Araştırma Makalesi
BibTex RIS Kaynak Göster

A Comparative Study on the Effect of Acute Toxicity of Nano and Micro Boron Particles in Lemna minor (Linneaus 1753)

Yıl 2021, Cilt: 6 Sayı: 2, 263 - 273, 30.06.2021
https://doi.org/10.30728/boron.727172

Öz

In recent years, studies have shown that uncertainties such as nanoparticle effects on plants, knowledge gaps and toxicity mechanisms have been significantly displayed. In this study physiological effects and the main factors contributing to nano and micro Boron (B) toxicity in duckweed (Lemna minor) under experimental conditions were investigated. This study reports that that chlorophyll contents of treated nano B are higher than the control group and the treated micro B. Malondialdehyde and superoxide dismutase levels were recorded higher in micro B. Catalase and hydrogen peroxide level were recorded higher in nano B. Pearson's correlation analysis showed negative correlations between hydrogen peroxide and malondialdehyde levels in all doses of nano B; Positive correlations were found between malondialdehyde and catalase levels at 100 mg /L of micro B. The accumulation in leaf tissues of the duckweed decreased by the increase in the concentration of nano B. On the contrary, micro B, as the concentration of micro B increases the accumulation of plant tissue.

Destekleyen Kurum

ordu üniversitesi Bilimsel araştırma projeleri koordinasyon birimi

Proje Numarası

AR-1671

Teşekkür

Ordu University scientific research projects. The authors acknowledge the financial support provided by Ordu University BAP AR-1671 A Special thanks to my father Murat Özkan (Y. Dağlıoğlu’s father). May his soul rest in peace.

