Derleme
BibTex RIS Kaynak Göster

Memeli Tümör ve Normal Hücre Hatlarında Nanopartikül Uygulamaları

Yıl 2018, Cilt: 27 Sayı: 2, 136 - 174, 30.06.2018
https://doi.org/10.17827/aktd.346216

Öz

İki binli yıllarda nanoteknolojinin hızla  ilerlemesi sonucu, nano tıp yeni bir bilim dalı ve teknoloji alanı olarak ortaya çıkmış ve 21. yüzyılın en ölümcül hastalığı olan kansere çareler aranmıştır. Son yıllarda, hücre hattı uygulamaları ile nanoteknoloji biliminin birleşmesiyle tümör hücrelerini öldüren, sağlıklı (normal) hücrelere hasar vermeyen nanopartiküllerle üretilen yeni nesil ilaçlarla hedefe yönelik kanser tedavilerinin geliştirilmesi amaçlanmıştır. Bu derlemede, memeli tümör ve normal hücre hatlarında nanopartikül uygulamaları ile ilgili son yıllarda yapılan çalışmalar ele alınmıştır.

Kaynakça

  • 1. Xie J, Huang J, Li, X, Sun S, Chen X. Iron Oxide Nanoparticle Platform for Biomedical Applications. Curr. Med. Chem. 2009, 16, 1278–1294.
  • 2. Moghimi S, M, Hunter A, C, Murray JC. Nanomedicine:Current Status and Future Prospects. FASEB J. 2005, 19,311–330.
  • 3. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-Based Nanocapsules for Drug Delivery. Int. J. Pharm. 2010, 385, 113–142.
  • 4. Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, et al. Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. American Chemical Society, 2011, vol. 5, no. 3, 1657–1669.
  • 5. Boczkowski J, Hoet P. What's New in Nanotoxicology? Implications for Public Health from a Brief Review of the 2008 Literature. Nanotoxicology 2010, 4, 1–14.
  • 6. Kim BY, Rutka JT, Chan WC. Nanomedicine. New. Engl. J. Med. 2010, 363, 2434–2443.
  • 7. Shoemaker HR. NCI60 human tumour cell line anticancer drug screen. vol. 6 October 2006.
  • 8. Nelson-Rees WA, Flandermeyer RR, Hawthorne PK. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184,1093–1096 (1974).
  • 9. Nelson-Rees WA, Flandermeyer RR. Inter and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science 195, 1343–1344 (1977).
  • 10. Nelson-Rees, W. A. The identification and monitoring of cell line specificity. Prog. Clin. Biol. Res. 26, 25–79 (1978).
  • 11. Shoemaker RH. Abott BJ, MacDonald MM, Mayo JG, Venditti JM. Wolpert De-Filippes MK. Use of the KB Cell Line for In vitro Cytotoxicity Assays. Cancer Treat. Rep. 1983, 67, 97.
  • 12. Boyd MR. In Anticancer drug development guide; preclinical screening, clinical Ttials, and approval (eds Teicher, B. A. & Andrews, P. A.) 41–62 (Humana press, Totowa, USa, 2004).
  • 13. Sharma VS, Haber AH, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. 2010, vol 10, April 2010.
  • 14. Frei E. 3rd. The National Cancer Chemotherapy Program. Science 217, 600–606 (1982).
  • 15. S.S. Davis, L. Illum, Drug targeting using colloidal carriers, Proc. Int. Symp. Control. Release Bioact. Mater. 12 (1985) 326–332.
  • 16. Kreuter J. Nanoparticle-based drug delivery systems, J. Control. Release 16 (1991) 169–176.
  • 17. Allemann E, Gurny R, Doelker E. Drug-loaded nanoparti cles preparation methods and drug targeting issues, Eur. J. Pharm. Biopharm. 39 (1993) 173–191.
  • 18. Dunn SE, Coombes AGA,. Garnett MC, Davis SS, Davies MC, Illum L. In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers, J. Control. Release 44 (1997) 65–76.
  • 19. Na K, Park H-K, Kim WS, Bae HY. Journal of Controlled Release 69 (2000) 225–236.
  • 20. BOX 1;TIMELİNE
  • 21. Berridge MV, Herst PM, Tan AS, El-Gewely MR. 2005. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 127–152.
  • 22. Smith DC, Williams DF. Biocompatibility of dental materials. 2001, (Vol II). Florida: Boca Raton Crc.
  • 23. Wataha JC. Principles of biocompatibility for dental practitioners. Journal of Prosthetic Dentistry, 2001, 86, 203-209.
  • 24. Van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture Cytometry, 24 (1996), pp. 131–139.
  • 25. WroblewskI F, Ladue JS. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955 Oct;90(1):210–213.
  • 26. Fotakis G, Timbrell JA. In vitro cytotoxicity assays; Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 2006, 460, 171-177.
  • 27. Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Protocols, 2008, 3, 1125-1131.
  • 28. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science, 1995 267: 1456 ± 1462.
  • 29. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell, 1997, 88: 347 ± 354
  • 30. Nicholson DW, Thornberry A. Caspases: killer proteases. Trends Biochem. Sci. 1997, 22: 299 ± 306
  • 31. Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998, 12: 1551 ± 1570.
