Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells

Yıl 2024, Cilt: 37 Sayı: 1, 16 - 28, 01.03.2024
https://doi.org/10.35378/gujs.1218829

Öz

Biomaterials are engineered products that are widely used in many areas of medicine fields such as orthopaedic applications, facial and maxillofacial surgery, artificial heart parts, metal parts, and implantable devices. These materials are widely used in medicine because they are biocompatible with the organism, non-allergic, and are resistant to physical and chemical factors. Hydroxyapatites are bioactive calcium phosphate ceramics that are compatible with tissues. Nano-sized hydroxyapatite has been produced to increase their bioactivity. Although there are advantages to the use of nanoparticles in medicine and therapy, the potential toxicity of these compounds on the ecosystem and human health are of concern. One of the key issues to be investigated is whether the different forms of the same nanoparticle will cause differences in genotoxicity. Herein, the potential genotoxic effects of rod and round forms of nano-sized hydroxyapatites (nHAs) were evaluated using the Allium cepa Single Cell Gel Electrophoresis (SCGE) method. Results had shown that the round form of nHA in the A. cepa meristem root tip cells caused statistically significant genotoxicity at 25 µg/mL concentration in terms of tail intensity and tail moment. This study indicated small-sized-nanohydroxyapatite-induced genotoxicity and cell death in A. cepa. This study has shown that the physical properties of nanoparticles affect potential toxicity mechanisms.

Destekleyen Kurum

Scientific Research Projects Coordination Unit of Akdeniz University

Proje Numarası

FBA-2018-3285

Teşekkür

This study is supported by the Scientific Research Projects Coordination Unit of Akdeniz University (Project ID: FBA-2018-3285).

