Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Spectroscopic Properties with Computational Chemistry Method of Zinc(II)–Sulfatiazole-Diethylenetriamine Complex: Molecular Modeling Study

Yıl 2021, Cilt: 21 Sayı: 1, 65 - 83, 24.02.2021
https://doi.org/10.35414/akufemubid.823025

Öz

The theoretical calculations of the structure, whose X-ray diffraction experiment and spectroscopic properties were examined, were calculated using the DFT, B3LYP and LanL2DZ base set. The geometric parameters of the optimized structure and the experimental structure obtained as a result of X-ray diffraction are quite compatible. Sulfatiazole ligand was calculated using the DFT / B3LYP / 6-311G base set. After obtaining the most stable form of the complex, local and global chemical activities were determined from HOMO and LUMO energies. % contribution of intermolecular interactions, fingerprint determination and total surface maps were examined by Hirshfeld surface analysis method. Global chemical activities have been determined with the hardness and softness parameters calculated using the leading molecular orbitals, HOMO and LUMO energies, and local chemical activity data has been obtained with Mulliken population analysis and molecular electrostatic potential. Thus, the electrophilic and nucleophilic index of the structure is determined. In addition, the theoretical IR values of the Zn-stz complex synthesized by Öztürk were compared with the experimental results.

Kaynakça

  • Al-Dawood, A. Y., El-Metwaly, N. M. and El-Ghamry, H. A., 2016. Molecular docking and DFT studies on some nano-meter binuclear complexes derived from hydrazine-carbothioamide ligand, synthesis, thermal, kinetic and spectral characterization. Journal of Molecular Liquids, 220, 311-323.
  • Alzuet, G., Ferrer-Llusar, S., Borrás, J. n. and Martı́nez-Mánez, R., 2000. New Cu (II) and Zn (II) complexes of benzolamide with diethylenetriamine: synthesis, spectroscopy and X-ray structures. Polyhedron, 19(6), 725-730.
  • Andrei Jitianu, Marc A. Ilies, Andrea Scozzafava and Claudiu T. Supuran. 1997. SYNTHESIS AND CARBONIC ANHYDRASE INHIBITORY ACTIVITY OF 5-BENZOYLAMIDO- AND 5-(3-NITROBENZOYLAMIDO)- 1,3,4-THIADIAZOLE-2-SULFONAMIDE AND THEIR METAL COMPLEXES. 20(3), 151. doi:https://doi.org/10.1515/MGMC.1997.20.3.151.
  • Arshad, M. N., Asiri, A. M., Alamry, K. A., Mahmood, T., Gilani, M. A., Ayub, K. and Birinji, A. S., 2015. Synthesis, crystal structure, spectroscopic and density functional theory (DFT) study of N-[3-anthracen-9-yl-1-(4-bromo-phenyl)-allylidene]-N-benzenesulfonohydrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 142, 364-374.
  • Aycan, T. 2020. Hekzaakua-bis(sulfat) içeren nikotinamitli kobalt(II) ve çinko(II) koordinasyon bileşikleri: sentezlenmesi, yapısal, spektroskopik ve termal özelliklerinin incelenmesi. In Ersanlı, C. C., Tezel Ersanlı, E., Başlak, C. (Eds.), Geleceğin Dünyasında Bilimsel ve Mesleki Çalışmalar 2020/ Fen Bilimleri I (pp. 94-111). Bursa: Ekin Basım Yayın Dağıtım.
  • Baenziger, N., Modak, S. and Fox, C., 1983. Diamminebis (2-sulfanilamidopyrimidinato) zinc (II),[Zn (C10H9N4O2S) 2 (NH3) 2]. Acta Crystallographica Section C: Crystal Structure Communications, 39(12), 1620-1623.
  • Baenziger, N. and Struss, A. W., 1976. Crystal structure of 2-sulfanilamidopyrimidinesilver (I). Inorganic Chemistry, 15(8), 1807-1809.
  • Becke, A. D., 1993. Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913.
  • Bellu, S., Hure, E., Trapé, M., Trossero, C., Molina, G., Drogo, C., Williams, P. A., Atria, A. M., Acevedo, J. C. M. and Zacchino, S., 2005. Synthesis, structure and antifungal properties of Co (II)–sulfathiazolate complexes. Polyhedron, 24(4), 501-509.
  • BIOVIA, D. S. BIOVIA Discovery Studio Visualizer, v16. 1.0. 15350, San Diego: Dassault Systemes; 2015 [cited: 2017 Mar 20]. In.
  • Casanova, J., Alzuet, G., Ferrer, S., Borrás, J., García-Granda, S. and Perez-Carreño, E., 1993. Metal complexes of sulfanilamide derivatives. Crystal structure of [Zn (sulfathiazole) 2]· H2O. Journal of inorganic biochemistry, 51(4), 689-699.
  • Castillo-Blum, S. E. and Barba-Behrens, N., 2000. Coordination chemistry of some biologically active ligands. Coordination Chemistry Reviews, 196(1), 3-30.
  • Chattaraj, P. K., Maiti, B. and Sarkar, U., 2003. Philicity: a unified treatment of chemical reactivity and selectivity. The Journal of Physical Chemistry A, 107(25), 4973-4975.
  • Check, C. E., Faust, T. O., Bailey, J. M., Wright, B. J., Gilbert, T. M. and Sunderlin, L. S., 2001. Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements. The Journal of Physical Chemistry A, 105(34), 8111-8116. doi:10.1021/jp011945l.
  • Chiodo, S., Russo, N. and Sicilia, E., 2006. LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. doi:10.1063/1.2345197.
  • Chohan, Z. H., 2009. Metal-based antibacterial and antifungal sulfonamides: synthesis, characterization, and biological properties. Transition Metal Chemistry, 34(2), 153-161. doi:10.1007/s11243-008-9171-y.
  • Cook, D. S. and Turner, M. F., 1975. Crystal and molecular structure of silver sulphadiazine (N1-pyrimidin-2-ylsulphanilamide). Journal of the Chemical Society, Perkin Transactions 2(10), 1021-1025. doi:10.1039/P29750001021.
  • Dani, R., Bharty, M., Kushawaha, S., Prakash, O., Singh, R. K. and Singh, N., 2013. Ni (II), Cu (II) and Zn (II) complexes of (Z)-N′(1, 3, 4-thiadiazol-2-yl) acetimidate: Synthesis, spectral, solid state electrical conductivity, X-ray diffraction and DFT study. Polyhedron, 65, 31-41.