  • 32. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science, 1998, 281: 1312 ± 1316
  • 33. Porter GA, JaÈnicke UR. Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation (1999) 6, 99 ± 104.
  • 34. Brunk CF, Jones KC, James TW. Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem 92:497, 1979.
  • 35. Hill BT, Whatley S. A simple, rapid microassay for DNA. FEBS Lett 56:20, 1975.
  • 36. 22. KapuscinskiJ, Skoczylas B: Simple and rapid fluorimetric method for DNA microassay. Anal Biochem 83:252, 1977.
  • 37. Comings DE. Mechanisms ofchromosome banding VIII Hoechst 33258#{149}DNA interaction. Chromosoma 52:229, 1975.
  • 38. Lin MS. Comings DE, Alfi OS. Optical studies ofthe interaction of4’6-diamidino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma 60:15, 1977.
  • 39. Schnedi W, Mikelssar A-V. Breitenback M, Dann 0: DIPI and Schnedi W, Mikelssar A-V. Breitenback M, Dann O. DIPI and DAPI: fluorescence banding with only negligible fading. Hum Genet 36:167, 1977.
  • 40. Ak M. Enzyme linked immunosorbent assay (ELISA), In: Özcel MA, AltıntaĢ N, editors. Parazit Hastalıklarında Tanı. Türkiye Parazitoloji Derneği Yayını no 15, Ġzmir: Ege Üniversitesi Basımevi, 1997. p. 241-59.
  • 41. Mahmood T, Yang P-C, N. Western Blot: Technique, Theory, and Trouble Shooting Am J Med Sci. 2012 Sep; 4(9): 429–434 doi: 10.4103/1947-2714.100998.
  • 42. Hamdan M, Righetti GP. Proteomics Today, ISBN 0-471-64817-5 C 2005 John Wiley & Sons, Inc.
  • 43. Singh NP. Microgel electrophoresis of DNA from individual cells, Principles and methodology, Technologies for Detection of DNA Damage and Mutations, ed. Gerd P. Pfeifer, Plenum Press, New York, 1996.
  • 44. Fidan AF. DNA Hasar Tespitinde Tek Hücre Jel Elektroforezi. Afyon Kocatepe Üniversitesi, Fen Bilimleri Dergisi, 2008 8(1).
  • 45. Horoz M, Bolukbas C, Bolukbas F et al. Assessment of peripheral DNA damage by alkaline comet assay in maintenance hemodialysis subjects with hepatitis C infection. Mutat Res 596(1−2): 137−142, 2006.
  • 46. Ostling O, Johanson KJ. Microelectrophoretic study of radiation induced DNA damage in individual mammalian cells. Biochem Bioph Res Co 123: 291–98, 1984.
  • 47. Na K, Park K-H, Kim WS, Bae HY. 2000. Journal of Controlled Release 69 (2000) 225–236.
  • 48. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher A N, Davis SS. Adv. Drug Deliv. Rev. 51:81–96 (2001).
  • 49. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Journal Control. Release 73:255–267 (2001).
  • 50. Huang M, Ma Z, Khor E, Lim L-Y. Pharmaceutical Research, 2002, Vol. 19, No. 10, October 2002.
  • 51. Woolley AT, Guillemette C, Cheung CL, Housman DE,. Lieber CM. Nat. Biotechnol., 2000, 18, 760.
  • 52. Bianco A. Prato M. Adv. Mater., 2003, 15, 1765.
  • 53. Pantarotto D, Briand J-P, Prato M, A. Bianco, Chem. Comm., 2004, 16.
  • 54. Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A. Chem. Biol., 2003, 10, 961.
  • 55. Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL, Ke PC. Nano Lett., 2004, 4, 2479.
  • 56. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K. Mol. Pharm., 2004, 1, 399.
  • 57. Bianco A. Kostarelos K, Partidos CD, Prato M. Chem. Comm., 2005, 571.
  • 58. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A. Angew. Chem. Int. Ed., 2004, 43, 5242.
  • 59. Lu Q, Moore JM, Huang G, Mount AS,. Rao AM, Larcom LL, Ke PC. Nano Lett., 2004, 4, 2473.
  • 60. Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin Y-B, Terui N, et al., Environ. Sci. Technol., 2004, 38, 6890. 61. Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C. Angew. Chem. Int. Ed., 1999, 38, 1912.
  • 62. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo et al. 2005. Mol. BioSyst., 2005, 1, 176–182
  • 63. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJJ. Control. Release 2001, 73, 255.
  • 64. De Campos AM, Sanchez A, Alonso MJ. Appl. Cyclosorin A, Int. J. Pharm. 2001, 224, 159.
  • 65. Xu Y, Du Y. Int. J. Pharm. 2003, 250, 215.
  • 66. Qi L, Xu Z, Jiang X, Li Y. Wang, M. Bioorganic & Medicinal Chemistry Letters 15 (2005) 1397–1399
  • 67. Qin C, Du Y, Xiao L, Li Z, Gao X. Int J Biol Macromol 2002; 31: 111-117
  • 68. Roller S, Covill N. Int J Food Microbiol 1999; 47: 67-77
  • 69. Zheng LY, Zhu JF. Carbohyd Polym 2003; 54: 527-530
  • 70. Qi L-F, Xu Z-R, Li Y, Jiang X, Han X-Y. World Journal of Gastroenterology 2005;11(33):5136-5141
  • 71. Zhao X, Hilliard L, Mechery S, Wang Y, Bagwe R, Jin S, Tan W. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15027-15032.
