BibTex RIS Kaynak Göster

Signal transduction of zymosan and spleen tyrosine kinase

Yıl 2014, Cilt: 4 Sayı: 3, 148 - 157, 15.12.2014

Öz

Zymosan is a component produced by polysaccharide which is obtained from cell wall of Saccharomyces cerevisiae. Zymosan consists of cross-linked polysaccharides such as 1,3-ß glucan, 1,6-ß glucan, and ?-mannan. Zymosan plays a role in inflammmatory diseases such as fungal sepsis, non-septic shock, multiple organ dysfunction syndrome, acute peritonitis, irritable bowel syndrome and it is used in related experimental models. Toll-like receptor 2, dectin-1, mannose, and compleman receptors mediate zymosan’s effects on immune system cells such as monocytes, macrophages, and dendritic cells. Spleen tyrosine kinase (Syk) is a cytosolic, intracellular, 72-kDa protein tyrosine kinase. It is demonstrated that Syk is expressed in hematopoietic cells such as mast cells, neutrophils, macrophages, B cells, leukocytes, and platelets and in non-hematopoietic cells such as epithelial, fibroblast, neuronal cells, and vascular endothelial cells. Spleen tyrosine kinase is a critical kinase that mediates cellular responses through dectin-1 receptor by zymosan. In this review, the role of syk in is evaluated in the signal transduction of zymosan.