Kaynakça

  • [1] Suchanek, W., Yoshimura, M., “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants”, Journal of Materials Research, 13(1): 94-117, (1998). https://doi.org/10.1557/JMR.1998.0015
  • [2] Phan, B.T.N., Nguyen, H.T., Dao, H.Q., Pham, L.V., Quan, T.T.T., Nguyen, D.B., Nguyen, H.T.L., Vu, T.T., “Synthesis and characterization of nano-hydroxyapatite in maltodextrin matrix”, Applied Nanoscience, 7:1–7, (2017). https://doi.org/10.1007/s13204-016-0541-z
  • [3] Ünal, F., Demırtaş Korkmaz, F., Suludere, Z., Erol, Ö., Yüzbaşıoğlu, D., “Genotoxicity of Two Nanoparticles: Titanium Dioxide and Zinc Oxide”, Gazi University Journal of Science, 34(4); 948-958, (2021). https://doi.org/10.35378/gujs.826911
  • [4] Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M.A., Alkawareek, M.Y., Dreaden, E.C., Brown, D., Alkilany, A.M., Farokhzad, O.C., Mahmoudi, M., “Cellular uptake of nanoparticles: journey inside the cell”, Chemical Society Reviews, 46(14): 4218-4244, (2017). https://doi.org/10.1039/C6CS00636A
  • [5] Huang, Y., Cambre, M., Lee, H., “The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms”, International Journal of Molecular Sciences, 18(12): 2702, (2017). https://doi.org/10.3390/ijms18122702
  • [6] Carmona, E.R., Inostroza-Blancheteau, C., Rubıo, L., Marcos, R., “Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster”, Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 791:1-11, (2015). https://10.1016/j.mrgentox.2015.07.006
  • [7] Coelho, F., Cavicchioli, M., Specian, S.S., Cilli, E.M., Ribeiro, S.J.L., Scarel-Caminaga, R.M., de Oliveira Capote, T.S., “Silk fibroin/hydroxyapatite composite membranes: Production, characterization and toxicity evaluation”, Toxicology in vitro, 62: 104670, (2020). https://doi.org/10.1016/j.tiv.2019.104670
  • [8] Jantova, S., Theiszova, M., Letasiova, S., Birosova, L., Palou, T.M., “In vitro effects of fluor-hydroxyapatite, fluorapatite and hydroxyapatite on colony formation, DNA damage and mutagenicity”, Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 652(2), 139-44, (2008). https://doi.org/10.1016/j.mrgentox.2008.01.010
  • [9] Jin, Y., Liu, W., Li, X., Shen, S., Liang, S., Liu, C., Shan, L., “Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil”, Ecological Engineering, 95: 25–29, (2016). https://doi.org/10.1016/j.ecoleng.2016.06.071
  • [10] Liu, Z., Tang, S., Ai, Z., “Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells”, World Journal of Gastroenterology, 9(9): 1968-1971, (2003). https://doi.org/10.3748/wjg.v9.i9.1968
  • [11] Turkez, H., Yousef, M.I., Sönmez, E., Togar, B., Bakan, F., Sozio, P., di Stefano, A., “Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells”, Journal of Applied Toxicology, 34: 373–379, (2013). https://doi.org/10.1002/jat.2958
  • [12] Corami, A., Mignardi, S., Ferrini, V., “Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite”, Journal of Hazardous Materials, 146: 164–170, (2007). https://doi.org/10.1016/j.jhazmat.2006.12.003
  • [13] He, M., Shi, H., Zhaoa, X., Yua, Y., Qub, B., “Immobilization of Pb and Cd in contaminated soil using nanocrystallite hydroxyapatite”, Procedia Environmental Sciences, 18: 657 – 665, (2013). https://doi.org/10.1016/j.proenv.2013.04.090
  • [14] Ramesh, S.T., Rameshbabu, N., Gandhimathi, R., Kumar, M.S., Nidheesh, P.V., “Adsorptive removal of Pb(II) from aqueous solution using nano-sized hydroxyapatite”, Applied Water Science, 3: 105–113, (2013). https://doi.org/10.1007/s13201-012-0064-z
  • [15] Huang, L., Liu, L., Zhang, T., Zhao, D., Li, H., Sun, H., Kinney, P. L., Pitiranggon, M., Chillrud, S., Ma, L.Q., Navas-Acien, A., Bi, J., Yan, B., “An interventional study of rice for reducing cadmium exposure in a Chinese industrial town”, Environment International, 122: 301-309, (2019). https://doi.org/10.1016/j.envint.2018.11.019.
  • [16] Baalousha, M., Yang, Y., Vance, M.E., Colman, B.P., McNeal, S., Xu, J., Blaszczak, J., Steele, M., Bernhardt, E., Hochella, M.F. Jr., “Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study”, Science of The Total Environment, 557-558:740-53, (2016) https://doi.org/10.1016/j.scitotenv.2016.03.132
  • [17] Patil, S.S., Shedbalkar, U.U., Truskewycz, A., Chopaded, B.A., Bal, A.S., “Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions”, Environmental Technology & Innovation, 510–21, (2016). https://doi.org/10.1016/j.eti.2015.11.001
  • [18] Eggenberger, K., Frey, N., Zienicke, B., Siebenbrock, J., Schunck, T., Fischer., R, Brase, S., Birtalan, E., Nann, T., Nick, P., “Use of Nanoparticles to Study and Manipulate Plant cells”, Advanced Engineering Materials, 12(9), (2010). https://doi.org/10.1002/adem.201080009
  • [19] Sanoopa, C.P., John, N., Chitra, K.C., “Sublethal hepatotoxic effects and biotransformation response in the freshwater fish, Oreochromis mossambicus exposed to silicon dioxide nanoparticles”, Biologia, 77, 2507–2518, (2022). https://doi.org/10.1007/s11756-022-01122-7
  • [20] Tripathi, D.K., Tripathi, A., Shweta, Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V.K., Mishra, R.K., Upadhyay, R.G., Dubey, N.K., Lee, Y., Chauhan, D.K., “Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review”, Frontiers in Microbiology, 8: 07, (2017). https://doi.org/10.3389/fmicb.2017.00007