  • 72. Wang,L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, et al. Anal. Chem. 2006, 78, 646-654.
  • 73. Wang L, Tan W. Nano Lett. 2006, 6, 84-88.
  • 74. Wang L, Yang C, Tan W. Nano Lett. 2005, 5, 37-43.
  • 75. Luo D, Han E, Belcheva N, Saltzman WMJ. Controlled Release 2004, 95, 333-341.
  • 76. Barbe C, Bartlet J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G. Adv. Mater. 2004, 16, 1959-1966.
  • 77. Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 2273-2276.
  • 78. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad P. N. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 279-284.
  • 79. Chang J-S, Chang KLB, Hwang D-F, Kong Z-L. Environ. Sci. Technol. 2007, 41, 2064-2068
  • 80. Wang J, Sun X, Zhang Z. Eur. J. Pharm. Biopharm. 54 (3):285–290 (2002).
  • 81. Chattopadhyay N, Zastre J, Wong H-L, Wu YX, Bendayan R. Pharmaceutical Research, Vol. 25, No. 10, October 2008. DOI: 10.1007/s11095-008-9615-2.
  • 82. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. Part Fibre Toxicol 2006, 3:11.
  • 83. Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal,E, Boczkowski J, Lacroix G, Hoet P. Particle and Fibre Toxicology 2009, 6:14 doi:10.1186/1743-8977-6-14.
  • 84. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R. Cancer Res. 2003, 63, 1999–2004.
  • 85. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Science 277, 1078–1081.
  • 86. Bhattacharya R, Mukherjee P, Xiong Z, Atala A, Soker S, Mukhopadhyay D. Nano Lett. 2004, 4, 2479–2481.
  • 87. Hosta-Rigau L, Olmedo I, Arbiol J, Cruz JL, Kogan JM. Bioconjugate Chem. 2010, 21, 1070–1078.
  • 88. Nandigala P, Chen TH, Yang C, Hsu WH. Heath, C. Biotechnol. Prog. 1997, 13, 844–848.
  • 89. Deng YH, Deng CH, Yang D, Wang CC. et al. Chem. Commun. 2005, 44, 5548–5550.
  • 90. Gupta PK, Hung CT. Life Sci. 1989, 44, 175–186.
  • 91. Deng YH, Wang CC, Shen XZ, Yang WL. et al. Chem. Eur. J. 2005, 11, 6006–6013.
  • 92. Horak C, Rittich B, Safar J, Spanova A, et al. Biotechnol. Prog. 2001, 17, 447–452.
  • 93. Guiseppi-Elie A, Sheppard NF, Brahim, S, Narinesingh D. Biotechnol. Bioeng. 2001, 75, 475–484.
  • 94. Tang J, Liu Y, Yin P, Yao G, Yan G, Den C, Zhang X. Proteomics 2010, 10, 2000–2014. DOI 10.1002/pmic.200900377.
  • 95. Rana S, Gallo A, Srivastava RS, Misra RK. Acta Biomater, 2007, 3, 233–242.
  • 96. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, et al. Nat. Med. 2007, 13, 95–99.
  • 97. Sun C, Lee JH, Zhang M. Adv. Drug Deliv. Rev. 60, 2008, 1252–1265.
  • 98. Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC. Biomaterials, 2008, 29, 487–496.
  • 99. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Int. Mat. Rev. 49, 2004, 125–170.
  • 100. Ahamed M, Akhtar JM, Siddiqui AM, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi SM, Alrokayan AS. Toxicology 283 (2011). 101–108.
  • 101. Wang ZL. ACS Nano 2008;2:1987-92.
  • 102. Yuranova T, Laub D, Kiwi J. CatalToday 2007;122:109-17.
  • 103. Serpone N, Dondi D, Albini A. Inorg Chim Acta. 2007;360:794-802.
  • 104. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, et al. Nanotechnology 2008;19:295103 (10pp).
  • 105. Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C. Nano Res 2009, doi:10.1007/s12274 0099089-5.
  • 106. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Nanomedicine, 2010, doi:10.1016/j.nano.2010.10.001.
  • 107. Ahamed M, Akhtar, JM, Raja M, Ahmad I, Siddiqui JKM, AlSalhi SM, Alrokayan AS. Nanomedicine: Nanotechnology, Biology, and Medicine 7 (2011) 904–913.
  • 108. Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006, 55(1):59–63.
  • 109. Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ. 2005. J Am. Chem Soc 127(7):2285–2291.
  • 110. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, et al. Nanotoxicology, 2009, 3(2):109–138.
  • 111. Foldbjerg R, Dang AD, Autrup H. Arch Toxicol (2011) 85:743–750 DOI 10.1007/s00204-010-0545-5.
  • 112. Velev OD, Kaler E. W. In Situ Assembly of Colloidal Particles into Miniaturized Biosensors. Langmuir 1999, 15,3693–3698.
  • 113. Rogach A, Susha A, Caruso F, Sukhorukov G, Kornowski A, Kershaw S, M€ohwald H, Eychm€uller A, Weller H. Adv. Mater. 2000, 12, 333–337.