Kaynakça

  • Pillemer L, EE Ecker. Anticomplementary factor in fresh yeast. J Biol Chem. 1941;137:139-142.
  • Suram S, Brown GD, Ghosh M, Gordon S, Loper R, Taylor PR, Akira S, Uematsu S, Williams DL, Leslie CC. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J Biol Chem. 2006;281:5506-5514.
  • Riccaboni M, Bianchi I, Petrillo P. Spleen tyrosine kinases: biology, therapeutic targets and drugs. Drug Discov Today. 2010;15:517-530.
  • Coopman PJ, Mueller SC. The Syk tyrosine kinase: a new negative regulator in tumor growth and progression. Cancer Lett. 2006;241:159-173.
  • Tohyama Y, Yamamura H. Protein tyrosine kinase, syk: a key player in phagocytic cells. J Biochem. 2009;145:267-273.
  • Di Carlo FJ, Fiore JV. On the composition of zymosan. Science. 1958;127:756-757.
  • Smits GJ, Kapteyn JC, Van den Ende H, Klis FM. Cell wall dynamics in yeast. Curr Opin Microbiol 1999;2:348-352.
  • Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20:825-852.
  • Vecchiarelli A, Puliti M, Torosantucci A, Cassone A, Bistoni F. In vitro production of tumor necrosis factor by murine splenic macrophages stimulated with mannoprotein constituents of Candida albicans cell wall. Cell Immunol. 1991;134:65-76.
  • Underhill DM. Macrophage recognition of zymosan particles. J Endotoxin Res. 2003;9:176-180.
  • Cuzzocrea S, Di Paola R, Mazzon E, Patel NS, Genovese T, Muià C, Crisafulli C, Caputi AP, Thiemermann C. Erythropoietin reduces the development of nonseptic shock induced by zymosan in mice. Crit Care Med. 2006;34:1168-1177.
  • Pan Q, Liu Y, Zheng J, Lu X, Wu S, Zhu P, Fu N. Protective effect of chloral hydrate against lipopolysaccharide/D-galactosamine- induced acute lethal liver injury and zymosan-induced peritonitis in mice. Int Immunopharmacol. 2010;10:967-977.
  • da S Rocha JC, Peixoto ME, Jancar S, de Q Cunha F, de A Ribeiro R, da Rocha FA. Dual effect of nitric oxide in articular inflammatory pain in zymosan-induced arthritis in rats. Br J Pharmacol. 2002;136:588-596.
  • Jansen MJ, Hendriks T, Huyben CM, Tax WJ, van der Meer JW, Goris RJ. Increasing cytotoxic activity and production of reactive oxygen and nitrogen intermediates by peritoneal macrophages during the development of multiple organ dysfunction syndrome in mice. Scan J Immunol. 1996;44:361-368.
  • Jain NK, Ishikawa TO, Spigelman I, Herschman HR COX-2 expression and function in the hyperalgesic response to paw inflammation in mice. Prostaglandins Leukot Essent Fatty Acids. 2008;79:183-190.
  • Schorlemmer HU, Bitter-Suermann D, Allison AC. Complement activation by the alternative pathway and macrophage enzyme secretion in the pathogenesis of chronic inflammation. Immunology. 1977;32:929-940.
  • Kelly MM, McNagny K, Williams DL, van Rooijen N, Maxwell L, Gwozd C, Mody CH, Kubes P. The lung responds to zymosan in a unique manner independent of toll-like receptors, complement, and dectin-1. Am J Respir Cell Mol Biol. 2008;38:227-238.
  • Doherty NS, Poubelle P, Borgeat P, Beaver TH, Westrich GL, Schrader NL. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin. Prostaglandins. 1985;30:769-789.
  • Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose) polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci. 2002;59:1534-1553.
  • Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999;401:811-815.
  • Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol. 2003;74: 479-485.
  • Senftleben U. NF-kappaB in critical diseases: a bad guy? Intensive Care Med. 2003;29:1873-1876.
  • Battle J, Ha T, Li C, Della Beffa V, Rice P, Kalbfleisch J, Browder W, Williams D. Ligand binding to the (1 --> 3)-beta-D-glucan receptor stimulates NFkappaB activation, but not apoptosis in U937 cells. Biochem Biophys Res Commun. 1998;249:499-504.
  • Cuzzocrea S, Zingarelli B, Sautebin L, Rizzo A, Crisafulli C, Campo GM, Costantino G, Calapai G, Nava F, Di Rosa M, Caputi AP. Multiple organ failure following zymosan-induced peritonitis is mediated by nitric oxide. Shock. 1997;8:268-275.
  • Jansen MJ, Hendriks T, Vogels MT, van der Meer JW, Goris RJ. Inflammatory cytokines in an experimental model for the multiple organ dysfunction syndrome. Crit Care Med. 1996;24:1196-1202.
  • Qiu ZH, de Carvalho MS, Leslie CC. Regulation of phospholipase A2 activation by phosphorylation in mouse peritoneal macrophages. J Biol Chem. 1993;268:24506-24513.
  • Qiu ZH, Gijón MA, de Carvalho MS, Spencer DM, Leslie CC. The role of calcium and phosphorylation of cytosolic phospholipase A2 in regulating arachidonic acid release in macrophages. J Biol Chem. 1998;273:8203-8211.
  • Lundy SR, Dowling RL, Stevens TM, Kerr JS, Mackin WM, Gans KR. Kinetics of phospholipase A2, arachidonic acid, and eicosanoid appearance in mouse zymosan peritonitis. J Immunol. 1990;144:2671- 2677.
  • Humes JL, Sadowski S, Galavage M, Goldenberg M, Subers E, Bonney RJ, Kuehl FA Jr. Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages. J Biol Chem. 1982;257: 1591-1594.
  • Wightman PD, Dahlgren ME, Davies P, Bonney RJ. The selective release of phospholipase A2 by resident mouse peritoneal macrophages. Biochem J. 1981;200:441-444.
  • Fearon DT, Austen KF. Activation of the alternative complement pathway due to resistance of zymosan-bound amplification convertase to endogenous regulatory mechanisms. Proc Natl Acad Sci USA. 1977;74:1683-1687.
  • Song WC. Crosstalk between Complement and Toll-Like Receptors. Toxicol Pathol. 2012;40:174-182.
  • Mikrobiyoloji.org [Internet]. Doğal Direnç. [erişim tarihi; 20 Nisan 2014]. Available from: http://www.mikrobiyoloji.org/.