Kaynakça

  • [1] Elimelech M., Gregory J., Jia X., Williams R. I., Particle deposition and aggregation: measurement, modelling and simulation, Butterworth-Heinemann 2013.
  • [2] SCENIHR., Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks, European Commission SCENIHR/002/05, 2005.
  • [3] Lead J. R., Wilkinson K. J., Aquatic colloids and nanoparticles: current knowledge and future trends, Environ Chem., 3:159–171, 2006.
  • [4]Handy R. D., Owen R., Valsami-Jones E., The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs, Ecotoxicol. 17.5:315-325, 2008.
  • [5] Pan B., Xing B., Manufactured nanoparticles and their sorption of organic chemicals, Adv Agr., 108:137–181, 2010.
  • [6] Rico M. C., Majumdar S., Duarte-Gardea M., Peralte-Videa R. J., Gardea-Torresdey L .J., Interaction of nanoparticles with edible plants and their possible implications in the food chain, Journal of agricultural and food chemistry, 59.8:3485-3498, 2011.
  • [7] Dağlıoğlu Y., Türkiş S., Effect of TiO2 nanoparticles application on photosynthetic pigment contents of duckweed (Lemna minor L.), Acta Biologica Turcica, 30(4), 108-115, 2017.
  • [8] Dağlıoğlu Y., Türkiş S., Effect of nano and microparticle boron on hydrogen peroxide (H2O2) and lipid peroxidation (MDA) enzyme activity superoxide dismutase (SOD) of Myriophyllum spicatum. 6(2), 62-70, 2017.
  • [9] Monica R. C., Cremonini R., Nanoparticles and higher plants, Caryologia, 62:161–165, 2009.
  • [10] Fleischer A., O’Neill A. M., Ehwald R., The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II, Plant Physiol., 121:829–838, 1999.
  • [11] Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N., Sigg L., Behra R., Toxicity of Silver Nanoparticles to Chlamydomonas Reinhardtii, Environ. Sci., Technology, 42: 8959-8964, 2008.
  • [12] Navarro E., Baun A., Behra R., Hartmann B. N., Filser J., Miao A., Quigg P., Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi, Ecotoxicology, 17:372–386, 2008.
  • [13] Moore M. N., Do nanoparticles present ecotoxicological risks for the health of the aquatic environment, Environ Int., 32:967–976, 2006.
  • [14] Nair R., Varghese S. H., Nair B. G., Maekawa T., Yoshida Y., Kumar D. S., Nanoparticulate material delivery to plants, Plant Sci., 179:154 163, 2010.
  • [15] Poslu K., Dünya Bor Mineralleri ve Bileşikleri Üretiminde Türkiye'nin Yeri. Endüstriyel Hammaddeler Sempozyumu, izmir/Türkiye / 21-22 Nisan 1995.
  • [16] Bekish Y.N., Poznyak S.K., Tsybulskaya L.S., Gaevskaya T.V., Electrodeposited Ni-B Alloy Coatings: Structure, Corrosion Resistance and Mechanical Properties, Electrochim. Acta, 55: 2223- 2231, 2010.
  • [17] Zhang X. W., Zou Y. J., Yan H., Wang B., Chen G. H., Wong S. P., Electrical Properties and Annealing Effects on the Stress of RF-sputtered c-BN Films, Mater Lett., 45: 111-115, 2000.
  • [18] Dyar J. J., Webb K. L., A relationship between boron and auxin in 14C translocation in bean plants, PL Pkysiol. Lancaster 36, 672-6, 1961.
  • [19] Mittler R., Vanderauwera S., Gollery M., Van Breusegem F., Reactive oxygen gene network of plants, Trends in plant science, 9(10), 490-498, 2004.
  • 20] Shen M., Haggblom C., Vogt M., Hunter T., Lu K. P., Characterization and cell cycle regulation of the related human telomeric proteins Pin2 and TRF1 suggest a role in mitosis, Proceedings of the National Academy of Sciences, 94(25), 13618-13623, 1997.
  • [21] Lin Y. M., Zou X. H., Liu J. B., Guo Z. J., Lin P., Sonali S., Nutrient, chlorophyll and caloric dynamics of Phyllostachys pubescens leaves in Yoncghun Country, Fujian, China. Journal of Bamboo and Rattan., 4:369–385, 2005.
  • [22] Filella I, Amaro T., Araus J. L., Peñuelas J., Relationship between photosynthetic radiation use efficiency of barley canopies and the photochemical reflectance index (PRI). Physiologia Plantarum 96, 211–216, 1996.
  • [23] Ayeni O., Ndakidemi P., Snyman R., Odendaal J,. Assessment of metal concentrations, chlorophyll content and photosynthesis in phragmites australis along the Lower Diep River, CapeTown, South Africa. Energy and Environment Research, 2(1), 128, 2012.
  • [24] Kumar P., Kumar D., Sikka P., Singh P., Sericin supplementation improves semen freezability of buffalo bulls by minimizing oxidative stress during cryopreservation, Animal reproduction science, 152, 26-31, 2015.
  • [25] Vallyathan V., Shi X., The Role of Oxygen Free Radicals in Occupational and Environmental Lung Diseases, Environmental Health Perspectives, 105: 165-177, 1997.
  • [26] Manke A., Wang L., Rojanasakul Y. Mechanisms of Nanoparticle-Induced Oxidative Stres and Toxicity, Biomed Research International, 1-15, 2013.
  • [27] Oukarroum A., Barhoumi L., Pirastru L., Dewez D., Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba, Environmental Toxicology and Chemistry, 32.4: 902-907, 2013.
  • [28] Khataee A., Bozorg S., Khorram S., Fathinia M., Hanifehpour Y., Joo S. W., Conversion of natural clinoptilolite microparticles to nanorods by glow discharge plasma: a novel Fe-impregnated nanocatalyst for the heterogeneous Fenton process, Industrial & Engineering Chemistry Research, 52(51), 18225-18233, 2013.
  • [29] Gill S. S., Tuteja, N., Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants, Plant Physiol. Biochem., 48 (12): 909-930, 2010.
  • [30] Knaapen A. M., Borm, P. J. A., Albrecht C., Schins R. P. F., Inhaled Particles and Lung Cancer, Part A: Mechanisms, International Journal of Cancer, 109 (6): 799-809, 2004.
  • [31] Risom L., Møller P., Loft S., Oxidative Stress-induced DNA Damage by Particulate Air Pollution, Mutation Research, vol. 592 (1-2): 119-137, 2005.
  • [32] Oberdörster G., Oberdörster E., Oberdörster J., Nanotoxicolgy, An Emerging Discipline Evolving from Studies of Ultrafine Particles, Health Perspective, 113: 823-839, 2005.
  • [33] Dewez D., Dautremepuits C., Jeandet P., Vernet. G., Popovic R., Effects of methanol on photosynthetic processes and growth of Lemna gibba, Photochem Photobiol, 78:420–424, 2003.
  • [34 ]Dağlıoğlu Y., Altınok İ., İlhan H., Sökmen M., Determination of TiO2 and AgTiO2 Nanoparticles in Artemia salina: Toxicity, Morphological Changes, Uptake and Depuration, Bull environ contam toxicol. 1634-1, 2015.
  • [35] Dağlıoğlu Y., Öztürk BY., The assessment of biological accumulation on exposure in boron particles of Desmodesmus multivariabilis, Biological Diversity and Conservation, 9(3), 204-209, 2016.
  • [36] Dağlıoğlu Y., Öztürk B.Y., Effect of concentration and exposure time of ZnO-TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis), Caryologia, 71(1), 13-23, 2018.
  • [37] Beauchamp C., Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, 44:276–287, 1971.
  • [38] Jebara S., Jebara M., Limam F., Aouani M. E., Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress, Journal of plant physiology, 162(8): 929-936, 2005.
  • [39] Mokherjee S. P., Choudhuri M. A., Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings, Physiologia Plantarum., 8.2:166-170, 1983.
  • [40] Sairam R. K., Saxena D. C., Oxidative stress and antioxidants in wheat genotypes, Possible Mechanism of Water Stress Tolerance, J Agronomy and Crop Sci., 184:55-61, 2000.
  • [41] Heath R. L., Packer L., Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 125:189-198, 1968.
  • [42] Lewis M. A., Use of freshwater plants for phytotoxicity testing: a review.Environ Pollut., 87:319–336, 1994.
  • [43] Geoffroy L., Frankart C., Eullaffroy P., Comparison of different physiological parameter responses in Lemna minor and Scenedesmus obliquus exposed to herbicide flumioxazin, Environ Pollut. 131(2):233-241, 2004.
  • [44] Gorov O. A., Carmeli I., Hybrid Structures Composed of Photosynthetic System and Metal Nanoparticles:  Plasmon Enhancement Effect, Nano Letter. 7(3):620–625, 2007.
  • [45] Nadtochenko V. A., Nikandrov V. V., Gorenberg A. A., Karlova M. G., Lukashev E. P., Semenov A. Yu., Bukharina N. S., Kostrov A. N., Permenova E. P., Sarkisov O. M., Nanophotobiocatalysts based on mesoporous titanium dioxide films conjugated with enzymes and photosynthetic reaction centers of bacteria, High Energy Chem., 42:591–593, 2008.
  • [46] Juhel G., Batisse E., Hugues Q., Daly D., van Pelt F. N. A. M., O’Halloran J., Jansen M. A. K., Alumina nanoparticles enhance growth of Lemna minor, Aquatic Toxicol. 105(3-4):328–336, 2011.
  • [47] Donaldson K., Tran C. L., Inflammation caused by particles and fibers, Inhal Toxicol. 14:5-27. doi:10.1080/089583701753338613, 2002.
  • [48] Bouwmeester H., Poortman, J., Peters, R.J., Wijma, E., Kramer, E., Makama, S. Puspitaninganindita, K., Marvin, H.J., Peijnenburg, A.A., Hendriksen, P.J. Characterization of translocation of silver nanoparticles and effects on wholegenome gene expression using an in vitro intestinal epithelium coculture model, ACS Nano 5, 4091–4103, 2011.
  • [49] Von Moos N., Slaveykova V. I., Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps, Nanotoxicol., 8:605–630, 2014.
  • [50] Brunner T. I., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., Stark, W.J. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica and the effect of particle solubility, Environ Sci Technol. 40:4374–4381, 2006.
  • [51] Kaçar B., Bitki Besleme. Ankara Üniversitesi Ziraat Fakültesi Yayınları: 637 Ders Kitabı: 200, Ankara, 317, 1977.
  • [52] Dawis M. S., Drake D. K., Maier J. K., Toxicity of boron to the duckweed, Spirodella polyrrhiza, Chemosphere, 48(6):615-620, 2002..