  • 114. Boal AK, Ilhan F, DeRouchey J.E Thurn-Albrecht T, Russell TP, Rotello VM. Nature 2000, 404, 746–748.
  • 115. Florence ATJ. Drug Target. 2004, 12, 65–70.
  • 116. Yu S, Chow GMJ. Mater. Chem. 2004, 14, 2781–2786.
  • 117. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, et al. 2009, 8, 543–557.
  • 118. Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus UG, Musyanovych A, Mail€ander V, Landfester K, Simmet T. ACS Nano VOL. 5 ’ NO. 3 ’ 1657–1669 ’ 2011.
  • 119. AshaRani PV, Mun, KLG, Hande, PM, Valiyaveettil S. ACS Nano, 2009;3:279–90.
  • 120. Morones JR, Elechiguerra LJ, Camacho A, Holt K, Kouri BJ, Ramirez TJ, et al. Nanotechnology 2005;16:2346–53.
  • 121. Sukirtha R, Priyanka MK, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S. Process Biochemistry 47 (2012) 273–279.
  • 122. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 2008;60:1289–306.
  • 123. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nano—a trove for retinal therapies. J Control Release 2010;145:76–90.
  • 124. Arulvasu C, Prabhu D, Manikandan R, Srinivasan P, Sellamuthu S, Dinesh D, et al. Int J Drug Discov 2010;2(1):1–7.
  • 125. Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochemistry 48 (2013) 317–324.
  • 126. Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq AH. International Journal of Nanomedicine, 6 March, 2013.
  • 127. Sharma M, Salisbury LR, Maurer IE, Hussain MS, Sulentic EVC. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line. Nanoscale, 2013, 5, 3747.
  • 128. Bhattacharya R, Mukherjee P. Adv Drug Deliv Rev 2008, 60(11):1289–306.
  • 129. Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S. Journal Control Release 2010, 145(2):76–90.
  • 130. Govender R, Phulukdaree A, Gengan MR, An K, Chuturgoon AA. Journal of Nanobiotechnology 2013, 11:5 http://www.jnanobiotechnology.com/content/11/1/5.
  • 131. Lacaille-Dubois MA, Wagner H. Edited by Attaur R. The Netherlands: Elsevier Science B. V.; 2000:633–687.
  • 132. Haddad M, Laurens V, Lacaille-Dubois MA. Bioorg Med Chem 2004, 12(17):4725–34.
  • 133. Mujoo K, Haridas V, Hoffmann JJ, Wachter GA, Hutter LK, Lu Y, Blake ME, Jayatilake GS, Bailey D, Mills GB, Gutterman JU. Cancer Res 2001, 61(14):5486–90.
  • 134. Francis G, Kerem Z, Makkar HP, Becker K. Br J Nutr 2002, 88(6):587–605.
  • 135. Lacaille-Dubois MA, Wagner H, Atta-Ur-Rahman (Eds.), Studies in Natural Products Chemistry, vol. 633, Elsevier, Amsterdam, 2000 (Chapter 21).
  • 136. Haddad M, Khan IA, Dubois MAL. Two new prosapogenins from Albizia adianthifolia. Pharmazie 57 (2002) 705.
  • 137. Haddad M, Laurens V, Lacaille-Dubois MA. Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia. Bioorg. Med. Chem. 12 (2004) 4725.
  • 138. Haddad M, Miyamoto T, Lacaille-Dubois MA. New triterpenoidal saponins acylated with monoterpenic acid from Albizia adianthifolia. Helv. Chim. Acta 87 (2004) 1228.
  • 139. Eldeen IMS, Elgorashi EE, Staden JV. Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. Journal Ethnopharmacol. 102 (2005) 457.
  • 140. Gengan RM, An K, Phulukdaree A, Chuturgoon A. 2013. Colloids and Surfaces B: Biointerfaces 105 (2013) 87– 91.
  • 141. Faedmaleki F, Shirazi HF, Salarian A-A, Ashtiani AH, Rastegar H. Iranian Journal of Pharmaceutical Research (2014), 13 (1): 235-242.
  • 142. Selim ME, Hendi AA. Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev, 2012, 13, 1617-20.
  • 143. El-Kassas YH, El-Sheekh MM. Cytotoxicity of Biosynthesized Gold Nanoparticles with an Extract of the Corallina officinalis in MCF-7 Cells. Asian Pac. J. Cancer Prev, 2014, 15(10), 4311-4317.
  • 144. Dykman L, Khlebtsov N. Chem. Soc. Rev. 41 (2012) 2256.
  • 145. Chueh JP, Liang R-Y, Lee Y-H, Zeng Z-M, Chuang S-M. Journal of Hazardous Materials 264 (2014) 303– 312.
  • 146. Medarova Z, Pham W, Kim Y, Dai G, Moore A. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer 2006, 118:2796–2802.
  • 147. Huang FK, Chen WC, Lai SF, Liu CJ, Wang CL, Wang CH, Chen HH, et al. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol.2010, 55:469–482.
  • 148. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008, 176(1):1–12.
  • 149. Han WJ, Gurunathan S, Jeong J-K, Choi Y-J, Kwon D-N, Park J-K, Jin-Hoi Kim J-H. Nanoscale Research Letters 2014, 9:459.