  • Keystone EC, Schorlemmer HU, Pope C, Allison AC. Zymosan-induced arthritis: a model of chronic proliferative arthritis following activation of the alternative pathway of complement. Arthritis Rheum. 1977;20:1396-1401.
  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1107-1117.
  • Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, Takahashi T, Imaizumi H, Asai Y, Kuroki Y. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol. 2003;171:417-425.
  • Thobe BM, Frink M, Hildebrand F, Schwacha MG, Hubbard WJ, Choudhry MA, Chaudry IH. The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J Cell Physiol. 2007;210:667-675.
  • Reid DM, Gow NA, Brown GD. Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol. 2009;21:30-37.
  • Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez- Pomares L, Wong SY, Gordon S. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med. 2002;196:407-412.
  • Slack EC, Robinson MJ, Hernanz-Falcón P, Brown GD, Williams DL, Schweighoffer E, Tybulewicz VL, Reis e Sousa C. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol. 2007;37:1600-1612.
  • Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R 3rd, Kumamoto T, Edelbaum D, Morita A, Bergstresser PR, Takashima A. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem. 2000;275:20157-20167.
  • Willment JA, Marshall AS, Reid DM, Williams DL, Wong SY, Gordon S, Brown GD. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;35:1539-1547.
  • Chaung HC, Huang TC, Yu JH, Wu ML, Chung WB. Immunomodulatory effects of beta-glucans on porcine alveolar macrophages and bone marrow haematopoietic cell-derived dendritic cells. Vet Immunol Immunopathol. 2009;131:147-157.
  • Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood. 2005;106:2543-2550.
  • Gazi U, Rosas M, Singh S, Heinsbroek S, Haq I, Johnson S, Brown GD, Williams DL, Taylor PR, Martinez-Pomares L. Fungal recognition enhances mannose receptor shedding through dectin-1 engagement. J Biol Chem. 2011;286:7822-7829.
  • Cheng H, Force T Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis. 2010;53:114-120.
  • Waldburger JM, Firestein GS. Garden of therapeutic delights: new targets in rheumatic diseases. Arthritis Res Ther. 2009;11:206.
  • Bradshaw JM. The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal. 2010;22:1175-1184.
  • Sada K, Takano T, Yanagi S, Yamamura H. Structure and function of Syk protein-tyrosine kinase. J Biochem. 2001;130:177-186.
  • Yanagi S, Inatome R, Takano T, Yamamura H. Syk expression and novel function in a wide variety of tissues. Biochem Biophys Res Commun. 2001;288:495-498.
  • Flück M, Zürcher G, Andres AC, Ziemiecki A. Molecular characterization of the murine syk protein tyrosine kinase cDNA, transcripts and protein. Biochem Biophys Res Commun. 1995;213:273-281.
  • Hammaker D, Firestein GS. “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis. 2010;69:77-82.
  • Hirasawa N, Scharenberg A, Yamamura H, Beaven MA, Kinet JP. A requirement for Syk in the activation of the microtubule-associated protein kinase/phospholipase A2 pathway by Fc epsilon R1 is not shared by a G protein-coupled receptor. J Biol Chem. 1995;270:10960-10967.
  • Pamuk ON, Tsokos GC. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res Ther. 2010;12:222.
  • Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE, Habermann TM, Kutok JL, Shipp MA. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood. 2008;111:2230-2237.
  • Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M, Qu K, Herlaar E, Lau A, Young C, Wong BR, Lovell S, Sun T, Park G, Argade A, Jurcevic S, Pine P, Singh R, Grossbard EB, Payan DG, Masuda ES. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther. 2006;319:998-1008.
  • Weinblatt ME, Kavanaugh A, Genovese MC, Musser TK, Grossbard EB, Magilavy DB. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N Engl J Med. 2010;363:1303-1312.
  • Meltzer EO, Berkowitz RB, Grossbard EB. An intranasal Syk-kinase inhibitor (R112) improves the symptoms of seasonal allergic rhinitis in a park environment. J Allergy Clin Immunol. 2005;115:791-796.
  • Yamamoto N, Takeshita K, Shichijo M, Kokubo T, Sato M, Nakashima K, Ishimori M, Nagai H, Li YF, Yura T, Bacon KB. The orally available spleen tyrosine kinase inhibitör 2-[7-(3,4-dimethoxyphenyl)-imidazo[1,2-c] pyrimidin-5-ylamino]nicotinamide dihydrochloride (BAY 61-3606) blocks antigen-induced airway inflammation in rodents. J Pharmacol Exp Ther. 2003;306:1174-1181.
  • Ünsal D. Sıçanlarda Zimosan ile Oluşan Hipotansiyona Dalak Tirozin Kinazının Katkısının Araştırılması. Mersin Üniversitesi Sağlık Bilimleri Enstitüsü Yüksek Lisans Tezi; 2013.
  • Ünsal D, Kaçan M, Temiz M, Korkmaz B, Sarı A N, Buharalıoğlu CK, Yıldırım Yaroğlu H, Tamer L, Tunctan B, Şahan Fırat S. Sıçanlarda zimosanın neden olduğu enflamasyon ve hipotansiyona dalak tirozin kinazının katkısı. 22. Ulusal Farmakoloji Kongresi, Antalya, 4-7 Kasım, Özet Kitabı, s. 293, Bildiri No: P-116 (2013).
  • Reid DM. Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol. 2009;21: 30-37.
  • Gross O. Card9 controls a non-TLR signalling pathway for innate anti- fungal immunity. Nature. 2006;442: 651-656.
  • Goodridge HS. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;178: 3107-3115.
  • LeibundGut-Landmann S. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8: 630-638.
  • Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev. 2010;234: 335-352.
  • Rogers NC, Slack EC, Edwards AD. Syk dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22: 507-517.
  • Suram S, Brown GD, Ghosh M. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the β-glucan receptor. J Biol Chem. 2006;281: 5506-5514.