  • de Oliveira, G. M., Baraldi, A., de Lourenço Marques, L., Lang, E. S. and Villetti, M. A., 2008. Uncommon crystallization pattern of a ZnII–sulfathiazole complex: Synthesis, X-ray structural features and TGA calculations of [{Zn (STZ) 2 (HSTZ)(H2O)}{Zn (STZ) 2 (H2O) 2} 3]· 12H2O (STZ= sulfathiazolato anion; sulfathiazole= N1-2-thiazolyl-sulfanilamide). Inorganica Chimica Acta, 361(1), 132-136.
  • Dennington II, R., Keith, T. and Millam, J., 2009. GaussView 5.0, Wallingford, CT.
  • Di Santo, A., Gil, D. M., Pomiro, F., Piro, O. E., Echeverría, G. A., Arena, M., Luciardi, C., Carbonio, R. E. and Altabef, A. B., 2015. Biofilm inhibition by a new Mn (II) complex with sulfamethoxazole: synthesis, spectroscopic characterization and crystal structure. Inorganica Chimica Acta, 436, 16-22.
  • Efthimiadou, E. K., Katsaros, N., Karaliota, A. and Psomas, G., 2007. Mononuclear copper(II) complexes with quinolones and nitrogen-donor heterocyclic ligands: Synthesis, characterization, biological activity and interaction with DNA. Inorganica Chimica Acta, 360(15), 4093-4102. doi:https://doi.org/10.1016/j.ica.2007.05.042.
  • ERSANLI, C. C. C., 2017. Synthesis, X-ray and Quantum Chemical Characterizations Studies on (E)-2-Bromo-4-chloro-6-[(4-chloro-2, 5-dimethoxyphenylimino) methyl] phenol Compound. Gazi University Journal of Science, 30(4), 531-543.
  • Eryılmaz, S., Türk Çelikoğlu, E., İdil, Ö., İnkaya, E., Kozak, Z., Mısır, E. and Gül, M., 2019. Derivatives of Pyridine and Thiazole Hybrid: Synthesis, DFT, Biological Evaluation via Antimicrobial and DNA Cleavage Activity. Bioorganic Chemistry, 103476. doi:https://doi.org/10.1016/j.bioorg.2019.103476.
  • Ferrer, S., Borras, J. and Garcia-Espana, E., 1990. Complex formation equilibria between the acetazolamide ((5-acetamido-1, 3, 4-thiadiazole)-2-sulphonamide), a potent inhibitor of carbonicanhydrase, and Zn (II), Co (II), Ni (II) and Cu (II) in aqueous and ethanol-aqueous solutions. Journal of inorganic biochemistry, 39(4), 297-306.
  • Frisch, M., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B. and Petersson, G. e., 2014. Gaussian∼ 09 Revision D. 01.
  • Frisch, M. J., Pople, J. A. and Binkley, J. S., 1984. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics, 80(7), 3265-3269. doi:10.1063/1.447079.
  • Golzar Hossain, G. M., 2013. Synthesis and characterisation of cobalt complex of sulfathiazole with acetic acid. Journal of Saudi Chemical Society, 17(3), 253-257. doi:https://doi.org/10.1016/j.jscs.2011.04.002.
  • İnkaya, E., 2018. Synthesis, X-ray structure, FT-IR, NMR (13C/1H), UV–Vis spectroscopy, TG/DTA study and DFT calculations on 2-(benzo[d]thiazol-2-ylthio)-1-((1s, 3s)-3-mesityl-3-methylcyclobutyl) ethan-1-one. Journal of Molecular Structure, 1173, 148-156. doi:https://doi.org/10.1016/j.molstruc.2018.06.080.
  • İnkaya, E., Günnaz, S., Özdemir, N., Dayan, O., Dinçer, M. and Çetinkaya, B., 2013. Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103, 255-263. doi:https://doi.org/10.1016/j.saa.2012.11.039.
  • Kumar, S. (2010). Synthesis and antimicrobial study of some Schiff bases of sulfonamides. RGUHS. Lee, C., Yang, W. and Parr, R. G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785.
  • Loganathan, R., Ganeshpandian, M., Bhuvanesh, N. S., Palaniandavar, M., Muruganantham, A., Ghosh, S. K., Riyasdeen, A. and Akbarsha, M. A., 2017. DNA and protein binding, double-strand DNA cleavage and cytotoxicity of mixed ligand copper (II) complexes of the antibacterial drug nalidixic acid. Journal of Inorganic Biochemistry, 174, 1-13.
  • Luque, F. J., López, J. M. and Orozco, M., 2000. Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theoretical Chemistry Accounts, 103(3-4), 343-345.
  • Medina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P., Clark, D. L., Rosen, T. and Jaen, J. C., 1999. Novel halogenated sulfonamides inhibit the growth of multidrug resistant MCF-7/ADR cancer cells. Bioorganic & Medicinal Chemistry Letters, 9(13), 1843-1846. doi:https://doi.org/10.1016/S0960-894X(99)00276-0.
  • O'boyle, N. M., Tenderholt, A. L. and Langner, K. M., 2008. Cclib: a library for package‐independent computational chemistry algorithms. Journal of computational chemistry, 29(5), 839-845.
  • Owa, T., Yoshino, H., Okauchi, T., Yoshimatsu, K., Ozawa, Y., Sugi, N. H., Nagasu, T., Koyanagi, N. and Kitoh, K., 1999. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. Journal of medicinal chemistry, 42(19), 3789-3799.
  • Öztürk, F. (2015). Sulfonamid türevlerinin metal komplekslerinin sentezi, yapı analizi, spektroskopik ve elektrokimyasal özelliklerinin incelenmesi / Synthesis, structural, spectroscopic and electrochemical investigation of metal complexes of sulfonamide derivatives. (Doctorate), Ondokuz Mayıs University.
  • Öztürk, F., Bulut, İ., Bekiroğlu, Y. and Bulut, A., 2016a. Spectroscopic, structural, electrochemical and antimicrobiological studies of Cu (II)-sulfathiazole complex with diethylenetriamine ligand. Polyhedron, 119, 420-428.
  • Öztürk, F., Bulut, İ., Bekiroğlu, Y. and Bulut, A., 2016b. Spectroscopic, structural, electrochemical and antimicrobiological studies of Cu(II)-sulfathiazole complex with diethylenetriamine ligand. Polyhedron, 119, 420-428. doi:10.1016/j.poly.2016.07.019
  • Parr, R. G., Donnelly, R. A., Levy, M. and Palke, W. E., 1978. Electronegativity: the density functional viewpoint. The Journal of chemical physics, 68(8), 3801-3807.
  • Parr, R. G. and Pearson, R. G., 1983. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512-7516.
  • Parr, R. G., Szentpály, L. v. and Liu, S., 1999. Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922-1924.
  • Parr, R. G. and Yang, W., 1984. Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049-4050.
  • Procter, I., Hathaway, B. and Nicholls, P., 1968. The electronic properties and stereochemistry of the copper (II) ion. Part I. Bis (ethylenediamine) copper (II) complexes. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1678-1684.
  • Ranjith, P. K., Mary, Y. S., Panicker, C. Y., Anto, P. L., Armaković, S., Armaković, S. J., Musiol, R., Jampilek, J. and Van Alsenoy, C., 2017. New quinolone derivative: Spectroscopic characterization and reactivity study by DFT and MD approaches. Journal of Molecular Structure, 1135, 1-14. doi:https://doi.org/10.1016/j.molstruc.2017.01.045.
  • Ruiz, M., Perello, L., Ortiz, R., Castineiras, A., Maichle-Mössmer, C. and Canton, E., 1995. Synthesis, characterization, and crystal structure of [Cu (cinoxacinate) 2]· 2H2O complex: A square-planar CuO4 chromophore. Antibacterial studies. Journal of inorganic biochemistry, 59(4), 801-810.
  • Saka, E. T., Uzun, S. and Çağlar, Y., 2016. Synthesis, structural characterization, catalytic activity on aerobic oxidation of novel Co (II) and Fe (II) phthalocyanines and computational studies of 4-[2-(2, 3-dichlorophenoxy) ethoxy] phthalonitrile. Journal of Organometallic Chemistry, 810, 25-32.
  • Samanta, T., Dey, L., Dinda, J., Chattopadhyay, S. and Seth, S., 2014. Structural characterization and Hirshfeld surface analysis of a CoIIcomplex with imidazo [1, 2-a] pyridine. J. Mol. Struct, 1068, 58-70.
  • Santos, A. F., Brotto, D. F., Favarin, L. R., Cabeza, N. A., Andrade, G. R., Batistote, M., Cavalheiro, A. A., Neves, A., Rodrigues, D. C. and dos Anjos, A., 2014. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Revista Brasileira de Farmacognosia, 24(3), 309-315.
  • Sayin, K., Karakaş, D., Kariper, S. E. and Sayin, T. A., 2018. Computational study of some fluoroquinolones: Structural, spectral and docking investigations. Journal of Molecular Structure, 1156, 172-181. doi:10.1016/j.molstruc.2017.11.091.
  • Scholar, E., 2015. xPharm: the comprehensive pharmacology reference. Elsevier Inc, 10, B978-008055232.
  • Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F., Mincione, G. and Supuran, C. T., 1999. Carbonic anhydrase inhibitors. Synthesis of water-soluble, topically effective, intraocular pressure-lowering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: is the tail more important than the ring? Journal of medicinal chemistry, 42(14), 2641-2650.
  • Scozzafava, A., Owa, T., Mastrolorenzo, A. and Supuran, C. T., 2003. Anticancer and antiviral sulfonamides. Current medicinal chemistry, 10(11), 925-953. Sheikh, J., Juneja, H., Ingle, V., Ali, P. and Hadda, T. B., 2013. Synthesis and in vitro biology of Co (II), Ni (II), Cu (II) and Zinc (II) complexes of functionalized beta-diketone bearing energy buried potential antibacterial and antiviral O, O pharmacophore sites. Journal of Saudi Chemical Society, 17(3), 269-276.
  • Srivastava, H., Pasha, F. and Singh, P., 2005. Atomic softness‐based QSAR study of testosterone. International journal of quantum chemistry, 103(3), 237-245.
  • Šroubek, Z. and Ždánský, K., 1966. Electron Spin Resonance of Cu2+ Ion in CdWO4, ZnWO4, and MgWO4 Single Crystals. The Journal of Chemical Physics, 44(8), 3078-3083.
  • Supuran, C. T., Mincione, F., Scozzafava, A., Briganti, F., Mincione, G. and Ilies, M. A., 1998. Carbonic anhydrase inhibitors — Part 52. Metal complexes of heterocyclic sulfonamides: A new class of strong topical intraocular pressure-lowering agents in rabbits. European Journal of Medicinal Chemistry, 33(4), 247-254. doi:https://doi.org/10.1016/S0223-5234(98)80059-7.
  • Supuran, C. T. and Scozzafava, A., 1997. Novel Aromatic/Heterocyclic Sulfonamides and Their Metal Complexes as Inhibitors of Carbonic Anhydraseisozymes I, II and IV. Journal of enzyme inhibition, 12(1), 37-51.
  • Temel, E., Alaşalvar, C., Eserci, H. and Ağar, E., 2017. Experimental (X-ray, IR and UV–vis.) and DFT studies on cocrystallization of two tautomers of a novel Schiff base compound. Journal of Molecular Structure, 1128, 5-12.
  • Tilles, S. A., 2001. Practical issues in the management of hypersensitivity reactions: sulfonamides. Southern medical journal, 94(8), 817-817.
  • Timerbaev, A. R., Hartinger, C. G., Aleksenko, S. S. and Keppler, B. K., 2006. Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chemical reviews, 106(6), 2224-2248.
  • Toth, J. E., Grindey, G. B., Ehlhardt, W. J., Ray, J. E., Boder, G. B., Bewley, J. R., Klingerman, K. K., Gates, S. B., Rinzel, S. M. and Schultz, R. M., 1997. Sulfonimidamide Analogs of Oncolytic Sulfonylureas, 1. Journal of medicinal chemistry, 40(6), 1018-1025.
  • Trott, O. and Olson, A. J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461.
  • Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D. and Spackman, M. (2017). CrystalExplorer17. In: The University of Western Australia Perth, WA, Australia.
  • Ul-Hassan, M.-., Chohan, Z. H., Scozzafava, A. and Supuran, C. T., 2004. Carbonic anhydrase inhibitors: Schiff's bases of aromatic and heterocyclic sulfonamides and their metal complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 19(3), 263-267.
  • Xavier, R. J. and Dinesh, P., 2014. Spectroscopic (FTIR, FT-Raman, 13C and 1H NMR) investigation, molecular electrostatic potential, polarizability and first-order hyperpolarizability, FMO and NBO analysis of 1-methyl-2-imidazolethiol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 999-1011.
  • Yoshino, H., Ueda, N., Niijima, J., Sugumi, H., Kotake, Y., Koyanagi, N., Yoshimatsu, K., Asada, M., Watanabe, T. and Nagasu, T., 1992. Novel sulfonamides as potential, systemically active antitumor agents. Journal of medicinal chemistry, 35(13), 2496-2497.

Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması

Yıl 2021, Cilt: 21 Sayı: 1, 65 - 83, 24.02.2021
https://doi.org/10.35414/akufemubid.823025

Öz

ışını kırınım deneyi ve spektroskopik özellikleri incelenen yapının kuramsal hesaplamaları DFT, B3LYP ve LanL2DZ baz seti kullanılarak hesaplanmıştır. Optimize yapının ve X-ışını kırınımı sonucunda elde dilen deneysel yapının geometrik parametreleri oldukça uyumludur. Sulfatiyazol ligantı ise DFT/B3LYP/6-311G baz seti kullanılarak hesaplanmıştır. Kompleksin en kararlı hali elde edildikten sonra HOMO ve LUMO enerjilerinden lokal ve global kimyasal aktiviteleri belirlenmiştir. Moleküller arası etkileşimlerin % katkısı, parmak izi tayini ve toplam yüzey haritaları Hirshfeld yüzey analizi yöntemi ile incelenmiştir. Öncü moleküler orbitaller olan HOMO ve LUMO enerjileri kullanılarak hesaplanan sertlik ve yumuşaklık parametreleri ile global kimyasal aktiviteleri belirlenmiştir ve Mulliken popülasyon analizi ve moleküler elektrostatik potansiyel ile lokal kimyasal aktivite verileri elde edilmiştir. Böylece yapının elektrofilik ve nükleofilik indeksi belirlenmektedir. Ayrıca daha önce Öztürk tarafından sentezlenen Zn-stz komleksin teorik IR değerleri deneysel sonuçları ile karşılaştırılmıştır.