  • 150. Alghamdi IG, Hussain II, AlghamdiMS, El-Sheemy MA. The incidence rate of female breast cancer in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi Cancer Registry 2001-2008. Breast Cancer Targets Ther 2013, 5:103–109.
  • 151. van der Zee J. Heating the patient: a promising approach? Annals of Oncology 2002; 13(8):1173–1184.
  • 152. Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 2002, 43(1):33–56.
  • 153. Alarifi, S., Ali, D., Alkahtani, S., Alhader M. S. Biol Trace Elem Res. DOI 10.1007/s12011-014-99720.
  • 154. Schultz S, Smith DR, Mock JJ, Schultz DA. PNAS 97 (2000) 996-1001.
  • 155. Ramar M, Manikandan B, Marimuthu NP, Raman T., Mahalingam, A., Subramanian, P., et al. 2014. doi:http://dx.doi.org/10.1016/j.saa.2014.12.060.
  • 156. Merget R, Bauer T, Küpper HU, Philippou S, Bauer HD, Breitstadt R, Bruening T. Health hazards due to the inhalation of amorphous silica. Arch. Toxicol. 2002, 75, 625–634.
  • 157. Steenland K, Ward E. Silica: A lung carcinogen. CA Cancer J. Clin. 2014, 64, 63–69.
  • 158. Taylor KML, Kim JS, Rieter WJ. An H, Lin W, Lin W. Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc. 2008, 130, 2154–2155.
  • 159. Nakamura T, Sugihara F, Matsushita H, Yoshioka Y, Mizukami S, Kikuch K. Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chem. Sci.2015, 6, 1986–1990.
  • 160. Wu X, Min MS, Zao JX. Recent development of silica nanoparticles as delivery vectors from cancerimaging and therapy. Nanomedicine 2014, 10, 297–312.
  • 161. Kempen PJ, Greasley S, Parker KA, Campbell JC, Chang HY, Jones JR, Sinclair R, et al. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 2015, 6, 631–642.
  • 162. Peters R, Kramer E, Oomen AG, Rivera ZE, Oegema G, Tromp PC, Fokkink R, Rietveld A, Marvi HJ, Weigel S, et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 2012, 6, 2441–2451.
  • 163. Voicu PNS, Dinu D, Sima C, Hermenean A, Ardelean A, Codrici E, Stan SM, Z˘arnescu O, Dinischiotu A. Int. J. Mol. Sci. 2015, 16, 29398–29416; doi:10.3390/ijms161226171.
  • 164. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.
  • 165. Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J, Xing JZ. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small. 2008;4(9):1537–43.
  • 166. Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S, Pervez N, Yee D, Moore R, Roa W. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Inv Med. 2008;31(3): E160–7.
  • 167. Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33(27): 6408–19.
  • 168. Tsiamas P, Liu B, Cifter F, Ngwa WF, Berbeco RI, Kappas C, Theodorou K, Marcus K, Makrigiorgos MG, Sajo E, Zygmanski P. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys Med Biol. 2013;58(3):451–64.
  • 169. Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond). 2012. doi:10.2217/nnm.12.165.
  • 170. Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, Chen J, Kong B. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 2011;22(28): 285101.
  • 171. Wang C, Jiang Y, Li X, Hu L. Breast Cancer (2015) 22:413–420 DOI 10.1007/s12282-013-0496-9.
  • 172. Paul W, Shelma R, Sharma CP. Alginate Encapsulated Anacardic Acid-Chitosan Self Aggregated Nanoparticles for Intestinal Delivery of Protein Drugs. J Nanopharm Drug Deliv. 2013;1:82–91.
  • 173. Limpeanchob N, Tiyaboonchai W, Lamlertthon S, Viyoch J, Jaipan S. Efficacy and Toxicity of Amphotericin B-Chitosan Nanoparticles in Mice with Induced Systemic Candidiasis. (Naresuan Univ J). 2013;14:27–34.
  • 174. Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J. 2013;11:51–66.
  • 175. Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, Zhao J, et al. Journal of Nanobiotechnology 2015 13:1https://doi.org/10.1186/s12951-014-0062-4.
  • 176. Bose AC, Thangadurai P, Ramasamy S. Grain size dependent electrical studies on nanocrystalline SnO2. Mater Chem Phys, 2006, 95, 72–78.
  • 177. Roopan MS, Kumar SHS, Madhumitha G, Suthindhiran K. Appl Biochem Biotechnol (2015) 175:1567–1575.
  • 178. Szewczuk VD, Mongelli ER, Pomilio AB. In vitro anthelmintic activity of Melia azedarach naturalized in Argentina. Phytother Res 2006;20:993–6.
  • 179. Jabeen K, Javaid A, Ahmad E, Athar M. Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Nat Prod Res 2010:1–13.
  • 180. Nathan SS, Savitha G, George DK, Narmadha A, Suganya L, Chung PG. Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 2006;97:1316–23.
  • 181. Kaneria M, Baravalia Y, Vaghasiya Y, Chanda S. Determination of antibacterial and antioxidant potential of some medicinal plants from Saurashtra Region, India. Indian J Pharm Sci 2009;71:406–12.
  • 182. Lacaille-Dubois MA, Wagner H. Bioactive saponins from plants: An update. In Studies in Natural Products Chemistry. Edited by Attaur R. The Netherlands: Elsevier Science B. V.; 2000:633–687.
  • 183. Haddad M, Laurens V, Lacaille-Dubois MA. Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia. Bioorg Med Chem 2004, 12(17):4725–34.
  • 184. Perumal Samy R, Ignacimuthu S, Sen A. Screening of 34 medicinal plants for antibacterial properties. J Ethnopharmacol 1998;62:173–82.
  • 185. Manikandan R, Sundaram R, Srinivan P, Beulaja S, Arulvasu C. Isolation of 1, 2 di-substituted idopyranose from Vitex negundo and its effects on diabetic rats. Int J Pharmaceu Anlys 2009;2:4–10.
  • 186. Telang RS, Chatterjee S, Varshneya C. Studies on analgesic and antiinflammatory activities of Vitex negundo Linn. Indian J Pharmacol 1999;31:363–6.
  • 187. Umamaheswari M, Asokumar K, Somasundaram A, Sivashanmugam T, Subhadradevi V, Ravi TK. Xanthine oxidase inhibitory activity of some Indian medical plants. J Ethnopharmacol 2007;109:547–51.
  • 188. Woradulayapinij W, Soonthonhareonnon N, Wiwat C. In vitro HIV type1 reverse transcriptase inhibitory activities of Thai medicinal and Canna indica L. rhizome. J Ethnopharmacol 2005;101:84–9.
  • 189. Alam MI. A Gomes snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. J Ethnopharmacol 2003;86:75–80.
  • 190. Pushpalatha E, Muthukrishnan J. Larvicidal activity of few plant extracts against culex quinque-fasciatus and Anopheles stephensi. Indian J Malariol 1995;32:14–23.
  • 191. Schipper NGM, Olsson S, Hoogstraate JA, deBoer AG, Vårum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm. Res. 14:923–929 (1997).
  • 192. Qin C, Du Y, Xiao L, Li Z, Gao X. Int. J. Biol. Macromol. 2002, 31, 111.
  • 193. Sudarshan NR, Hoover DG, Knorr D. Food Biotechnol. 1992, 6, 257.
  • 194. Tsai GJ. Su W-H. Antibacterial Activity of Shrimp Chitosan against Escherichia coli. Journal of Food Prot. 1999, 62, 239.
  • 195. Tan G, Onur MA, Sağlam N. Utilization of gold nanostructures in biomedical applications", Turkish Journal of Biology, 2012, 36: 607- 621.
  • 196. Guo S, E. Wang, Anal. Chim. Acta 598 (2007) 181–192.
  • 197. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC W. Nano Lett. 9 (2009) 1909–1915.
  • 198. Rosi, NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulatio, Science, 2006, 312: 1027-1030.
  • 199. Lee J.-S, Han MS, Mirkin CA, Angew. Chem., Int. Ed. 46 (2007) 4093–4096.
  • 200. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA, Nano Lett. 7 (2007) 3818–3821.
  • 201. Smith BD, Dave N, Huang PJJ, Liu JW. Assembly of DNA-Functionalized Gold Nanoparticles with Gaps and Overhangs in Linker DNA. J. Phys. Chem. C 2011 , 115 , 7851 –7857Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ. Anal. Chem. 74 (2002) 2217–2223.
  • 202. Zhang JD, Oyama M. Electrochim. Acta 50 (2004) 85–90.
  • 203. El-Sayed IH, Huang XH, El-Sayed MA. Nano Lett. 5 (2005) 829–834.
  • 204. Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei BW, Burda C. Journal Am. Chem. Soc. 130 (2008) 10643–10647.
  • 205. Garcia ME, Baker LA, Crooks RM. Anal. Chem. 71 (1999) 256–258.
  • 206. Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy.Chem. Soc. Rev. 41 (2012) 2885–2911.
  • 207. Lu F, Doane TL, Zhu JJ, Burda C. Gold nanoparticles for diagnostic sensing and therapy. Inorganica Chimica Acta, Vol. 393, 1 December 2012, Pages 142-153.
  • 208. Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs. Small. 2007;3:1341–1346.
  • 209. Han YJ, Stucky GD, Butler A. Journal Am. Chem. Soc. 1999, 121, 9897.
  • 210. Stein A, Melde BJ, Schroden RC. Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv. Mater. 2000, 12, 1403.
  • 211. Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman CL, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention.Cancer Letters, Volume 266, Issue 1, 18 July 2008, Pages 60-72.

Nanoparticle Applications in Mammalian Tumor and Normal Cell Lines

Yıl 2018, Cilt: 27 Sayı: 2, 136 - 174, 30.06.2018
https://doi.org/10.17827/aktd.346216

Öz

In the 2000s, as a result of the rapid progress of nanotechnology, nanomedicine emerged as a new science and technology field, and the most deadly disease of the 21st century, cancer remedies were sought. In recent years, by combining cell line applications and nanotechnology, it is aimed to develop targeted cancer treatments with new generation drugs produced by using nanoparticles which kill tumor cells and which do not damage healthy (normal) cells. In this review, recent studies on nanoparticle applications in mammalian normal and tumor cell lines were discussed.

Kaynakça

  • 1. Xie J, Huang J, Li, X, Sun S, Chen X. Iron Oxide Nanoparticle Platform for Biomedical Applications. Curr. Med. Chem. 2009, 16, 1278–1294.
  • 2. Moghimi S, M, Hunter A, C, Murray JC. Nanomedicine:Current Status and Future Prospects. FASEB J. 2005, 19,311–330.
  • 3. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-Based Nanocapsules for Drug Delivery. Int. J. Pharm. 2010, 385, 113–142.
  • 4. Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, et al. Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. American Chemical Society, 2011, vol. 5, no. 3, 1657–1669.
  • 5. Boczkowski J, Hoet P. What's New in Nanotoxicology? Implications for Public Health from a Brief Review of the 2008 Literature. Nanotoxicology 2010, 4, 1–14.
  • 6. Kim BY, Rutka JT, Chan WC. Nanomedicine. New. Engl. J. Med. 2010, 363, 2434–2443.
  • 7. Shoemaker HR. NCI60 human tumour cell line anticancer drug screen. vol. 6 October 2006.
  • 8. Nelson-Rees WA, Flandermeyer RR, Hawthorne PK. Banded marker chromosomes as indicators of intraspecies cellular contamination. Science 184,1093–1096 (1974).
  • 9. Nelson-Rees WA, Flandermeyer RR. Inter and intraspecies contamination of human breast tumor cell lines HBC and BrCa5 and other cell cultures. Science 195, 1343–1344 (1977).
  • 10. Nelson-Rees, W. A. The identification and monitoring of cell line specificity. Prog. Clin. Biol. Res. 26, 25–79 (1978).
  • 11. Shoemaker RH. Abott BJ, MacDonald MM, Mayo JG, Venditti JM. Wolpert De-Filippes MK. Use of the KB Cell Line for In vitro Cytotoxicity Assays. Cancer Treat. Rep. 1983, 67, 97.
  • 12. Boyd MR. In Anticancer drug development guide; preclinical screening, clinical Ttials, and approval (eds Teicher, B. A. & Andrews, P. A.) 41–62 (Humana press, Totowa, USa, 2004).
  • 13. Sharma VS, Haber AH, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. 2010, vol 10, April 2010.
  • 14. Frei E. 3rd. The National Cancer Chemotherapy Program. Science 217, 600–606 (1982).
  • 15. S.S. Davis, L. Illum, Drug targeting using colloidal carriers, Proc. Int. Symp. Control. Release Bioact. Mater. 12 (1985) 326–332.
  • 16. Kreuter J. Nanoparticle-based drug delivery systems, J. Control. Release 16 (1991) 169–176.
  • 17. Allemann E, Gurny R, Doelker E. Drug-loaded nanoparti cles preparation methods and drug targeting issues, Eur. J. Pharm. Biopharm. 39 (1993) 173–191.
  • 18. Dunn SE, Coombes AGA,. Garnett MC, Davis SS, Davies MC, Illum L. In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers, J. Control. Release 44 (1997) 65–76.
  • 19. Na K, Park H-K, Kim WS, Bae HY. Journal of Controlled Release 69 (2000) 225–236.
  • 20. BOX 1;TIMELİNE
  • 21. Berridge MV, Herst PM, Tan AS, El-Gewely MR. 2005. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 127–152.
  • 22. Smith DC, Williams DF. Biocompatibility of dental materials. 2001, (Vol II). Florida: Boca Raton Crc.
  • 23. Wataha JC. Principles of biocompatibility for dental practitioners. Journal of Prosthetic Dentistry, 2001, 86, 203-209.
  • 24. Van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture Cytometry, 24 (1996), pp. 131–139.
  • 25. WroblewskI F, Ladue JS. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955 Oct;90(1):210–213.
  • 26. Fotakis G, Timbrell JA. In vitro cytotoxicity assays; Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 2006, 460, 171-177.
  • 27. Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Protocols, 2008, 3, 1125-1131.
  • 28. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science, 1995 267: 1456 ± 1462.
  • 29. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell, 1997, 88: 347 ± 354
  • 30. Nicholson DW, Thornberry A. Caspases: killer proteases. Trends Biochem. Sci. 1997, 22: 299 ± 306
  • 31. Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998, 12: 1551 ± 1570.
  • 32. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science, 1998, 281: 1312 ± 1316
  • 33. Porter GA, JaÈnicke UR. Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation (1999) 6, 99 ± 104.
  • 34. Brunk CF, Jones KC, James TW. Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem 92:497, 1979.
  • 35. Hill BT, Whatley S. A simple, rapid microassay for DNA. FEBS Lett 56:20, 1975.
  • 36. 22. KapuscinskiJ, Skoczylas B: Simple and rapid fluorimetric method for DNA microassay. Anal Biochem 83:252, 1977.
  • 37. Comings DE. Mechanisms ofchromosome banding VIII Hoechst 33258#{149}DNA interaction. Chromosoma 52:229, 1975.
  • 38. Lin MS. Comings DE, Alfi OS. Optical studies ofthe interaction of4’6-diamidino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma 60:15, 1977.
  • 39. Schnedi W, Mikelssar A-V. Breitenback M, Dann 0: DIPI and Schnedi W, Mikelssar A-V. Breitenback M, Dann O. DIPI and DAPI: fluorescence banding with only negligible fading. Hum Genet 36:167, 1977.
  • 40. Ak M. Enzyme linked immunosorbent assay (ELISA), In: Özcel MA, AltıntaĢ N, editors. Parazit Hastalıklarında Tanı. Türkiye Parazitoloji Derneği Yayını no 15, Ġzmir: Ege Üniversitesi Basımevi, 1997. p. 241-59.
  • 41. Mahmood T, Yang P-C, N. Western Blot: Technique, Theory, and Trouble Shooting Am J Med Sci. 2012 Sep; 4(9): 429–434 doi: 10.4103/1947-2714.100998.
  • 42. Hamdan M, Righetti GP. Proteomics Today, ISBN 0-471-64817-5 C 2005 John Wiley & Sons, Inc.
  • 43. Singh NP. Microgel electrophoresis of DNA from individual cells, Principles and methodology, Technologies for Detection of DNA Damage and Mutations, ed. Gerd P. Pfeifer, Plenum Press, New York, 1996.
  • 44. Fidan AF. DNA Hasar Tespitinde Tek Hücre Jel Elektroforezi. Afyon Kocatepe Üniversitesi, Fen Bilimleri Dergisi, 2008 8(1).
  • 45. Horoz M, Bolukbas C, Bolukbas F et al. Assessment of peripheral DNA damage by alkaline comet assay in maintenance hemodialysis subjects with hepatitis C infection. Mutat Res 596(1−2): 137−142, 2006.
  • 46. Ostling O, Johanson KJ. Microelectrophoretic study of radiation induced DNA damage in individual mammalian cells. Biochem Bioph Res Co 123: 291–98, 1984.
  • 47. Na K, Park K-H, Kim WS, Bae HY. 2000. Journal of Controlled Release 69 (2000) 225–236.
  • 48. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher A N, Davis SS. Adv. Drug Deliv. Rev. 51:81–96 (2001).
  • 49. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Journal Control. Release 73:255–267 (2001).
  • 50. Huang M, Ma Z, Khor E, Lim L-Y. Pharmaceutical Research, 2002, Vol. 19, No. 10, October 2002.
  • 51. Woolley AT, Guillemette C, Cheung CL, Housman DE,. Lieber CM. Nat. Biotechnol., 2000, 18, 760.
  • 52. Bianco A. Prato M. Adv. Mater., 2003, 15, 1765.
  • 53. Pantarotto D, Briand J-P, Prato M, A. Bianco, Chem. Comm., 2004, 16.
  • 54. Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A. Chem. Biol., 2003, 10, 961.
  • 55. Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL, Ke PC. Nano Lett., 2004, 4, 2479.
  • 56. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K. Mol. Pharm., 2004, 1, 399.
  • 57. Bianco A. Kostarelos K, Partidos CD, Prato M. Chem. Comm., 2005, 571.
  • 58. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A. Angew. Chem. Int. Ed., 2004, 43, 5242.
  • 59. Lu Q, Moore JM, Huang G, Mount AS,. Rao AM, Larcom LL, Ke PC. Nano Lett., 2004, 4, 2473.
  • 60. Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin Y-B, Terui N, et al., Environ. Sci. Technol., 2004, 38, 6890. 61. Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C. Angew. Chem. Int. Ed., 1999, 38, 1912.
  • 62. Sato Y, Yokoyama A, Shibata K, Akimoto Y, Ogino S, Nodasaka Y, Kohgo et al. 2005. Mol. BioSyst., 2005, 1, 176–182
  • 63. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJJ. Control. Release 2001, 73, 255.
  • 64. De Campos AM, Sanchez A, Alonso MJ. Appl. Cyclosorin A, Int. J. Pharm. 2001, 224, 159.
  • 65. Xu Y, Du Y. Int. J. Pharm. 2003, 250, 215.
  • 66. Qi L, Xu Z, Jiang X, Li Y. Wang, M. Bioorganic & Medicinal Chemistry Letters 15 (2005) 1397–1399
  • 67. Qin C, Du Y, Xiao L, Li Z, Gao X. Int J Biol Macromol 2002; 31: 111-117
  • 68. Roller S, Covill N. Int J Food Microbiol 1999; 47: 67-77
  • 69. Zheng LY, Zhu JF. Carbohyd Polym 2003; 54: 527-530
  • 70. Qi L-F, Xu Z-R, Li Y, Jiang X, Han X-Y. World Journal of Gastroenterology 2005;11(33):5136-5141
  • 71. Zhao X, Hilliard L, Mechery S, Wang Y, Bagwe R, Jin S, Tan W. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15027-15032.
  • 72. Wang,L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, et al. Anal. Chem. 2006, 78, 646-654.
  • 73. Wang L, Tan W. Nano Lett. 2006, 6, 84-88.
  • 74. Wang L, Yang C, Tan W. Nano Lett. 2005, 5, 37-43.
  • 75. Luo D, Han E, Belcheva N, Saltzman WMJ. Controlled Release 2004, 95, 333-341.
  • 76. Barbe C, Bartlet J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G. Adv. Mater. 2004, 16, 1959-1966.
  • 77. Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 2273-2276.
  • 78. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad P. N. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 279-284.
  • 79. Chang J-S, Chang KLB, Hwang D-F, