vandamme, E.J., Production of vitamins, coenzymes, and related biochemicals by biotechnological process. J. Chem. Technol. Biotechnol., 1992. 53: p.313–327. 28. Hancock, R.D. and R., Viola, The use of microorganisms for L-ascorbic acid production: Current status and future prospectives. Appl. Microbiol. Biotechnol., 2001. 56: p.567–576. 29. Combs, G.F. and Jr. James P. McClung, The Vitamins (Fifth Edition), Fundamental Aspects in Nutrition and Health. Elsevier, 2017. 30. Erdöl, Ş., Önemli Bir Halk Sağlığı Problemi: Vitamin B12 Eksikliği. JCP, 2017.15(2): 30-36. 31. Roth, J.R., et al., Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J. Bacteriol., 1993. 175: 3303–3316. 32. Krymchantowski, A.V., M.E. Bigal, and P.F. Moreira, New and emerging prophylactic agents of migraine. CNS Drugs, 2002. 16: p.611–634. 33. Akompong, T., N. Ghori, and K. Halder, In vitro activity of riboflavin against the human malaria parasite Plasmodium falciperum. Antimicrob. Agents Chemother., 2000. 44: p.88–96. 34. Horiuchi, J., and K. Hiraga, Industrial application of fuzzy control to large-scale recombinant vitamin B2 production. J.Biosci. Bioeng., 1999. 87: p.365–371. 35. Stahmann, K.P., et al., Formation and degradation of lipid bodies found in the riboflavin producing fungus Ashbya gossypii. Appl. Microbiol. Biotechnol., 1994. 42: p.121–127. 36. Pujari, V., and T.S., Chandra, Statistical optimization of medium components for enhanced riboflavin production by a UV- -mutant of Eremothecium ashbyii. Process Biochem., 2000. 36: p.31–37. 37. Park, E.Y., A., Kato, and H., Ming, Utilization of waste activated bleaching earth containing palm oil in riboflavin production by Ashbya gossypii. J. Am. Oil. Chem. Soc., 2004. 81: p.57–62. 38. Ledesma-Amaro, R., et al., Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization. 2015. Microb Cell Fact, 14: p.163. 39. Ertürk, E., O., Erkmen, and M.D., Oner, Effect of various supplements on riboflavin production by Ashbya gossypii in whey. Turk. J. Eng. Environ. Sci., 1998. 22: p.371–376. 40. Perkins, J.B., et al., Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol., 1999. 22: p.8–18. 41. Koizumi, S., et al., Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl. Microbiol. Biotechnol., 2000. 53: p.674–679. 42. Sybesma, W., et al., Increased production of folate by metabolic engineering of Lactococcus lactis. Applied and Environmental, 2003. Microbıology, 69: p.3069-3076. 43. Baker, D.F., and A.M., Cambell, Use of the bio-lac fusion strains to study regulation of biyotin biosynthesis in E. coli. J. Bacteriol., 1980. 143: p.789–800. 44. Oshiro, T., et al., Enzymatic conversion of dethiobiyotin to biyotin in cell free extracts of Bacillus sphaericus bioB transformant. Biosci. Biotechnol. Biochem., 1994. 58: p.1738–1741. 45. Bower, S. et al., Cloning, sequencing and characterization of the Bacillus subtilis biyotin biosynthetic operon. J. Bacteriol., 1996. 178: p.4122–4130. 46. Saito, I. et al., Comparison of biyotin production by recombinant Sphingomonas sp. under various agitation conditions. Biochem. Eng. J., 2000. 5: p.129–136.

Biyoteknolojik Tekniklerle Mikrobiyal Vitamin Üretimi

Yıl 2020, Cilt: 3 Sayı: 2, 227 - 240, 15.08.2020
https://doi.org/10.38001/ijlsb.669770

Öz

Kaynakça

  • 1. Kavak, M., E. Şeker, ve M. Dörücü, Balıklarda Beslenme Hastalıkları. Int. J. Pure Appl. Sci., 2016. 2(1): p.1- 12. 2. Aydın, A., Vitamin ve Mineraller. İ.Ü. Cerrahpafla Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri. Sağlam Çocuk izlemi Sempozyum Dizisi No: 35 • Ekim 2003: p. 93-97. 3. Shimizu, S., Vitamins and Related Compounds: Microbial Production. SAKAYU SHIMIZU Kyoto, Japan Published Online: 7 MAY 2008 4. Reporterlink 2019: http://www.reportlinker.com/ci02037/Vitamin-and-Supplement.html 5. Ünver Alçay, A., K. Bostan, E. Dinçel, ve C. Varlık, Alglerin İnsan Gıdası Olarak Kullanımı. Aydın Gastronomy, 2017. 1 (1): p.47-59. 6. Sato, T., et al., Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J. Biosci. Bioeng., 2010. p. 9116–20. 7. Hancock, R.D., ve R. Viola., Biotechnological approaches for L-ascorbic acid production. Trends Biotechnol, 2002. 20: p. 299–305. 8. Gökpınar, Ş., et al., Algal Antioksidanlar. E.U. Journal of Fisheries & Aquatic Sciences, 2006. 23(1/1): p. 85-89. 9. Gloeckler, R., I. et al., Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiyotin. Gene, 1990. 87: p.63–70. 10. Horiuchi, J., and K., Hiraga, Industrial application of fuzzy control to large-scale recombinant vitamin B2 production. J. Biosci. Bioeng., 1999. 87: p.365–371. 11.Marwaha, S.S., R.P., Sethi, and J.F. Kennedy, Role of amino acids, betaine and choline in Vitamin B12 biosynthesis by strains of Propionibacterium. Enzyme Microb. Technol., 1983. 5: 454–456. 12. Demir, A., Seyis, F., ve Kurt, O., Genetik Yapısı Değiştirilmiş Organizmalar: I. Bitkiler. OMÜ Zir. Fak. Dergisi, 2006. 21(2): p.249-260. 13. El-Mansi, E.M.T. Fermentation Microbiology and Biotechnology, Second Edition. Taylor & Francis, 2006. 14. V. Pujari et al., New and emerging prophylactic agents of migraine. CNS Drugs, 2002. 16: p.611–634. 15. Kato, T., and E.Y. Park., Riboflavin production by Ashbya gossypii.. Biotechnology Letters, 2011. 34(4): p.611-618. 16. Xia, W. et al., Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioprocess Biosyst Eng., 2015. 38(6): p.1065-73. 17. Deptula, P., et al., Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation. Front. Microbiol., 2017. 8: p.368. 18. Survase, S.A., et al., Production of Vitamins. Food Technol. Biotechnol., 2006. 44(3): p.381–396. 19. Izah, S.C., E.B., Enaregha, and J.O., Epidi, Vitamin content of Saccharomyces cerevisiae biomass cultured in cassava wastewater. MOJ Toxicol. 2019. 5(1): p.42‒45. 20. Branduardi, P., et al., Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS One, 2007. 2(10): p.e1092. 21. Gardner, N., and C.P. Champagne. Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. Journal of Applied Microbiology, 2005. 99(5): p.1236-1245. 22. Drewke, C., and E., Leistner. Biosynthesis of vitamin B6 and structurally related derivatives. Vitamins & Hormones, 2001. 61: p.121-155. 23. Padh, H., Cellular functions of ascorbic acid. Biochem. Cell Biol., 1990. 68: p.1166–1173. 24. Padh, H., Vitamin C: Newer insight into its biochemical functions. Nutr. Rev., 1991. 49: p.65–70. 25. Chauhan, A.S., R.S. Ramteke, and W.E. Eipeson, Properties of ascorbic acid and its applications in food processing: A critical appraisal. J. Food Sci. Technol., 1998. 35: p.381–392. 26. Smitha, M.S., S., Singh, and R., Singh, Microbial bio transformation: a process for chemical alterations. J Bacteriol Mycol Open Access, 2017. 4(2): p. 47-51. 