  • [53] Scheuman V., Schoch S., Rudiger W., Chlorophyll b reduction during senescence of barley seedlings, Planta., 209:364–370, 1999.
  • [54] Turkis S., Özbucak T. B., Foliar resorption and chlorophyll content in leaves of Cistus creticus L. (Cistaceae) along an elevational gradient in Turkey, Acta Botanica Croatica, 69(2):275-290, 2010.
  • [55] Odabaş F., Bacchus çeşidinde (Vitis vinifera l.) yapraklarin klorofil miktari üzerine azot gübrelemesinin etkisi, Journal of the Faculty of Agriculture,12:2-3, 1981.
  • [56] Halliwell B., Free radicals and antioxidants:A personal view, Nutrition Reviews, 52(8):253-265, 1994.
  • [57] Burke J. J. Enzym adaptation to tempeaature. IN - Environment and Phnt Metabolism Flexibility and Acclimation. N. Smirnoff, ed. (BIOS Scientific Publisher Limited), 63-78, 1995.
  • [58] Halliwell B., Gutteridge J. M. C., Role of free radicals and catalytic metal ions in human disease: An overview, In: Methods in Enzymology, 186:1-85, 1990.
  • [59] Caporaso N., The molecular epidemiology of oxidative damage to DNA and cancer, J Natl Cancer Inst. 95(17):1263-5, 2003.
  • [60] Ames B.N., Dietary carcinogenesis. Oxygen radicals and degenerative diseases, Science, 221:1256-1264, 1983.
  • [61] Cross C. E., Haliwell B., Borish E. T., Pryor W.A., Oxygen radicals and human disease (Davis Conference), Ann Int Med., 107:526-545, 1987.
  • [62]Dimitrescu C., Belgun M., Olinescu R., Effect of Vitamin C administration on the ratio between the pro- and antioxidative factors (abstract), Rom J endocrinol. 31:81-84, 1993.
  • [63] Smirnoff N., Antioxidant systems and plant response to environment. In Environment and Plant Metabolism Flexibility and Acclimation. N. Smirnoff, ed. (BIOS Scientific Publisher Limited) 217-243, 1995.
  • [64] Song G., Hou W., Gao Y., Wang Y., Lin L., Zhang Z., Niu Q., Ma R., Mu L., Wang H., Effects of CuO nanoparticles on Lemna minor; Botanical studies, 57:3, 2016.
  • [65] Ames B.N., Gold L.S., Willett, W.C,. The causes and prevantion of cancer, Proc Natl Acad Sci. USA 1995, 2:5258-5265, 1995.
  • [66] Guyton K. Z., Kensler T. W., Oxidative mechanisms in carcinogenesis, BR Med Bulletin. 49:523-544, 1993.
  • [67] Taulavuori E., Hellström E-K., Taulavuori K., Laine K., Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus L. during snow removal, reclamation and cold acclimation, Journal of Experimental Botany, 52(365):2375-2380, 2001.
  • [68] Wang H., Kou X., Pei Z., Xiao J. Q., Shan X., Xing B., Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants, Nanotoxicology, 5(1), 30-42, 2011.
  • [69] Dimkpa C. O., McLean J. E., Latta D. E., Manangón E., Britt D. W., Johnson W. P., Boyanov I. M., Anderson A. J., CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat, Journal of Nanoparticle Research, 14(9), 1125, 2012 .
  • [70] Zhou D. X., Liu Y. F., Liu X. B., Effects of waterlogging stress on physiological and biochemical index in Alternant phiiloxeroides Hubei, Agricultural Sciences, 48(3):585-587, 2009.
  • [71] Perreault F., Popovic R., Dewez D., Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba, Environ Pollut., 185:219-227, 2014.
  • [72] Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions, Journal of Botany doi:10.1155/2012/217037, 2012..
  • [73] Cruz F. J. R., Castro G. L. S., Silva, J. D. D., Festucci-Buselli, R.A., Pinheiro, H.A., Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants, Photosynthetica, 51: 102-108, 2013.
  • [74] Burzynski M., Klobus G., Changes of photosynthetic parameters in cucumber leaves under Cu, Cd and Pb stress, Photosynth . 42(4): 505-510, 2004.
  • [75] Keyvan S., The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars, Journal of Animal and Plant Sciences 8(3): 1051-1060, 2010.
  • [76] Oluk E.A., Latif N., Soya fasulyesi (glycine max (l) merrill var. umut 2002) büyümesi ve gelişimi üzerine bor fazlaliğinin etkileri, Erzincan University Journal of Science and Technology, 1(1):27-38, 2008.
  • [77] Bishnoi S. K., Kumar B., Rani C., Datta K. S., Kumari P., Sheoran S., Angrish R., Changes in Protein Profile of Pigeonpea Genotypes in Response to NaCl and Boron Stres, Biologia Plantarum, 50(1):135-137, 2005.
  • [78] Paz-Elizur T., Krupsky M., Blumenstein S., Elinger D., Schechtman E., Livneh Z. DNA repair activity for oxidative damage and risk of lung cancer, J Natl Cancer Inst. 2003, 95(17):1312-9.
  • [79 ]Commoner B., Towsend, J., Pake, G.E., Free radicals in biological materials, Nature 174:689-691, 1954.
  • [80] Harman D., Aging: a theory based on free radical and radiation chemistry, J Gerontol. Jul,11(3):298-300, 1956.
  • [81]Murray R.K., Granner D.K., Mayes P.A., Rodwell V.W. Harper’ın Biyokimyası 24. Baskı (Çev: Dikm en N., Özgünen T.) Barış Kitabevi İstanbul 1996.