  • [21] Fiskesjö, G., “The Allium Test in Wastewater Monitoring”, Environmental Toxicology, 8: 291-298, (1993). https://doi.org/10.1002/tox.2530080306
  • [22] Leme, D.M., Marin-Morales, M.A., “Allium cepa test in environmental monitoring: a review on its application”, Mutation Research/Reviews in Mutation Research, 682(1): 71-81, (2009). https://doi.org/10.1016/j.mrrev.2009.06.002.
  • [23] Singh, B.N., Singh, B.R., Singh, R.L., Prakash, D., Singh, D.P., Sarma, B.K, Upadhyay, G., Singh, H.B., “Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities”, Food Chemical Toxicology, 47(6), 1161-1167, (2009). https://doi.org/10.1016/j.fct.2009.02.004
  • [24] Kotelnikova, A., Fastovets, I., Rogova, O., Volkov, D. S., Stolbova, V., “Toxicity assay of lanthanum and cerium in solutions and soil”, Ecotoxicology and Environmental Safety, 167, 20-28, (2019). https://doi.org/10.1016/j.ecoenv.2018.09.117
  • [25] Yavuz, E., Küçüksayan, E., Akarsu, E., Akarsu, M., “Preparation and Characterization of Polyethylene Glycol Functional Hydroxyapatite/Polycaprolactone Electrospun Biomembranes for Bone Tissue Engineering Applications”, Fibers and Polymers, 22: 1274–1284, (2021). https://doi.org/10.1007/s12221-021-0560-6
  • [26] Nagyné-Kovács, T., Studnicka, L., Kincses, A., Spengler, G., Molnár, M., Tolner, M., Endre, I.E., Szilágyi, I.M., Pokol, G., “Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method”, Ceramics International, 44(18): 22976-22982, (2018). https://doi.10.1016/j.ceramint.2018.09.096
  • [27] Prajitha, V., Thoppil, J.E., “Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes”, Cytotechnology, 69(1): 123-133, (2017). https://doi.10.1007/s10616-016-0044-5
  • [28] Arya, S.K., Mukherjee, A., “Sensitivity of Allium cepa and Vicia faba towards cadmium toxicity”, Journal of Soil Science and Plant Nutrition, 14 (2):447-458, (2014). https://doi.10.4067/S0718-95162014005000035
  • [29] Liman, R., Ciğerci, İ.H., Gökçe, S., “Cytogenetic and genotoxic effects of Rosmaniric Acid on Allium cepa L. root meristem cells”, Food Chemical Toxicology, 121: 444-449, (2018). https://doi.10.1016/j.fct.2018.09.022
  • [30] Kaya, N., Çakmak, I., Akarsu, E., Kaya, B., “DNA Damage Induced by Silica Nanoparticle”, Fresenius Environmental Bulletin, 24(12a): 4478-84, (2015).
  • [31] Ciğerci, İ.H., Liman, R., Özgül, E., Konuk, M., “Genotoxicity of indium tin oxide by Allium and Comet tests”, Cytotechnology, 67(1): 157-63, (2015). https://doi.10.1007/s10616-013-9673-0.
  • [32] Silveira, M.A.D., Ribeiro, D.L., De Castro Marcondes, J.P., D’arce, L.P.G., “Sulfentrazone and flumetsulam herbicides caused DNA damage and instability in Allium cepa test”, International Journal of Environmental & Agriculture Research, 2(8): 1-7, (2016). https://doi.10.1080/17435390.2022.2098072.
  • [33] Yalçın, B., Güneş, M., Kurşun, A.Y., Kaya, N., Marcos, R., Kaya, B., “Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila”, Nanotoxicology, 16(3): 393-407, (2022). https://doi.10.1080/17435390.2022.2098072.
  • [34] Chakraborty, R., Mukherjee, A.K., Mukherjee, A. “Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test”, Environmental Monitoring and Assessment, 153: 351–357, (2009). https://doi.org/10.1007/s10661-008-0361-z.
  • [35] Arya, S.K., Basu, A., Mukherjee, A., “Lead induced genotoxicity and cytotoxicity in root cells of Allium cepa and Vicia faba”, Nucleus, 56: 183–189 (2013). https://doi.org/10.1007/s13237-013-0099-z.
  • [36] Panda, R.N., Hsieh, M.F., Chung, R.J., Chin, T.S., “FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique”, Journal of Physics and Chemistry of Solids, 64: 193–199, (2003). https://doi.org/10.1016/S0022-3697(02)00257-3
  • [37] Sun, Y., Guo, G., Wang, Z., Guo, H., “Synthesis of single-crystal HAP nanorods”, Ceramics International, 32(8): 951-954, (2006). https://doi.org/10.1016/j.ceramint.2005.07.023
  • [38] van der Houwen, J.A.M., Cressey, G., Cressey, B.A., Valsami-Jones, E., “The effect of organic ligands on the crystallinity of calcium phosphate”, Journal of Crystal Growth, 249(3-4): 572-583, (2003). https://doi.org/10.1016/S0022-0248(02)02227-3
  • [39] Ren, F., Ding, Y., Leng, Y., “Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study”, Journal of Biomedical Materials Research - Part A, 102(2): 496-505, (2014). https://doi.org/10.1002/jbm.a.34720
  • [40] Zhang, J., Jiang, D., Zhang, J., Lin, Q., “Synthesis of organized hydroxyapatite (HA) using triton X-100”, Ceramics International, 36(8): 2441-2447, (2010).
  • [41] Yao, L., Xue, X., Yu, P., Ni, Y., Chen, F., “Evans Blue Dye: A Revisit of Its Applications in Biomedicine”, Contrast Media & Molecular Imaging, 2: 7628037, (2018). https://doi.org/10.1155/2018/7628037
  • [42] Sinitha, K., Thoppil, J.E., “Cytotoxicity, apoptotic activity and phytochemical analysis of rhizome extract of Amomum pterocarpum Thwaites”, Journal of Chemical and Pharmaceutical Sciences, Special Issue 4: 18-21, (2016).
  • [43] Bandyopadhyay, A., “Cytogenetic Responses of Plant Root Meristematic Cells to the Arsenic (III) Contaminated Groundwater in Eastern Parts of Burdwan District WB India”, International Journal of Plant Animal and Environmental Sciences, 1(1):79-84, (2015). https://doi.org/10.18811/ijpen.v1i1.7116
  • [44] Thor, K., “Calcium—Nutrient and Messenger”, Frontiers in Plant Science, 10: Article ID 440, (2019). https://doi.org/10.3389/fpls.2019.00440