27. Vandamme, E.J., Production of vitamins, coenzymes, and related biochemicals by biotechnological process. J. Chem. Technol. Biotechnol., 1992. 53: p.313–327. 28. Hancock, R.D. and R., Viola, The use of microorganisms for L-ascorbic acid production: Current status and future prospectives. Appl. Microbiol. Biotechnol., 2001. 56: p.567–576. 29. Combs, G.F. and Jr. James P. McClung, The Vitamins (Fifth Edition), Fundamental Aspects in Nutrition and Health. Elsevier, 2017. 30. Erdöl, Ş., Önemli Bir Halk Sağlığı Problemi: Vitamin B12 Eksikliği. JCP, 2017.15(2): 30-36. 31. Roth, J.R., et al., Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J. Bacteriol., 1993. 175: 3303–3316. 32. Krymchantowski, A.V., M.E. Bigal, and P.F. Moreira, New and emerging prophylactic agents of migraine. CNS Drugs, 2002. 16: p.611–634. 33. Akompong, T., N. Ghori, and K. Halder, In vitro activity of riboflavin against the human malaria parasite Plasmodium falciperum. Antimicrob. Agents Chemother., 2000. 44: p.88–96. 34. Horiuchi, J., and K. Hiraga, Industrial application of fuzzy control to large-scale recombinant vitamin B2 production. J.Biosci. Bioeng., 1999. 87: p.365–371. 35. Stahmann, K.P., et al., Formation and degradation of lipid bodies found in the riboflavin producing fungus Ashbya gossypii. Appl. Microbiol. Biotechnol., 1994. 42: p.121–127. 36. Pujari, V., and T.S., Chandra, Statistical optimization of medium components for enhanced riboflavin production by a UV- -mutant of Eremothecium ashbyii. Process Biochem., 2000. 36: p.31–37. 37. Park, E.Y., A., Kato, and H., Ming, Utilization of waste activated bleaching earth containing palm oil in riboflavin production by Ashbya gossypii. J. Am. Oil. Chem. Soc., 2004. 81: p.57–62. 38. Ledesma-Amaro, R., et al., Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization. 2015. Microb Cell Fact, 14: p.163. 39. Ertürk, E., O., Erkmen, and M.D., Oner, Effect of various supplements on riboflavin production by Ashbya gossypii in whey. Turk. J. Eng. Environ. Sci., 1998. 22: p.371–376. 40. Perkins, J.B., et al., Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol., 1999. 22: p.8–18. 41. Koizumi, S., et al., Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl. Microbiol. Biotechnol., 2000. 53: p.674–679. 42. Sybesma, W., et al., Increased production of folate by metabolic engineering of Lactococcus lactis. Applied and Environmental, 2003. Microbıology, 69: p.3069-3076. 43. Baker, D.F., and A.M., Cambell, Use of the bio-lac fusion strains to study regulation of biyotin biosynthesis in E. coli. J. Bacteriol., 1980. 143: p.789–800. 44. Oshiro, T., et al., Enzymatic conversion of dethiobiyotin to biyotin in cell free extracts of Bacillus sphaericus bioB transformant. Biosci. Biotechnol. Biochem., 1994. 58: p.1738–1741. 45. Bower, S. et al., Cloning, sequencing and characterization of the Bacillus subtilis biyotin biosynthetic operon. J. Bacteriol., 1996. 178: p.4122–4130. 46. Saito, I. et al., Comparison of biyotin production by recombinant Sphingomonas sp. under various agitation conditions. Biochem. Eng. J., 2000. 5: p.129–136.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Derleme Makaleler
Yazarlar

Ülküye Dudu Gül 0000-0001-6443-1633

Yayımlanma Tarihi 15 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

EndNote Gül ÜD (01 Ağustos 2020) Biyoteknolojik Tekniklerle Mikrobiyal Vitamin Üretimi. International Journal of Life Sciences and Biotechnology 3 2 227–240.

Cited By

BİYOLOJİ EĞİTİMİ VE EKONOMİ
Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi
https://doi.org/10.14520/adyusbd.1002544


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366