A Comparative Study on the Effect of Acute Toxicity of Nano and Micro Boron Particles in Lemna minor (Linneaus 1753)

Yıl 2021, Cilt: 6 Sayı: 2, 263 - 273, 30.06.2021
https://doi.org/10.30728/boron.727172

Öz

In recent years, studies have shown that uncertainties such as nanoparticle effects on plants, knowledge gaps and toxicity mechanisms have been significantly displayed. In this study physiological effects and the main factors contributing to nano and micro Boron (B) toxicity in duckweed (Lemna minor) under experimental conditions were investigated. This study reports that that chlorophyll contents of treated nano B are higher than the control group and the treated micro B. Malondialdehyde and superoxide dismutase levels were recorded higher in micro B. Catalase and hydrogen peroxide level were recorded higher in nano B. Pearson's correlation analysis showed negative correlations between hydrogen peroxide and malondialdehyde levels in all doses of nano B; Positive correlations were found between malondialdehyde and catalase levels at 100 mg /L of micro B. The accumulation in leaf tissues of the duckweed decreased by the increase in the concentration of nano B. On the contrary, micro B, as the concentration of micro B increases the accumulation of plant tissue.

Proje Numarası

AR-1671

Kaynakça

  • [1] Elimelech M., Gregory J., Jia X., Williams R. I., Particle deposition and aggregation: measurement, modelling and simulation, Butterworth-Heinemann 2013.
  • [2] SCENIHR., Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Scientific Committee on Emerging and Newly Identified Health Risks, European Commission SCENIHR/002/05, 2005.
  • [3] Lead J. R., Wilkinson K. J., Aquatic colloids and nanoparticles: current knowledge and future trends, Environ Chem., 3:159–171, 2006.
  • [4]Handy R. D., Owen R., Valsami-Jones E., The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs, Ecotoxicol. 17.5:315-325, 2008.
  • [5] Pan B., Xing B., Manufactured nanoparticles and their sorption of organic chemicals, Adv Agr., 108:137–181, 2010.
  • [6] Rico M. C., Majumdar S., Duarte-Gardea M., Peralte-Videa R. J., Gardea-Torresdey L .J., Interaction of nanoparticles with edible plants and their possible implications in the food chain, Journal of agricultural and food chemistry, 59.8:3485-3498, 2011.
  • [7] Dağlıoğlu Y., Türkiş S., Effect of TiO2 nanoparticles application on photosynthetic pigment contents of duckweed (Lemna minor L.), Acta Biologica Turcica, 30(4), 108-115, 2017.
  • [8] Dağlıoğlu Y., Türkiş S., Effect of nano and microparticle boron on hydrogen peroxide (H2O2) and lipid peroxidation (MDA) enzyme activity superoxide dismutase (SOD) of Myriophyllum spicatum. 6(2), 62-70, 2017.
  • [9] Monica R. C., Cremonini R., Nanoparticles and higher plants, Caryologia, 62:161–165, 2009.
  • [10] Fleischer A., O’Neill A. M., Ehwald R., The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II, Plant Physiol., 121:829–838, 1999.
  • [11] Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N., Sigg L., Behra R., Toxicity of Silver Nanoparticles to Chlamydomonas Reinhardtii, Environ. Sci., Technology, 42: 8959-8964, 2008.
  • [12] Navarro E., Baun A., Behra R., Hartmann B. N., Filser J., Miao A., Quigg P., Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi, Ecotoxicology, 17:372–386, 2008.
  • [13] Moore M. N., Do nanoparticles present ecotoxicological risks for the health of the aquatic environment, Environ Int., 32:967–976, 2006.
  • [14] Nair R., Varghese S. H., Nair B. G., Maekawa T., Yoshida Y., Kumar D. S., Nanoparticulate material delivery to plants, Plant Sci., 179:154 163, 2010.
  • [15] Poslu K., Dünya Bor Mineralleri ve Bileşikleri Üretiminde Türkiye'nin Yeri. Endüstriyel Hammaddeler Sempozyumu, izmir/Türkiye / 21-22 Nisan 1995.
  • [16] Bekish Y.N., Poznyak S.K., Tsybulskaya L.S., Gaevskaya T.V., Electrodeposited Ni-B Alloy Coatings: Structure, Corrosion Resistance and Mechanical Properties, Electrochim. Acta, 55: 2223- 2231, 2010.
  • [17] Zhang X. W., Zou Y. J., Yan H., Wang B., Chen G. H., Wong S. P., Electrical Properties and Annealing Effects on the Stress of RF-sputtered c-BN Films, Mater Lett., 45: 111-115, 2000.
  • [18] Dyar J. J., Webb K. L., A relationship between boron and auxin in 14C translocation in bean plants, PL Pkysiol. Lancaster 36, 672-6, 1961.
  • [19] Mittler R., Vanderauwera S., Gollery M., Van Breusegem F., Reactive oxygen gene network of plants, Trends in plant science, 9(10), 490-498, 2004.
  • 20] Shen M., Haggblom C., Vogt M., Hunter T., Lu K. P., Characterization and cell cycle regulation of the related human telomeric proteins Pin2 and TRF1 suggest a role in mitosis, Proceedings of the National Academy of Sciences, 94(25), 13618-13623, 1997.
  • [21] Lin Y. M., Zou X. H., Liu J. B., Guo Z. J., Lin P., Sonali S., Nutrient, chlorophyll and caloric dynamics of Phyllostachys pubescens leaves in Yoncghun Country, Fujian, China. Journal of Bamboo and Rattan., 4:369–385, 2005.
  • [22] Filella I, Amaro T., Araus J. L., Peñuelas J., Relationship between photosynthetic radiation use efficiency of barley canopies and the photochemical reflectance index (PRI). Physiologia Plantarum 96, 211–216, 1996.
  • [23] Ayeni O., Ndakidemi P., Snyman R., Odendaal J,. Assessment of metal concentrations, chlorophyll content and photosynthesis in phragmites australis along the Lower Diep River, CapeTown, South Africa. Energy and Environment Research, 2(1), 128, 2012.
  • [24] Kumar P., Kumar D., Sikka P., Singh P., Sericin supplementation improves semen freezability of buffalo bulls by minimizing oxidative stress during cryopreservation, Animal reproduction science, 152, 26-31, 2015.
  • [25] Vallyathan V., Shi X., The Role of Oxygen Free Radicals in Occupational and Environmental Lung Diseases, Environmental Health Perspectives, 105: 165-177, 1997.
  • [26] Manke A., Wang L., Rojanasakul Y. Mechanisms of Nanoparticle-Induced Oxidative Stres and Toxicity, Biomed Research International, 1-15, 2013.
  • [27] Oukarroum A., Barhoumi L., Pirastru L., Dewez D., Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba, Environmental Toxicology and Chemistry, 32.4: 902-907, 2013.
  • [28] Khataee A., Bozorg S., Khorram S., Fathinia M., Hanifehpour Y., Joo S. W., Conversion of natural clinoptilolite microparticles to nanorods by glow discharge plasma: a novel Fe-impregnated nanocatalyst for the heterogeneous Fenton process, Industrial & Engineering Chemistry Research, 52(51), 18225-18233, 2013.
  • [29] Gill S. S., Tuteja, N., Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants, Plant Physiol. Biochem., 48 (12): 909-930, 2010.
  • [30] Knaapen A. M., Borm, P. J. A., Albrecht C., Schins R. P. F., Inhaled Particles and Lung Cancer, Part A: Mechanisms, International Journal of Cancer, 109 (6): 799-809, 2004.
  • [31] Risom L., Møller P., Loft S., Oxidative Stress-induced DNA Damage by Particulate Air Pollution, Mutation Research, vol. 592 (1-2): 119-137, 2005.
  • [32] Oberdörster G., Oberdörster E., Oberdörster J., Nanotoxicolgy, An Emerging Discipline Evolving from Studies of Ultrafine Particles, Health Perspective, 113: 823-839, 2005.
  • [33] Dewez D., Dautremepuits C., Jeandet P., Vernet. G., Popovic R., Effects of methanol on photosynthetic processes and growth of Lemna gibba, Photochem Photobiol, 78:420–424, 2003.
  • [34 ]Dağlıoğlu Y., Altınok İ., İlhan H., Sökmen M., Determination of TiO2 and AgTiO2 Nanoparticles in Artemia salina: Toxicity, Morphological Changes, Uptake and Depuration, Bull environ contam toxicol. 1634-1, 2015.
  • [35] Dağlıoğlu Y., Öztürk BY., The assessment of biological accumulation on exposure in boron particles of Desmodesmus multivariabilis, Biological Diversity and Conservation, 9(3), 204-209, 2016.
  • [36] Dağlıoğlu Y., Öztürk B.Y., Effect of concentration and exposure time of ZnO-TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis), Caryologia, 71(1), 13-23, 2018.
  • [37] Beauchamp C., Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, 44:276–287, 1971.