  • [45] Fenn, L.B., Taylor, R.M., Binzel, M.L., Burks, C.M., “Calcium Stimulation of Ammonium Absorption in Onion”, Agronomy Journal, 83(5): 840-843, (1991). https://doi.org/10.2134/agronj1991.00021962008300050014x
  • [46] Picchioni, G.A., Valenzuela-Vázquez, M., Armenta-Sanchez, S., “Calcium-activated Root Growth and Mineral Nutrient Accumulation of Lupinus havardii: Ecophysiological and Horticultural Significance”, Journal of the American Society for Horticultural Science, 126: 631-637, (2001). https://doi.org/10.21273/JASHS.126.5.631
  • [47] Scherer, M..D, Sposito, J.C.V., Falco, W.F., Grisolia, A.B., Andrade, L.H.C., Lima, S.M., Machado, G., Nascimento, V.A., Gonçalves, D.A., Wender, H., Oliveira, S.L., Caires, A.R.L., “Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence”, Science of The Total Environment, 660: 459–467, (2019). https://doi.org/10.1016/j.scitotenv.2018.12.444
  • [48] Liman, R., Ciğerci, İ.H., Öztürk, N.S., “Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay”, Pesticide Biochemistry and Physiology, 118: 38-42, 2015, (2015). https://doi.org/10.1016/j.pestbp.2014.11.007
  • [49] Ghosh, M., Bandyopadhyay, M., Mukherjee, A., “Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes”, Chemosphere, 81: 1253–1262, (2010). https://doi.org/10.1016/j.chemosphere.2010.09.022
  • [50] Demir, E., Kaya, N., Kaya, B., “Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay”, Turkish Journal Biology, 38: 31-39, (2014). https://doi.10.3906/biy-1306-11
  • [51] Kumari, M., Khan, S.S., Pakrashi, S., Mukherjee, A., Chandrasekaran, N., “Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa, Journal of Hazardous Materials, 190: 613-621, (2011). https://doi.org/10.1016/j.jhazmat.2011.03.095
  • [52] Liman, R., Acikbas, Y., Ciğerci, I.H. “Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests”, Ecotoxicology and Environmental Safety, 168: 408–414, (2019). https://doi.org/10.1016/j.ecoenv.2018.10.088
  • [53] Hadrup, N., Aimonen, K., Ilves, M., Lindberg, H., Atluri, R., Sahlgren, N.M., Jacobsen, N.R., Barfod, K.K., Berthing, T., Lawlor, A., Norppa, H., Wolff, H., Jensen, K.A., Hougaard, K.S., Alenius, H., Catalan, J., Vogel, U., “Pulmonary toxicity of synthetic amorphous silica - effects of porosity and copper oxide doping”, Nanotoxicology, 15(1): 96-113, (2021). https://doi.org/10.1080/17435390.2020.1842932
  • [54] Mo, Y., Zhang, Y., Wan, R., Jiang, M., Xu, Y., Zhang, Q., “miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis”, Nanotoxicology, 14: 9, 1175-1197, (2020). https://doi.org/10.1080/17435390.2020.1808727
  • [55] Dreher, K.L., “Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles”, Toxicological Sciences, 77(1): 3-5, (2004). https://doi.org/10.1093/toxsci/kfh041
  • [56] Ducheyne, P., Hastings, G.W., Metal and Ceramic Biomaterials: Volume I: Structure. CRC Press. Boca Raton, 2017.
  • [57] Zhou, H., Lee, J., “Nanoscale hydroxyapatite particles for bone tissue engineering”, Acta Biomaterialia, 7(7): 2769-2781, (2011). https://doi.org/10.1016/j.actbio.2011.03.019
  • [58] Xu, Z., Liu, C., Wei, J., Sun, J., “Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts”, Journal of Applied Toxicology, 32: 429–435, (2012). https://doi.org/10.1002/jat.1745
  • [59] Dai, C., Duan, J., Zhang, L., Jia, G., Zhang, C., Zhang, J., “Biocompatibility of Defect-Related Luminescent Nanostructured and Microstructured Hydroxyapatite”, Biological Trace Element Research, 162: 158–167, (2014). https://doi.org/10.1007/s12011-014-0151-0
  • [60] Rao, C., Sun, X., Ouyang, J., “Effects of physical properties of nano-sized hydroxyapatite crystals on cellular toxicity in renal epithelial cells”, Materials Science and Engineering: C, 103: 109807, (2019). https://doi.org/10.1016/j.msec.2019.109807
  • [61] Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., Nabiev, I., “Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties”, Nanoscale Research Letters, 13(1): 44, (2018). https://doi.org/10.1186/s11671-018-2457-x
  • [62] Seth, C.S., Misra, V., Chauhan, L.K., Singh, R.R., “Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach”, Ecotoxicology and Environmental Safety, 71(3): 711-6, (2008). https://doi.org/10.1016/j.ecoenv.2008.02.003
  • [63] Ahmed, B., Shahid, M., Khan, M.S., Musarrat, J., “Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb”, Metallomics, 10(9): 1315-1327, (2018). https://doi.org/10.1039/c8mt00093j
  • [64] Ma, J., Lü, X., Huang, Y., “Genomic Analysis of Cytotoxicity Response to Nanosilver in Human Dermal Fibroblasts”, Journal of Biomedical Nanotechnology, 7: 263–275, (2011). https://doi.org/10.1166/jbn.2011.1286
  • [65] Tedesco, S.B., Laughinghouse, H.D., Bioindicator of Genotoxicity: The Allium cepa Test In: Srivastava J (ed) Environmental Contamination, 2012. https://www.intechopen.com/books/environmental-contamination. Accessed: 20 Jaunary 2020
  • [66] Ozel, C.A., Unal, F., Avuloglu-Yilmaz, E., Erikel, E., Mirici, S., Yüzbaşıoğlu, D., “Determination of genotoxic damages of picloram and dicamba with comet assay in Allium cepa rooted in tissue culture and distilled water”, Molecular Biology Reports, (2022). https://doi.org/10.1007/s11033-022-07712-7
Yıl 2024, Cilt: 37 Sayı: 1, 16 - 28, 01.03.2024
https://doi.org/10.35378/gujs.1218829