Zimosan sinyal iletisi ve dalak tirozin kinazı

Yıl 2014, Cilt: 4 Sayı: 3, 148 - 157, 15.12.2014

Öz

Zimosan, Saccharomyces cerevisiae’nin hücre duvarından elde edilen, polisakkarit zincirlerinden oluşan bir bileşendir. Zimosan, başlıca 1,3-ß-glukan, 1,6-ß-glukan ve ?-mannan gibi çapraz bağlı polisakkaritlerden oluşmaktadır. Zimosan, fungal sepsis, septik olmayan şok, çoklu organ yetmezliği, akut peritonit, irritabl bağırsak sendromu gibi enflamatuvar hastalıkların patojenezinde rol oynamakta ve ilgili deneysel modellerde kullanılmaktadır. Zimosanın monosit, makrofaj ve dendritik hücreler gibi immün sistem hücrelerindeki etkilerine toll-like receptor 2, dektin-1, mannoz ve kompleman reseptörleri gibi çeşitli reseptörler aracılık etmektedir. Dalak tirozin kinazı (Dtk), 72 kDa ağırlığında reseptör ile kenetli olmayan bir intraselüler tirozin kinazdır. Dtk’nin, mast hücreleri, nötrofiller, makrofajlar ve trombositler gibi tüm hematopoetik hücrelerde ve fibroblastlar, epitel, sinir ve damar endotel hücreleri gibi hematopoetik olmayan hücrelerde eksprese edildiği gösterilmiştir. Dtk, zimosanın dektin-1 reseptörü aracılığıyla oluşturduğu hücresel yanıtlara aracılık eden önemli bir kinazdır. Bu derlemede, zimosan sinyal iletisinde Dtk’nin rolü değerlendirilmiştir.