Kaynakça

  • Al-Dawood, A. Y., El-Metwaly, N. M. and El-Ghamry, H. A., 2016. Molecular docking and DFT studies on some nano-meter binuclear complexes derived from hydrazine-carbothioamide ligand, synthesis, thermal, kinetic and spectral characterization. Journal of Molecular Liquids, 220, 311-323.
  • Alzuet, G., Ferrer-Llusar, S., Borrás, J. n. and Martı́nez-Mánez, R., 2000. New Cu (II) and Zn (II) complexes of benzolamide with diethylenetriamine: synthesis, spectroscopy and X-ray structures. Polyhedron, 19(6), 725-730.
  • Andrei Jitianu, Marc A. Ilies, Andrea Scozzafava and Claudiu T. Supuran. 1997. SYNTHESIS AND CARBONIC ANHYDRASE INHIBITORY ACTIVITY OF 5-BENZOYLAMIDO- AND 5-(3-NITROBENZOYLAMIDO)- 1,3,4-THIADIAZOLE-2-SULFONAMIDE AND THEIR METAL COMPLEXES. 20(3), 151. doi:https://doi.org/10.1515/MGMC.1997.20.3.151.
  • Arshad, M. N., Asiri, A. M., Alamry, K. A., Mahmood, T., Gilani, M. A., Ayub, K. and Birinji, A. S., 2015. Synthesis, crystal structure, spectroscopic and density functional theory (DFT) study of N-[3-anthracen-9-yl-1-(4-bromo-phenyl)-allylidene]-N-benzenesulfonohydrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 142, 364-374.
  • Aycan, T. 2020. Hekzaakua-bis(sulfat) içeren nikotinamitli kobalt(II) ve çinko(II) koordinasyon bileşikleri: sentezlenmesi, yapısal, spektroskopik ve termal özelliklerinin incelenmesi. In Ersanlı, C. C., Tezel Ersanlı, E., Başlak, C. (Eds.), Geleceğin Dünyasında Bilimsel ve Mesleki Çalışmalar 2020/ Fen Bilimleri I (pp. 94-111). Bursa: Ekin Basım Yayın Dağıtım.
  • Baenziger, N., Modak, S. and Fox, C., 1983. Diamminebis (2-sulfanilamidopyrimidinato) zinc (II),[Zn (C10H9N4O2S) 2 (NH3) 2]. Acta Crystallographica Section C: Crystal Structure Communications, 39(12), 1620-1623.
  • Baenziger, N. and Struss, A. W., 1976. Crystal structure of 2-sulfanilamidopyrimidinesilver (I). Inorganic Chemistry, 15(8), 1807-1809.
  • Becke, A. D., 1993. Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913.
  • Bellu, S., Hure, E., Trapé, M., Trossero, C., Molina, G., Drogo, C., Williams, P. A., Atria, A. M., Acevedo, J. C. M. and Zacchino, S., 2005. Synthesis, structure and antifungal properties of Co (II)–sulfathiazolate complexes. Polyhedron, 24(4), 501-509.
  • BIOVIA, D. S. BIOVIA Discovery Studio Visualizer, v16. 1.0. 15350, San Diego: Dassault Systemes; 2015 [cited: 2017 Mar 20]. In.
  • Casanova, J., Alzuet, G., Ferrer, S., Borrás, J., García-Granda, S. and Perez-Carreño, E., 1993. Metal complexes of sulfanilamide derivatives. Crystal structure of [Zn (sulfathiazole) 2]· H2O. Journal of inorganic biochemistry, 51(4), 689-699.
  • Castillo-Blum, S. E. and Barba-Behrens, N., 2000. Coordination chemistry of some biologically active ligands. Coordination Chemistry Reviews, 196(1), 3-30.
  • Chattaraj, P. K., Maiti, B. and Sarkar, U., 2003. Philicity: a unified treatment of chemical reactivity and selectivity. The Journal of Physical Chemistry A, 107(25), 4973-4975.
  • Check, C. E., Faust, T. O., Bailey, J. M., Wright, B. J., Gilbert, T. M. and Sunderlin, L. S., 2001. Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements. The Journal of Physical Chemistry A, 105(34), 8111-8116. doi:10.1021/jp011945l.
  • Chiodo, S., Russo, N. and Sicilia, E., 2006. LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. doi:10.1063/1.2345197.
  • Chohan, Z. H., 2009. Metal-based antibacterial and antifungal sulfonamides: synthesis, characterization, and biological properties. Transition Metal Chemistry, 34(2), 153-161. doi:10.1007/s11243-008-9171-y.
  • Cook, D. S. and Turner, M. F., 1975. Crystal and molecular structure of silver sulphadiazine (N1-pyrimidin-2-ylsulphanilamide). Journal of the Chemical Society, Perkin Transactions 2(10), 1021-1025. doi:10.1039/P29750001021.
  • Dani, R., Bharty, M., Kushawaha, S., Prakash, O., Singh, R. K. and Singh, N., 2013. Ni (II), Cu (II) and Zn (II) complexes of (Z)-N′(1, 3, 4-thiadiazol-2-yl) acetimidate: Synthesis, spectral, solid state electrical conductivity, X-ray diffraction and DFT study. Polyhedron, 65, 31-41.
  • de Oliveira, G. M., Baraldi, A., de Lourenço Marques, L., Lang, E. S. and Villetti, M. A., 2008. Uncommon crystallization pattern of a ZnII–sulfathiazole complex: Synthesis, X-ray structural features and TGA calculations of [{Zn (STZ) 2 (HSTZ)(H2O)}{Zn (STZ) 2 (H2O) 2} 3]· 12H2O (STZ= sulfathiazolato anion; sulfathiazole= N1-2-thiazolyl-sulfanilamide). Inorganica Chimica Acta, 361(1), 132-136.
  • Dennington II, R., Keith, T. and Millam, J., 2009. GaussView 5.0, Wallingford, CT.
  • Di Santo, A., Gil, D. M., Pomiro, F., Piro, O. E., Echeverría, G. A., Arena, M., Luciardi, C., Carbonio, R. E. and Altabef, A. B., 2015. Biofilm inhibition by a new Mn (II) complex with sulfamethoxazole: synthesis, spectroscopic characterization and crystal structure. Inorganica Chimica Acta, 436, 16-22.
  • Efthimiadou, E. K., Katsaros, N., Karaliota, A. and Psomas, G., 2007. Mononuclear copper(II) complexes with quinolones and nitrogen-donor heterocyclic ligands: Synthesis, characterization, biological activity and interaction with DNA. Inorganica Chimica Acta, 360(15), 4093-4102. doi:https://doi.org/10.1016/j.ica.2007.05.042.