Öz

Proje Numarası

FBA-2018-3285

Kaynakça

  • [1] Suchanek, W., Yoshimura, M., “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants”, Journal of Materials Research, 13(1): 94-117, (1998). https://doi.org/10.1557/JMR.1998.0015
  • [2] Phan, B.T.N., Nguyen, H.T., Dao, H.Q., Pham, L.V., Quan, T.T.T., Nguyen, D.B., Nguyen, H.T.L., Vu, T.T., “Synthesis and characterization of nano-hydroxyapatite in maltodextrin matrix”, Applied Nanoscience, 7:1–7, (2017). https://doi.org/10.1007/s13204-016-0541-z
  • [3] Ünal, F., Demırtaş Korkmaz, F., Suludere, Z., Erol, Ö., Yüzbaşıoğlu, D., “Genotoxicity of Two Nanoparticles: Titanium Dioxide and Zinc Oxide”, Gazi University Journal of Science, 34(4); 948-958, (2021). https://doi.org/10.35378/gujs.826911
  • [4] Behzadi, S., Serpooshan, V., Tao, W., Hamaly, M.A., Alkawareek, M.Y., Dreaden, E.C., Brown, D., Alkilany, A.M., Farokhzad, O.C., Mahmoudi, M., “Cellular uptake of nanoparticles: journey inside the cell”, Chemical Society Reviews, 46(14): 4218-4244, (2017). https://doi.org/10.1039/C6CS00636A
  • [5] Huang, Y., Cambre, M., Lee, H., “The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms”, International Journal of Molecular Sciences, 18(12): 2702, (2017). https://doi.org/10.3390/ijms18122702
  • [6] Carmona, E.R., Inostroza-Blancheteau, C., Rubıo, L., Marcos, R., “Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster”, Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 791:1-11, (2015). https://10.1016/j.mrgentox.2015.07.006
  • [7] Coelho, F., Cavicchioli, M., Specian, S.S., Cilli, E.M., Ribeiro, S.J.L., Scarel-Caminaga, R.M., de Oliveira Capote, T.S., “Silk fibroin/hydroxyapatite composite membranes: Production, characterization and toxicity evaluation”, Toxicology in vitro, 62: 104670, (2020). https://doi.org/10.1016/j.tiv.2019.104670
  • [8] Jantova, S., Theiszova, M., Letasiova, S., Birosova, L., Palou, T.M., “In vitro effects of fluor-hydroxyapatite, fluorapatite and hydroxyapatite on colony formation, DNA damage and mutagenicity”, Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 652(2), 139-44, (2008). https://doi.org/10.1016/j.mrgentox.2008.01.010
  • [9] Jin, Y., Liu, W., Li, X., Shen, S., Liang, S., Liu, C., Shan, L., “Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil”, Ecological Engineering, 95: 25–29, (2016). https://doi.org/10.1016/j.ecoleng.2016.06.071
  • [10] Liu, Z., Tang, S., Ai, Z., “Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells”, World Journal of Gastroenterology, 9(9): 1968-1971, (2003). https://doi.org/10.3748/wjg.v9.i9.1968
  • [11] Turkez, H., Yousef, M.I., Sönmez, E., Togar, B., Bakan, F., Sozio, P., di Stefano, A., “Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells”, Journal of Applied Toxicology, 34: 373–379, (2013). https://doi.org/10.1002/jat.2958
  • [12] Corami, A., Mignardi, S., Ferrini, V., “Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite”, Journal of Hazardous Materials, 146: 164–170, (2007). https://doi.org/10.1016/j.jhazmat.2006.12.003
  • [13] He, M., Shi, H., Zhaoa, X., Yua, Y., Qub, B., “Immobilization of Pb and Cd in contaminated soil using nanocrystallite hydroxyapatite”, Procedia Environmental Sciences, 18: 657 – 665, (2013). https://doi.org/10.1016/j.proenv.2013.04.090
  • [14] Ramesh, S.T., Rameshbabu, N., Gandhimathi, R., Kumar, M.S., Nidheesh, P.V., “Adsorptive removal of Pb(II) from aqueous solution using nano-sized hydroxyapatite”, Applied Water Science, 3: 105–113, (2013). https://doi.org/10.1007/s13201-012-0064-z
  • [15] Huang, L., Liu, L., Zhang, T., Zhao, D., Li, H., Sun, H., Kinney, P. L., Pitiranggon, M., Chillrud, S., Ma, L.Q., Navas-Acien, A., Bi, J., Yan, B., “An interventional study of rice for reducing cadmium exposure in a Chinese industrial town”, Environment International, 122: 301-309, (2019). https://doi.org/10.1016/j.envint.2018.11.019.
  • [16] Baalousha, M., Yang, Y., Vance, M.E., Colman, B.P., McNeal, S., Xu, J., Blaszczak, J., Steele, M., Bernhardt, E., Hochella, M.F. Jr., “Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study”, Science of The Total Environment, 557-558:740-53, (2016) https://doi.org/10.1016/j.scitotenv.2016.03.132
  • [17] Patil, S.S., Shedbalkar, U.U., Truskewycz, A., Chopaded, B.A., Bal, A.S., “Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions”, Environmental Technology & Innovation, 510–21, (2016). https://doi.org/10.1016/j.eti.2015.11.001
  • [18] Eggenberger, K., Frey, N., Zienicke, B., Siebenbrock, J., Schunck, T., Fischer., R, Brase, S., Birtalan, E., Nann, T., Nick, P., “Use of Nanoparticles to Study and Manipulate Plant cells”, Advanced Engineering Materials, 12(9), (2010). https://doi.org/10.1002/adem.201080009
  • [19] Sanoopa, C.P., John, N., Chitra, K.C., “Sublethal hepatotoxic effects and biotransformation response in the freshwater fish, Oreochromis mossambicus exposed to silicon dioxide nanoparticles”, Biologia, 77, 2507–2518, (2022). https://doi.org/10.1007/s11756-022-01122-7
  • [20] Tripathi, D.K., Tripathi, A., Shweta, Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V.K., Mishra, R.K., Upadhyay, R.G., Dubey, N.K., Lee, Y., Chauhan, D.K., “Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review”, Frontiers in Microbiology, 8: 07, (2017). https://doi.org/10.3389/fmicb.2017.00007