Kaynakça

  • Pillemer L, EE Ecker. Anticomplementary factor in fresh yeast. J Biol Chem. 1941;137:139-142.
  • Suram S, Brown GD, Ghosh M, Gordon S, Loper R, Taylor PR, Akira S, Uematsu S, Williams DL, Leslie CC. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J Biol Chem. 2006;281:5506-5514.
  • Riccaboni M, Bianchi I, Petrillo P. Spleen tyrosine kinases: biology, therapeutic targets and drugs. Drug Discov Today. 2010;15:517-530.
  • Coopman PJ, Mueller SC. The Syk tyrosine kinase: a new negative regulator in tumor growth and progression. Cancer Lett. 2006;241:159-173.
  • Tohyama Y, Yamamura H. Protein tyrosine kinase, syk: a key player in phagocytic cells. J Biochem. 2009;145:267-273.
  • Di Carlo FJ, Fiore JV. On the composition of zymosan. Science. 1958;127:756-757.
  • Smits GJ, Kapteyn JC, Van den Ende H, Klis FM. Cell wall dynamics in yeast. Curr Opin Microbiol 1999;2:348-352.
  • Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20:825-852.
  • Vecchiarelli A, Puliti M, Torosantucci A, Cassone A, Bistoni F. In vitro production of tumor necrosis factor by murine splenic macrophages stimulated with mannoprotein constituents of Candida albicans cell wall. Cell Immunol. 1991;134:65-76.
  • Underhill DM. Macrophage recognition of zymosan particles. J Endotoxin Res. 2003;9:176-180.
  • Cuzzocrea S, Di Paola R, Mazzon E, Patel NS, Genovese T, Muià C, Crisafulli C, Caputi AP, Thiemermann C. Erythropoietin reduces the development of nonseptic shock induced by zymosan in mice. Crit Care Med. 2006;34:1168-1177.
  • Pan Q, Liu Y, Zheng J, Lu X, Wu S, Zhu P, Fu N. Protective effect of chloral hydrate against lipopolysaccharide/D-galactosamine- induced acute lethal liver injury and zymosan-induced peritonitis in mice. Int Immunopharmacol. 2010;10:967-977.
  • da S Rocha JC, Peixoto ME, Jancar S, de Q Cunha F, de A Ribeiro R, da Rocha FA. Dual effect of nitric oxide in articular inflammatory pain in zymosan-induced arthritis in rats. Br J Pharmacol. 2002;136:588-596.
  • Jansen MJ, Hendriks T, Huyben CM, Tax WJ, van der Meer JW, Goris RJ. Increasing cytotoxic activity and production of reactive oxygen and nitrogen intermediates by peritoneal macrophages during the development of multiple organ dysfunction syndrome in mice. Scan J Immunol. 1996;44:361-368.
  • Jain NK, Ishikawa TO, Spigelman I, Herschman HR COX-2 expression and function in the hyperalgesic response to paw inflammation in mice. Prostaglandins Leukot Essent Fatty Acids. 2008;79:183-190.
  • Schorlemmer HU, Bitter-Suermann D, Allison AC. Complement activation by the alternative pathway and macrophage enzyme secretion in the pathogenesis of chronic inflammation. Immunology. 1977;32:929-940.
  • Kelly MM, McNagny K, Williams DL, van Rooijen N, Maxwell L, Gwozd C, Mody CH, Kubes P. The lung responds to zymosan in a unique manner independent of toll-like receptors, complement, and dectin-1. Am J Respir Cell Mol Biol. 2008;38:227-238.
  • Doherty NS, Poubelle P, Borgeat P, Beaver TH, Westrich GL, Schrader NL. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleukotrienes and prostaglandin. Prostaglandins. 1985;30:769-789.
  • Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose) polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci. 2002;59:1534-1553.
  • Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999;401:811-815.
  • Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol. 2003;74: 479-485.
  • Senftleben U. NF-kappaB in critical diseases: a bad guy? Intensive Care Med. 2003;29:1873-1876.
  • Battle J, Ha T, Li C, Della Beffa V, Rice P, Kalbfleisch J, Browder W, Williams D. Ligand binding to the (1 --> 3)-beta-D-glucan receptor stimulates NFkappaB activation, but not apoptosis in U937 cells. Biochem Biophys Res Commun. 1998;249:499-504.
  • Cuzzocrea S, Zingarelli B, Sautebin L, Rizzo A, Crisafulli C, Campo GM, Costantino G, Calapai G, Nava F, Di Rosa M, Caputi AP. Multiple organ failure following zymosan-induced peritonitis is mediated by nitric oxide. Shock. 1997;8:268-275.
  • Jansen MJ, Hendriks T, Vogels MT, van der Meer JW, Goris RJ. Inflammatory cytokines in an experimental model for the multiple organ dysfunction syndrome. Crit Care Med. 1996;24:1196-1202.
  • Qiu ZH, de Carvalho MS, Leslie CC. Regulation of phospholipase A2 activation by phosphorylation in mouse peritoneal macrophages. J Biol Chem. 1993;268:24506-24513.
  • Qiu ZH, Gijón MA, de Carvalho MS, Spencer DM, Leslie CC. The role of calcium and phosphorylation of cytosolic phospholipase A2 in regulating arachidonic acid release in macrophages. J Biol Chem. 1998;273:8203-8211.
  • Lundy SR, Dowling RL, Stevens TM, Kerr JS, Mackin WM, Gans KR. Kinetics of phospholipase A2, arachidonic acid, and eicosanoid appearance in mouse zymosan peritonitis. J Immunol. 1990;144:2671- 2677.
  • Humes JL, Sadowski S, Galavage M, Goldenberg M, Subers E, Bonney RJ, Kuehl FA Jr. Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages. J Biol Chem. 1982;257: 1591-1594.
  • Wightman PD, Dahlgren ME, Davies P, Bonney RJ. The selective release of phospholipase A2 by resident mouse peritoneal macrophages. Biochem J. 1981;200:441-444.
  • Fearon DT, Austen KF. Activation of the alternative complement pathway due to resistance of zymosan-bound amplification convertase to endogenous regulatory mechanisms. Proc Natl Acad Sci USA. 1977;74:1683-1687.
  • Song WC. Crosstalk between Complement and Toll-Like Receptors. Toxicol Pathol. 2012;40:174-182.
  • Mikrobiyoloji.org [Internet]. Doğal Direnç. [erişim tarihi; 20 Nisan 2014]. Available from: http://www.mikrobiyoloji.org/.
  • Keystone EC, Schorlemmer HU, Pope C, Allison AC. Zymosan-induced arthritis: a model of chronic proliferative arthritis following activation of the alternative pathway of complement. Arthritis Rheum. 1977;20:1396-1401.
  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1107-1117.
  • Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, Takahashi T, Imaizumi H, Asai Y, Kuroki Y. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol. 2003;171:417-425.
  • Thobe BM, Frink M, Hildebrand F, Schwacha MG, Hubbard WJ, Choudhry MA, Chaudry IH. The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J Cell Physiol. 2007;210:667-675.
  • Reid DM, Gow NA, Brown GD. Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol. 2009;21:30-37.
  • Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez- Pomares L, Wong SY, Gordon S. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med. 2002;196:407-412.
  • Slack EC, Robinson MJ, Hernanz-Falcón P, Brown GD, Williams DL, Schweighoffer E, Tybulewicz VL, Reis e Sousa C. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol. 2007;37:1600-1612.
  • Ariizumi K, Shen GL, Shikano S, Xu S, Ritter R 3rd, Kumamoto T, Edelbaum D, Morita A, Bergstresser PR, Takashima A. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem. 2000;275:20157-20167.
  • Willment JA, Marshall AS, Reid DM, Williams DL, Wong SY, Gordon S, Brown GD. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;35:1539-1547.
  • Chaung HC, Huang TC, Yu JH, Wu ML, Chung WB. Immunomodulatory effects of beta-glucans on porcine alveolar macrophages and bone marrow haematopoietic cell-derived dendritic cells. Vet Immunol Immunopathol. 2009;131:147-157.
  • Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood. 2005;106:2543-2550.
  • Gazi U, Rosas M, Singh S, Heinsbroek S, Haq I, Johnson S, Brown GD, Williams DL, Taylor PR, Martinez-Pomares L. Fungal recognition enhances mannose receptor shedding through dectin-1 engagement. J Biol Chem. 2011;286:7822-7829.
  • Cheng H, Force T Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis. 2010;53:114-120.
  • Waldburger JM, Firestein GS. Garden of therapeutic delights: new targets in rheumatic diseases. Arthritis Res Ther. 2009;11:206.
  • Bradshaw JM. The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal. 2010;22:1175-1184.
  • Sada K, Takano T, Yanagi S, Yamamura H. Structure and function of Syk protein-tyrosine kinase. J Biochem. 2001;130:177-186.
  • Yanagi S, Inatome R, Takano T, Yamamura H. Syk expression and novel function in a wide variety of tissues. Biochem Biophys Res Commun. 2001;288:495-498.
  • Flück M, Zürcher G, Andres AC, Ziemiecki A. Molecular characterization of the murine syk protein tyrosine kinase cDNA, transcripts and protein. Biochem Biophys Res Commun. 1995;213:273-281.
  • Hammaker D, Firestein GS. “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis. 2010;69:77-82.
  • Hirasawa N, Scharenberg A, Yamamura H, Beaven MA, Kinet JP. A requirement for Syk in the activation of the microtubule-associated protein kinase/phospholipase A2 pathway by Fc epsilon R1 is not shared by a G protein-coupled receptor. J Biol Chem. 1995;270:10960-10967.
  • Pamuk ON, Tsokos GC. Spleen tyrosine kinase inhibition in the treatment of autoimmune, allergic and autoinflammatory diseases. Arthritis Res Ther. 2010;12:222.
  • Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE, Habermann TM, Kutok JL, Shipp MA. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood. 2008;111:2230-2237.
  • Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M, Qu K, Herlaar E, Lau A, Young C, Wong BR, Lovell S, Sun T, Park G, Argade A, Jurcevic S, Pine P, Singh R, Grossbard EB, Payan DG, Masuda ES. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther. 2006;319:998-1008.
  • Weinblatt ME, Kavanaugh A, Genovese MC, Musser TK, Grossbard EB, Magilavy DB. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N Engl J Med. 2010;363:1303-1312.
  • Meltzer EO, Berkowitz RB, Grossbard EB. An intranasal Syk-kinase inhibitor (R112) improves the symptoms of seasonal allergic rhinitis in a park environment. J Allergy Clin Immunol. 2005;115:791-796.
  • Yamamoto N, Takeshita K, Shichijo M, Kokubo T, Sato M, Nakashima K, Ishimori M, Nagai H, Li YF, Yura T, Bacon KB. The orally available spleen tyrosine kinase inhibitör 2-[7-(3,4-dimethoxyphenyl)-imidazo[1,2-c] pyrimidin-5-ylamino]nicotinamide dihydrochloride (BAY 61-3606) blocks antigen-induced airway inflammation in rodents. J Pharmacol Exp Ther. 2003;306:1174-1181.
  • Ünsal D. Sıçanlarda Zimosan ile Oluşan Hipotansiyona Dalak Tirozin Kinazının Katkısının Araştırılması. Mersin Üniversitesi Sağlık Bilimleri Enstitüsü Yüksek Lisans Tezi; 2013.
  • Ünsal D, Kaçan M, Temiz M, Korkmaz B, Sarı A N, Buharalıoğlu CK, Yıldırım Yaroğlu H, Tamer L, Tunctan B, Şahan Fırat S. Sıçanlarda zimosanın neden olduğu enflamasyon ve hipotansiyona dalak tirozin kinazının katkısı. 22. Ulusal Farmakoloji Kongresi, Antalya, 4-7 Kasım, Özet Kitabı, s. 293, Bildiri No: P-116 (2013).
  • Reid DM. Pattern recognition: recent insights from Dectin-1. Curr Opin Immunol. 2009;21: 30-37.
  • Gross O. Card9 controls a non-TLR signalling pathway for innate anti- fungal immunity. Nature. 2006;442: 651-656.
  • Goodridge HS. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;178: 3107-3115.
  • LeibundGut-Landmann S. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8: 630-638.
  • Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev. 2010;234: 335-352.
  • Rogers NC, Slack EC, Edwards AD. Syk dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22: 507-517.
  • Suram S, Brown GD, Ghosh M. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the β-glucan receptor. J Biol Chem. 2006;281: 5506-5514.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Articles
Yazarlar

Demet Ünsal Bu kişi benim

Meryem Temiz Bu kişi benim

Bahar Tunçtan Bu kişi benim

Seyhan Şahan Fırat

Yayımlanma Tarihi 15 Aralık 2014
Gönderilme Tarihi 15 Aralık 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 4 Sayı: 3

Kaynak Göster

APA Ünsal, D., Temiz, M., Tunçtan, B., Şahan Fırat, S. (2014). Zimosan sinyal iletisi ve dalak tirozin kinazı. Clinical and Experimental Health Sciences, 4(3), 148-157. https://doi.org/10.5455/musbed.20140627013019
AMA Ünsal D, Temiz M, Tunçtan B, Şahan Fırat S. Zimosan sinyal iletisi ve dalak tirozin kinazı. Clinical and Experimental Health Sciences. Aralık 2014;4(3):148-157. doi:10.5455/musbed.20140627013019
Chicago Ünsal, Demet, Meryem Temiz, Bahar Tunçtan, ve Seyhan Şahan Fırat. “Zimosan Sinyal Iletisi Ve Dalak Tirozin Kinazı”. Clinical and Experimental Health Sciences 4, sy. 3 (Aralık 2014): 148-57. https://doi.org/10.5455/musbed.20140627013019.
EndNote Ünsal D, Temiz M, Tunçtan B, Şahan Fırat S (01 Aralık 2014) Zimosan sinyal iletisi ve dalak tirozin kinazı. Clinical and Experimental Health Sciences 4 3 148–157.
IEEE D. Ünsal, M. Temiz, B. Tunçtan, ve S. Şahan Fırat, “Zimosan sinyal iletisi ve dalak tirozin kinazı”, Clinical and Experimental Health Sciences, c. 4, sy. 3, ss. 148–157, 2014, doi: 10.5455/musbed.20140627013019.
ISNAD Ünsal, Demet vd. “Zimosan Sinyal Iletisi Ve Dalak Tirozin Kinazı”. Clinical and Experimental Health Sciences 4/3 (Aralık 2014), 148-157. https://doi.org/10.5455/musbed.20140627013019.
JAMA Ünsal D, Temiz M, Tunçtan B, Şahan Fırat S. Zimosan sinyal iletisi ve dalak tirozin kinazı. Clinical and Experimental Health Sciences. 2014;4:148–157.
MLA Ünsal, Demet vd. “Zimosan Sinyal Iletisi Ve Dalak Tirozin Kinazı”. Clinical and Experimental Health Sciences, c. 4, sy. 3, 2014, ss. 148-57, doi:10.5455/musbed.20140627013019.
Vancouver Ünsal D, Temiz M, Tunçtan B, Şahan Fırat S. Zimosan sinyal iletisi ve dalak tirozin kinazı. Clinical and Experimental Health Sciences. 2014;4(3):148-57.

14639   14640