  • ERSANLI, C. C. C., 2017. Synthesis, X-ray and Quantum Chemical Characterizations Studies on (E)-2-Bromo-4-chloro-6-[(4-chloro-2, 5-dimethoxyphenylimino) methyl] phenol Compound. Gazi University Journal of Science, 30(4), 531-543.
  • Eryılmaz, S., Türk Çelikoğlu, E., İdil, Ö., İnkaya, E., Kozak, Z., Mısır, E. and Gül, M., 2019. Derivatives of Pyridine and Thiazole Hybrid: Synthesis, DFT, Biological Evaluation via Antimicrobial and DNA Cleavage Activity. Bioorganic Chemistry, 103476. doi:https://doi.org/10.1016/j.bioorg.2019.103476.
  • Ferrer, S., Borras, J. and Garcia-Espana, E., 1990. Complex formation equilibria between the acetazolamide ((5-acetamido-1, 3, 4-thiadiazole)-2-sulphonamide), a potent inhibitor of carbonicanhydrase, and Zn (II), Co (II), Ni (II) and Cu (II) in aqueous and ethanol-aqueous solutions. Journal of inorganic biochemistry, 39(4), 297-306.
  • Frisch, M., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B. and Petersson, G. e., 2014. Gaussian∼ 09 Revision D. 01.
  • Frisch, M. J., Pople, J. A. and Binkley, J. S., 1984. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics, 80(7), 3265-3269. doi:10.1063/1.447079.
  • Golzar Hossain, G. M., 2013. Synthesis and characterisation of cobalt complex of sulfathiazole with acetic acid. Journal of Saudi Chemical Society, 17(3), 253-257. doi:https://doi.org/10.1016/j.jscs.2011.04.002.
  • İnkaya, E., 2018. Synthesis, X-ray structure, FT-IR, NMR (13C/1H), UV–Vis spectroscopy, TG/DTA study and DFT calculations on 2-(benzo[d]thiazol-2-ylthio)-1-((1s, 3s)-3-mesityl-3-methylcyclobutyl) ethan-1-one. Journal of Molecular Structure, 1173, 148-156. doi:https://doi.org/10.1016/j.molstruc.2018.06.080.
  • İnkaya, E., Günnaz, S., Özdemir, N., Dayan, O., Dinçer, M. and Çetinkaya, B., 2013. Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103, 255-263. doi:https://doi.org/10.1016/j.saa.2012.11.039.
  • Kumar, S. (2010). Synthesis and antimicrobial study of some Schiff bases of sulfonamides. RGUHS. Lee, C., Yang, W. and Parr, R. G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/PhysRevB.37.785.
  • Loganathan, R., Ganeshpandian, M., Bhuvanesh, N. S., Palaniandavar, M., Muruganantham, A., Ghosh, S. K., Riyasdeen, A. and Akbarsha, M. A., 2017. DNA and protein binding, double-strand DNA cleavage and cytotoxicity of mixed ligand copper (II) complexes of the antibacterial drug nalidixic acid. Journal of Inorganic Biochemistry, 174, 1-13.
  • Luque, F. J., López, J. M. and Orozco, M., 2000. Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theoretical Chemistry Accounts, 103(3-4), 343-345.
  • Medina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P., Clark, D. L., Rosen, T. and Jaen, J. C., 1999. Novel halogenated sulfonamides inhibit the growth of multidrug resistant MCF-7/ADR cancer cells. Bioorganic & Medicinal Chemistry Letters, 9(13), 1843-1846. doi:https://doi.org/10.1016/S0960-894X(99)00276-0.
  • O'boyle, N. M., Tenderholt, A. L. and Langner, K. M., 2008. Cclib: a library for package‐independent computational chemistry algorithms. Journal of computational chemistry, 29(5), 839-845.
  • Owa, T., Yoshino, H., Okauchi, T., Yoshimatsu, K., Ozawa, Y., Sugi, N. H., Nagasu, T., Koyanagi, N. and Kitoh, K., 1999. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. Journal of medicinal chemistry, 42(19), 3789-3799.
  • Öztürk, F. (2015). Sulfonamid türevlerinin metal komplekslerinin sentezi, yapı analizi, spektroskopik ve elektrokimyasal özelliklerinin incelenmesi / Synthesis, structural, spectroscopic and electrochemical investigation of metal complexes of sulfonamide derivatives. (Doctorate), Ondokuz Mayıs University.
  • Öztürk, F., Bulut, İ., Bekiroğlu, Y. and Bulut, A., 2016a. Spectroscopic, structural, electrochemical and antimicrobiological studies of Cu (II)-sulfathiazole complex with diethylenetriamine ligand. Polyhedron, 119, 420-428.
  • Öztürk, F., Bulut, İ., Bekiroğlu, Y. and Bulut, A., 2016b. Spectroscopic, structural, electrochemical and antimicrobiological studies of Cu(II)-sulfathiazole complex with diethylenetriamine ligand. Polyhedron, 119, 420-428. doi:10.1016/j.poly.2016.07.019
  • Parr, R. G., Donnelly, R. A., Levy, M. and Palke, W. E., 1978. Electronegativity: the density functional viewpoint. The Journal of chemical physics, 68(8), 3801-3807.
  • Parr, R. G. and Pearson, R. G., 1983. Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512-7516.
  • Parr, R. G., Szentpály, L. v. and Liu, S., 1999. Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922-1924.
  • Parr, R. G. and Yang, W., 1984. Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049-4050.
  • Procter, I., Hathaway, B. and Nicholls, P., 1968. The electronic properties and stereochemistry of the copper (II) ion. Part I. Bis (ethylenediamine) copper (II) complexes. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1678-1684.
  • Ranjith, P. K., Mary, Y. S., Panicker, C. Y., Anto, P. L., Armaković, S., Armaković, S. J., Musiol, R., Jampilek, J. and Van Alsenoy, C., 2017. New quinolone derivative: Spectroscopic characterization and reactivity study by DFT and MD approaches. Journal of Molecular Structure, 1135, 1-14. doi:https://doi.org/10.1016/j.molstruc.2017.01.045.