  • [21] Fiskesjö, G., “The Allium Test in Wastewater Monitoring”, Environmental Toxicology, 8: 291-298, (1993). https://doi.org/10.1002/tox.2530080306
  • [22] Leme, D.M., Marin-Morales, M.A., “Allium cepa test in environmental monitoring: a review on its application”, Mutation Research/Reviews in Mutation Research, 682(1): 71-81, (2009). https://doi.org/10.1016/j.mrrev.2009.06.002.
  • [23] Singh, B.N., Singh, B.R., Singh, R.L., Prakash, D., Singh, D.P., Sarma, B.K, Upadhyay, G., Singh, H.B., “Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities”, Food Chemical Toxicology, 47(6), 1161-1167, (2009). https://doi.org/10.1016/j.fct.2009.02.004
  • [24] Kotelnikova, A., Fastovets, I., Rogova, O., Volkov, D. S., Stolbova, V., “Toxicity assay of lanthanum and cerium in solutions and soil”, Ecotoxicology and Environmental Safety, 167, 20-28, (2019). https://doi.org/10.1016/j.ecoenv.2018.09.117
  • [25] Yavuz, E., Küçüksayan, E., Akarsu, E., Akarsu, M., “Preparation and Characterization of Polyethylene Glycol Functional Hydroxyapatite/Polycaprolactone Electrospun Biomembranes for Bone Tissue Engineering Applications”, Fibers and Polymers, 22: 1274–1284, (2021). https://doi.org/10.1007/s12221-021-0560-6
  • [26] Nagyné-Kovács, T., Studnicka, L., Kincses, A., Spengler, G., Molnár, M., Tolner, M., Endre, I.E., Szilágyi, I.M., Pokol, G., “Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method”, Ceramics International, 44(18): 22976-22982, (2018). https://doi.10.1016/j.ceramint.2018.09.096
  • [27] Prajitha, V., Thoppil, J.E., “Cytotoxic and apoptotic activities of extract of Amaranthus spinosus L. in Allium cepa and human erythrocytes”, Cytotechnology, 69(1): 123-133, (2017). https://doi.10.1007/s10616-016-0044-5
  • [28] Arya, S.K., Mukherjee, A., “Sensitivity of Allium cepa and Vicia faba towards cadmium toxicity”, Journal of Soil Science and Plant Nutrition, 14 (2):447-458, (2014). https://doi.10.4067/S0718-95162014005000035
  • [29] Liman, R., Ciğerci, İ.H., Gökçe, S., “Cytogenetic and genotoxic effects of Rosmaniric Acid on Allium cepa L. root meristem cells”, Food Chemical Toxicology, 121: 444-449, (2018). https://doi.10.1016/j.fct.2018.09.022
  • [30] Kaya, N., Çakmak, I., Akarsu, E., Kaya, B., “DNA Damage Induced by Silica Nanoparticle”, Fresenius Environmental Bulletin, 24(12a): 4478-84, (2015).
  • [31] Ciğerci, İ.H., Liman, R., Özgül, E., Konuk, M., “Genotoxicity of indium tin oxide by Allium and Comet tests”, Cytotechnology, 67(1): 157-63, (2015). https://doi.10.1007/s10616-013-9673-0.
  • [32] Silveira, M.A.D., Ribeiro, D.L., De Castro Marcondes, J.P., D’arce, L.P.G., “Sulfentrazone and flumetsulam herbicides caused DNA damage and instability in Allium cepa test”, International Journal of Environmental & Agriculture Research, 2(8): 1-7, (2016). https://doi.10.1080/17435390.2022.2098072.
  • [33] Yalçın, B., Güneş, M., Kurşun, A.Y., Kaya, N., Marcos, R., Kaya, B., “Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila”, Nanotoxicology, 16(3): 393-407, (2022). https://doi.10.1080/17435390.2022.2098072.
  • [34] Chakraborty, R., Mukherjee, A.K., Mukherjee, A. “Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test”, Environmental Monitoring and Assessment, 153: 351–357, (2009). https://doi.org/10.1007/s10661-008-0361-z.
  • [35] Arya, S.K., Basu, A., Mukherjee, A., “Lead induced genotoxicity and cytotoxicity in root cells of Allium cepa and Vicia faba”, Nucleus, 56: 183–189 (2013). https://doi.org/10.1007/s13237-013-0099-z.
  • [36] Panda, R.N., Hsieh, M.F., Chung, R.J., Chin, T.S., “FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique”, Journal of Physics and Chemistry of Solids, 64: 193–199, (2003). https://doi.org/10.1016/S0022-3697(02)00257-3
  • [37] Sun, Y., Guo, G., Wang, Z., Guo, H., “Synthesis of single-crystal HAP nanorods”, Ceramics International, 32(8): 951-954, (2006). https://doi.org/10.1016/j.ceramint.2005.07.023
  • [38] van der Houwen, J.A.M., Cressey, G., Cressey, B.A., Valsami-Jones, E., “The effect of organic ligands on the crystallinity of calcium phosphate”, Journal of Crystal Growth, 249(3-4): 572-583, (2003). https://doi.org/10.1016/S0022-0248(02)02227-3
  • [39] Ren, F., Ding, Y., Leng, Y., “Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study”, Journal of Biomedical Materials Research - Part A, 102(2): 496-505, (2014). https://doi.org/10.1002/jbm.a.34720
  • [40] Zhang, J., Jiang, D., Zhang, J., Lin, Q., “Synthesis of organized hydroxyapatite (HA) using triton X-100”, Ceramics International, 36(8): 2441-2447, (2010).
  • [41] Yao, L., Xue, X., Yu, P., Ni, Y., Chen, F., “Evans Blue Dye: A Revisit of Its Applications in Biomedicine”, Contrast Media & Molecular Imaging, 2: 7628037, (2018). https://doi.org/10.1155/2018/7628037
  • [42] Sinitha, K., Thoppil, J.E., “Cytotoxicity, apoptotic activity and phytochemical analysis of rhizome extract of Amomum pterocarpum Thwaites”, Journal of Chemical and Pharmaceutical Sciences, Special Issue 4: 18-21, (2016).
  • [43] Bandyopadhyay, A., “Cytogenetic Responses of Plant Root Meristematic Cells to the Arsenic (III) Contaminated Groundwater in Eastern Parts of Burdwan District WB India”, International Journal of Plant Animal and Environmental Sciences, 1(1):79-84, (2015). https://doi.org/10.18811/ijpen.v1i1.7116
  • [44] Thor, K., “Calcium—Nutrient and Messenger”, Frontiers in Plant Science, 10: Article ID 440, (2019). https://doi.org/10.3389/fpls.2019.00440
  • [45] Fenn, L.B., Taylor, R.M., Binzel, M.L., Burks, C.M., “Calcium Stimulation of Ammonium Absorption in Onion”, Agronomy Journal, 83(5): 840-843, (1991). https://doi.org/10.2134/agronj1991.00021962008300050014x
  • [46] Picchioni, G.A., Valenzuela-Vázquez, M., Armenta-Sanchez, S., “Calcium-activated Root Growth and Mineral Nutrient Accumulation of Lupinus havardii: Ecophysiological and Horticultural Significance”, Journal of the American Society for Horticultural Science, 126: 631-637, (2001). https://doi.org/10.21273/JASHS.126.5.631
  • [47] Scherer, M..D, Sposito, J.C.V., Falco, W.F., Grisolia, A.B., Andrade, L.H.C., Lima, S.M., Machado, G., Nascimento, V.A., Gonçalves, D.A., Wender, H., Oliveira, S.L., Caires, A.R.L., “Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence”, Science of The Total Environment, 660: 459–467, (2019). https://doi.org/10.1016/j.scitotenv.2018.12.444
  • [48] Liman, R., Ciğerci, İ.H., Öztürk, N.S., “Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay”, Pesticide Biochemistry and Physiology, 118: 38-42, 2015, (2015). https://doi.org/10.1016/j.pestbp.2014.11.007
  • [49] Ghosh, M., Bandyopadhyay, M., Mukherjee, A., “Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes”, Chemosphere, 81: 1253–1262, (2010). https://doi.org/10.1016/j.chemosphere.2010.09.022
  • [50] Demir, E., Kaya, N., Kaya, B., “Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay”, Turkish Journal Biology, 38: 31-39, (2014). https://doi.10.3906/biy-1306-11
  • [51] Kumari, M., Khan, S.S., Pakrashi, S., Mukherjee, A., Chandrasekaran, N., “Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa, Journal of Hazardous Materials, 190: 613-621, (2011). https://doi.org/10.1016/j.jhazmat.2011.03.095
  • [52] Liman, R., Acikbas, Y., Ciğerci, I.H. “Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests”, Ecotoxicology and Environmental Safety, 168: 408–414, (2019). https://doi.org/10.1016/j.ecoenv.2018.10.088
  • [53] Hadrup, N., Aimonen, K., Ilves, M., Lindberg, H., Atluri, R., Sahlgren, N.M., Jacobsen, N.R., Barfod, K.K., Berthing, T., Lawlor, A., Norppa, H., Wolff, H., Jensen, K.A., Hougaard, K.S., Alenius, H., Catalan, J., Vogel, U., “Pulmonary toxicity of synthetic amorphous silica - effects of porosity and copper oxide doping”, Nanotoxicology, 15(1): 96-113, (2021). https://doi.org/10.1080/17435390.2020.1842932
  • [54] Mo, Y., Zhang, Y., Wan, R., Jiang, M., Xu, Y., Zhang, Q., “miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis”, Nanotoxicology, 14: 9, 1175-1197, (2020). https://doi.org/10.1080/17435390.2020.1808727
  • [55] Dreher, K.L., “Health and Environmental Impact of Nanotechnology: Toxicological Assessment of Manufactured Nanoparticles”, Toxicological Sciences, 77(1): 3-5, (2004). https://doi.org/10.1093/toxsci/kfh041
  • [56] Ducheyne, P., Hastings, G.W., Metal and Ceramic Biomaterials: Volume I: Structure. CRC Press. Boca Raton, 2017.
  • [57] Zhou, H., Lee, J., “Nanoscale hydroxyapatite particles for bone tissue engineering”, Acta Biomaterialia, 7(7): 2769-2781, (2011). https://doi.org/10.1016/j.actbio.2011.03.019
  • [58] Xu, Z., Liu, C., Wei, J., Sun, J., “Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts”, Journal of Applied Toxicology, 32: 429–435, (2012). https://doi.org/10.1002/jat.1745
  • [59] Dai, C., Duan, J., Zhang, L., Jia, G., Zhang, C., Zhang, J., “Biocompatibility of Defect-Related Luminescent Nanostructured and Microstructured Hydroxyapatite”, Biological Trace Element Research, 162: 158–167, (2014). https://doi.org/10.1007/s12011-014-0151-0
  • [60] Rao, C., Sun, X., Ouyang, J., “Effects of physical properties of nano-sized hydroxyapatite crystals on cellular toxicity in renal epithelial cells”, Materials Science and Engineering: C, 103: 109807, (2019). https://doi.org/10.1016/j.msec.2019.109807
  • [61] Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., Nabiev, I., “Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties”, Nanoscale Research Letters, 13(1): 44, (2018). https://doi.org/10.1186/s11671-018-2457-x
  • [62] Seth, C.S., Misra, V., Chauhan, L.K., Singh, R.R., “Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach”, Ecotoxicology and Environmental Safety, 71(3): 711-6, (2008). https://doi.org/10.1016/j.ecoenv.2008.02.003
  • [63] Ahmed, B., Shahid, M., Khan, M.S., Musarrat, J., “Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb”, Metallomics, 10(9): 1315-1327, (2018). https://doi.org/10.1039/c8mt00093j
  • [64] Ma, J., Lü, X., Huang, Y., “Genomic Analysis of Cytotoxicity Response to Nanosilver in Human Dermal Fibroblasts”, Journal of Biomedical Nanotechnology, 7: 263–275, (2011). https://doi.org/10.1166/jbn.2011.1286
  • [65] Tedesco, S.B., Laughinghouse, H.D., Bioindicator of Genotoxicity: The Allium cepa Test In: Srivastava J (ed) Environmental Contamination, 2012. https://www.intechopen.com/books/environmental-contamination. Accessed: 20 Jaunary 2020
  • [66] Ozel, C.A., Unal, F., Avuloglu-Yilmaz, E., Erikel, E., Mirici, S., Yüzbaşıoğlu, D., “Determination of genotoxic damages of picloram and dicamba with comet assay in Allium cepa rooted in tissue culture and distilled water”, Molecular Biology Reports, (2022). https://doi.org/10.1007/s11033-022-07712-7
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Biology
Yazarlar