  • [38] Jebara S., Jebara M., Limam F., Aouani M. E., Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress, Journal of plant physiology, 162(8): 929-936, 2005.
  • [39] Mokherjee S. P., Choudhuri M. A., Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings, Physiologia Plantarum., 8.2:166-170, 1983.
  • [40] Sairam R. K., Saxena D. C., Oxidative stress and antioxidants in wheat genotypes, Possible Mechanism of Water Stress Tolerance, J Agronomy and Crop Sci., 184:55-61, 2000.
  • [41] Heath R. L., Packer L., Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 125:189-198, 1968.
  • [42] Lewis M. A., Use of freshwater plants for phytotoxicity testing: a review.Environ Pollut., 87:319–336, 1994.
  • [43] Geoffroy L., Frankart C., Eullaffroy P., Comparison of different physiological parameter responses in Lemna minor and Scenedesmus obliquus exposed to herbicide flumioxazin, Environ Pollut. 131(2):233-241, 2004.
  • [44] Gorov O. A., Carmeli I., Hybrid Structures Composed of Photosynthetic System and Metal Nanoparticles:  Plasmon Enhancement Effect, Nano Letter. 7(3):620–625, 2007.
  • [45] Nadtochenko V. A., Nikandrov V. V., Gorenberg A. A., Karlova M. G., Lukashev E. P., Semenov A. Yu., Bukharina N. S., Kostrov A. N., Permenova E. P., Sarkisov O. M., Nanophotobiocatalysts based on mesoporous titanium dioxide films conjugated with enzymes and photosynthetic reaction centers of bacteria, High Energy Chem., 42:591–593, 2008.
  • [46] Juhel G., Batisse E., Hugues Q., Daly D., van Pelt F. N. A. M., O’Halloran J., Jansen M. A. K., Alumina nanoparticles enhance growth of Lemna minor, Aquatic Toxicol. 105(3-4):328–336, 2011.
  • [47] Donaldson K., Tran C. L., Inflammation caused by particles and fibers, Inhal Toxicol. 14:5-27. doi:10.1080/089583701753338613, 2002.
  • [48] Bouwmeester H., Poortman, J., Peters, R.J., Wijma, E., Kramer, E., Makama, S. Puspitaninganindita, K., Marvin, H.J., Peijnenburg, A.A., Hendriksen, P.J. Characterization of translocation of silver nanoparticles and effects on wholegenome gene expression using an in vitro intestinal epithelium coculture model, ACS Nano 5, 4091–4103, 2011.
  • [49] Von Moos N., Slaveykova V. I., Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps, Nanotoxicol., 8:605–630, 2014.
  • [50] Brunner T. I., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., Stark, W.J. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica and the effect of particle solubility, Environ Sci Technol. 40:4374–4381, 2006.
  • [51] Kaçar B., Bitki Besleme. Ankara Üniversitesi Ziraat Fakültesi Yayınları: 637 Ders Kitabı: 200, Ankara, 317, 1977.
  • [52] Dawis M. S., Drake D. K., Maier J. K., Toxicity of boron to the duckweed, Spirodella polyrrhiza, Chemosphere, 48(6):615-620, 2002..
  • [53] Scheuman V., Schoch S., Rudiger W., Chlorophyll b reduction during senescence of barley seedlings, Planta., 209:364–370, 1999.
  • [54] Turkis S., Özbucak T. B., Foliar resorption and chlorophyll content in leaves of Cistus creticus L. (Cistaceae) along an elevational gradient in Turkey, Acta Botanica Croatica, 69(2):275-290, 2010.
  • [55] Odabaş F., Bacchus çeşidinde (Vitis vinifera l.) yapraklarin klorofil miktari üzerine azot gübrelemesinin etkisi, Journal of the Faculty of Agriculture,12:2-3, 1981.
  • [56] Halliwell B., Free radicals and antioxidants:A personal view, Nutrition Reviews, 52(8):253-265, 1994.
  • [57] Burke J. J. Enzym adaptation to tempeaature. IN - Environment and Phnt Metabolism Flexibility and Acclimation. N. Smirnoff, ed. (BIOS Scientific Publisher Limited), 63-78, 1995.
  • [58] Halliwell B., Gutteridge J. M. C., Role of free radicals and catalytic metal ions in human disease: An overview, In: Methods in Enzymology, 186:1-85, 1990.
  • [59] Caporaso N., The molecular epidemiology of oxidative damage to DNA and cancer, J Natl Cancer Inst. 95(17):1263-5, 2003.
  • [60] Ames B.N., Dietary carcinogenesis. Oxygen radicals and degenerative diseases, Science, 221:1256-1264, 1983.
  • [61] Cross C. E., Haliwell B., Borish E. T., Pryor W.A., Oxygen radicals and human disease (Davis Conference), Ann Int Med., 107:526-545, 1987.
  • [62]Dimitrescu C., Belgun M., Olinescu R., Effect of Vitamin C administration on the ratio between the pro- and antioxidative factors (abstract), Rom J endocrinol. 31:81-84, 1993.
  • [63] Smirnoff N., Antioxidant systems and plant response to environment. In Environment and Plant Metabolism Flexibility and Acclimation. N. Smirnoff, ed. (BIOS Scientific Publisher Limited) 217-243, 1995.
  • [64] Song G., Hou W., Gao Y., Wang Y., Lin L., Zhang Z., Niu Q., Ma R., Mu L., Wang H., Effects of CuO nanoparticles on Lemna minor; Botanical studies, 57:3, 2016.
  • [65] Ames B.N., Gold L.S., Willett, W.C,. The causes and prevantion of cancer, Proc Natl Acad Sci. USA 1995, 2:5258-5265, 1995.
  • [66] Guyton K. Z., Kensler T. W., Oxidative mechanisms in carcinogenesis, BR Med Bulletin. 49:523-544, 1993.
  • [67] Taulavuori E., Hellström E-K., Taulavuori K., Laine K., Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus L. during snow removal, reclamation and cold acclimation, Journal of Experimental Botany, 52(365):2375-2380, 2001.
  • [68] Wang H., Kou X., Pei Z., Xiao J. Q., Shan X., Xing B., Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants, Nanotoxicology, 5(1), 30-42, 2011.
  • [69] Dimkpa C. O., McLean J. E., Latta D. E., Manangón E., Britt D. W., Johnson W. P., Boyanov I. M., Anderson A. J., CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat, Journal of Nanoparticle Research, 14(9), 1125, 2012 .
  • [70] Zhou D. X., Liu Y. F., Liu X. B., Effects of waterlogging stress on physiological and biochemical index in Alternant phiiloxeroides Hubei, Agricultural Sciences, 48(3):585-587, 2009.
  • [71] Perreault F., Popovic R., Dewez D., Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba, Environ Pollut., 185:219-227, 2014.
  • [72] Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions, Journal of Botany doi:10.1155/2012/217037, 2012..
  • [73] Cruz F. J. R., Castro G. L. S., Silva, J. D. D., Festucci-Buselli, R.A., Pinheiro, H.A., Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants, Photosynthetica, 51: 102-108, 2013.
  • [74] Burzynski M., Klobus G., Changes of photosynthetic parameters in cucumber leaves under Cu, Cd and Pb stress, Photosynth . 42(4): 505-510, 2004.
  • [75] Keyvan S., The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars, Journal of Animal and Plant Sciences 8(3): 1051-1060, 2010.
  • [76] Oluk E.A., Latif N., Soya fasulyesi (glycine max (l) merrill var. umut 2002) büyümesi ve gelişimi üzerine bor fazlaliğinin etkileri, Erzincan University Journal of Science and Technology, 1(1):27-38, 2008.
  • [77] Bishnoi S. K., Kumar B., Rani C., Datta K. S., Kumari P., Sheoran S., Angrish R., Changes in Protein Profile of Pigeonpea Genotypes in Response to NaCl and Boron Stres, Biologia Plantarum, 50(1):135-137, 2005.
  • [78] Paz-Elizur T., Krupsky M., Blumenstein S., Elinger D., Schechtman E., Livneh Z. DNA repair activity for oxidative damage and risk of lung cancer, J Natl Cancer Inst. 2003, 95(17):1312-9.
  • [79 ]Commoner B., Towsend, J., Pake, G.E., Free radicals in biological materials, Nature 174:689-691, 1954.
  • [80] Harman D., Aging: a theory based on free radical and radiation chemistry, J Gerontol. Jul,11(3):298-300, 1956.
  • [81]Murray R.K., Granner D.K., Mayes P.A., Rodwell V.W. Harper’ın Biyokimyası 24. Baskı (Çev: Dikm en N., Özgünen T.) Barış Kitabevi İstanbul 1996.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Makaleler
Yazarlar

Yeşim Dağlıoğlu 0000-0001-8740-1162

Sevda Türkiş 0000-0002-1853-8437

Proje Numarası AR-1671
Yayımlanma Tarihi 30 Haziran 2021
Kabul Tarihi 4 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 2

Kaynak Göster

APA Dağlıoğlu, Y., & Türkiş, S. (2021). A Comparative Study on the Effect of Acute Toxicity of Nano and Micro Boron Particles in Lemna minor (Linneaus 1753). Journal of Boron, 6(2), 263-273. https://doi.org/10.30728/boron.727172

© 2016 Her Hakkı Saklıdır.
TENMAK Bor Araştırma Enstitüsü