  • Ruiz, M., Perello, L., Ortiz, R., Castineiras, A., Maichle-Mössmer, C. and Canton, E., 1995. Synthesis, characterization, and crystal structure of [Cu (cinoxacinate) 2]· 2H2O complex: A square-planar CuO4 chromophore. Antibacterial studies. Journal of inorganic biochemistry, 59(4), 801-810.
  • Saka, E. T., Uzun, S. and Çağlar, Y., 2016. Synthesis, structural characterization, catalytic activity on aerobic oxidation of novel Co (II) and Fe (II) phthalocyanines and computational studies of 4-[2-(2, 3-dichlorophenoxy) ethoxy] phthalonitrile. Journal of Organometallic Chemistry, 810, 25-32.
  • Samanta, T., Dey, L., Dinda, J., Chattopadhyay, S. and Seth, S., 2014. Structural characterization and Hirshfeld surface analysis of a CoIIcomplex with imidazo [1, 2-a] pyridine. J. Mol. Struct, 1068, 58-70.
  • Santos, A. F., Brotto, D. F., Favarin, L. R., Cabeza, N. A., Andrade, G. R., Batistote, M., Cavalheiro, A. A., Neves, A., Rodrigues, D. C. and dos Anjos, A., 2014. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Revista Brasileira de Farmacognosia, 24(3), 309-315.
  • Sayin, K., Karakaş, D., Kariper, S. E. and Sayin, T. A., 2018. Computational study of some fluoroquinolones: Structural, spectral and docking investigations. Journal of Molecular Structure, 1156, 172-181. doi:10.1016/j.molstruc.2017.11.091.
  • Scholar, E., 2015. xPharm: the comprehensive pharmacology reference. Elsevier Inc, 10, B978-008055232.
  • Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F., Mincione, G. and Supuran, C. T., 1999. Carbonic anhydrase inhibitors. Synthesis of water-soluble, topically effective, intraocular pressure-lowering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: is the tail more important than the ring? Journal of medicinal chemistry, 42(14), 2641-2650.
  • Scozzafava, A., Owa, T., Mastrolorenzo, A. and Supuran, C. T., 2003. Anticancer and antiviral sulfonamides. Current medicinal chemistry, 10(11), 925-953. Sheikh, J., Juneja, H., Ingle, V., Ali, P. and Hadda, T. B., 2013. Synthesis and in vitro biology of Co (II), Ni (II), Cu (II) and Zinc (II) complexes of functionalized beta-diketone bearing energy buried potential antibacterial and antiviral O, O pharmacophore sites. Journal of Saudi Chemical Society, 17(3), 269-276.
  • Srivastava, H., Pasha, F. and Singh, P., 2005. Atomic softness‐based QSAR study of testosterone. International journal of quantum chemistry, 103(3), 237-245.
  • Šroubek, Z. and Ždánský, K., 1966. Electron Spin Resonance of Cu2+ Ion in CdWO4, ZnWO4, and MgWO4 Single Crystals. The Journal of Chemical Physics, 44(8), 3078-3083.
  • Supuran, C. T., Mincione, F., Scozzafava, A., Briganti, F., Mincione, G. and Ilies, M. A., 1998. Carbonic anhydrase inhibitors — Part 52. Metal complexes of heterocyclic sulfonamides: A new class of strong topical intraocular pressure-lowering agents in rabbits. European Journal of Medicinal Chemistry, 33(4), 247-254. doi:https://doi.org/10.1016/S0223-5234(98)80059-7.
  • Supuran, C. T. and Scozzafava, A., 1997. Novel Aromatic/Heterocyclic Sulfonamides and Their Metal Complexes as Inhibitors of Carbonic Anhydraseisozymes I, II and IV. Journal of enzyme inhibition, 12(1), 37-51.
  • Temel, E., Alaşalvar, C., Eserci, H. and Ağar, E., 2017. Experimental (X-ray, IR and UV–vis.) and DFT studies on cocrystallization of two tautomers of a novel Schiff base compound. Journal of Molecular Structure, 1128, 5-12.
  • Tilles, S. A., 2001. Practical issues in the management of hypersensitivity reactions: sulfonamides. Southern medical journal, 94(8), 817-817.
  • Timerbaev, A. R., Hartinger, C. G., Aleksenko, S. S. and Keppler, B. K., 2006. Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chemical reviews, 106(6), 2224-2248.
  • Toth, J. E., Grindey, G. B., Ehlhardt, W. J., Ray, J. E., Boder, G. B., Bewley, J. R., Klingerman, K. K., Gates, S. B., Rinzel, S. M. and Schultz, R. M., 1997. Sulfonimidamide Analogs of Oncolytic Sulfonylureas, 1. Journal of medicinal chemistry, 40(6), 1018-1025.
  • Trott, O. and Olson, A. J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461.
  • Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D. and Spackman, M. (2017). CrystalExplorer17. In: The University of Western Australia Perth, WA, Australia.
  • Ul-Hassan, M.-., Chohan, Z. H., Scozzafava, A. and Supuran, C. T., 2004. Carbonic anhydrase inhibitors: Schiff's bases of aromatic and heterocyclic sulfonamides and their metal complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 19(3), 263-267.
  • Xavier, R. J. and Dinesh, P., 2014. Spectroscopic (FTIR, FT-Raman, 13C and 1H NMR) investigation, molecular electrostatic potential, polarizability and first-order hyperpolarizability, FMO and NBO analysis of 1-methyl-2-imidazolethiol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 999-1011.
  • Yoshino, H., Ueda, N., Niijima, J., Sugumi, H., Kotake, Y., Koyanagi, N., Yoshimatsu, K., Asada, M., Watanabe, T. and Nagasu, T., 1992. Novel sulfonamides as potential, systemically active antitumor agents. Journal of medicinal chemistry, 35(13), 2496-2497.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Filiz Öztürk 0000-0002-0493-0446

Tuğba Aycan Bu kişi benim 0000-0002-5313-7807

Yayımlanma Tarihi 24 Şubat 2021
Gönderilme Tarihi 8 Kasım 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 21 Sayı: 1

Kaynak Göster

APA Öztürk, F., & Aycan, T. (2021). Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(1), 65-83. https://doi.org/10.35414/akufemubid.823025
AMA Öztürk F, Aycan T. Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Şubat 2021;21(1):65-83. doi:10.35414/akufemubid.823025
Chicago Öztürk, Filiz, ve Tuğba Aycan. “Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi Ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 1 (Şubat 2021): 65-83. https://doi.org/10.35414/akufemubid.823025.
EndNote Öztürk F, Aycan T (01 Şubat 2021) Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 1 65–83.
IEEE F. Öztürk ve T. Aycan, “Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 1, ss. 65–83, 2021, doi: 10.35414/akufemubid.823025.
ISNAD Öztürk, Filiz - Aycan, Tuğba. “Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi Ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/1 (Şubat 2021), 65-83. https://doi.org/10.35414/akufemubid.823025.
JAMA Öztürk F, Aycan T. Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:65–83.
MLA Öztürk, Filiz ve Tuğba Aycan. “Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi Ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 1, 2021, ss. 65-83, doi:10.35414/akufemubid.823025.
Vancouver Öztürk F, Aycan T. Çinko(II)–Sulfatiyazol-Dietilentriamin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(1):65-83.