Merve Güneş 0000-0003-3278-0542

Burcin Yalcin 0000-0002-9694-5839

Ayşen Yağmur Kurşun 0000-0003-1657-6808

Ghada Tagorti 0000-0003-4597-8320

Emre Yavuz Bu kişi benim 0000-0001-9855-7437

Esin Akarsu 0000-0002-1965-5774

Nuray Kaya 0000-0002-3227-6680

Bülent Kaya 0000-0002-0491-9781

Proje Numarası FBA-2018-3285
Erken Görünüm Tarihi 4 Eylül 2023
Yayımlanma Tarihi 1 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 37 Sayı: 1

Kaynak Göster

APA Güneş, M., Yalcin, B., Kurşun, A. Y., Tagorti, G., vd. (2024). The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells. Gazi University Journal of Science, 37(1), 16-28. https://doi.org/10.35378/gujs.1218829
AMA Güneş M, Yalcin B, Kurşun AY, Tagorti G, Yavuz E, Akarsu E, Kaya N, Kaya B. The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells. Gazi University Journal of Science. Mart 2024;37(1):16-28. doi:10.35378/gujs.1218829
Chicago Güneş, Merve, Burcin Yalcin, Ayşen Yağmur Kurşun, Ghada Tagorti, Emre Yavuz, Esin Akarsu, Nuray Kaya, ve Bülent Kaya. “The Effects of Rod and Round-Like Nanohydroxyapatites on Allium Cepa Root Meristem Cells”. Gazi University Journal of Science 37, sy. 1 (Mart 2024): 16-28. https://doi.org/10.35378/gujs.1218829.
EndNote Güneş M, Yalcin B, Kurşun AY, Tagorti G, Yavuz E, Akarsu E, Kaya N, Kaya B (01 Mart 2024) The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells. Gazi University Journal of Science 37 1 16–28.
IEEE M. Güneş, “The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells”, Gazi University Journal of Science, c. 37, sy. 1, ss. 16–28, 2024, doi: 10.35378/gujs.1218829.
ISNAD Güneş, Merve vd. “The Effects of Rod and Round-Like Nanohydroxyapatites on Allium Cepa Root Meristem Cells”. Gazi University Journal of Science 37/1 (Mart 2024), 16-28. https://doi.org/10.35378/gujs.1218829.
JAMA Güneş M, Yalcin B, Kurşun AY, Tagorti G, Yavuz E, Akarsu E, Kaya N, Kaya B. The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells. Gazi University Journal of Science. 2024;37:16–28.
MLA Güneş, Merve vd. “The Effects of Rod and Round-Like Nanohydroxyapatites on Allium Cepa Root Meristem Cells”. Gazi University Journal of Science, c. 37, sy. 1, 2024, ss. 16-28, doi:10.35378/gujs.1218829.
Vancouver Güneş M, Yalcin B, Kurşun AY, Tagorti G, Yavuz E, Akarsu E, Kaya N, Kaya B. The Effects of Rod and Round-Like Nanohydroxyapatites on Allium cepa Root Meristem Cells. Gazi University Journal of Science. 2024;37(1):16-28.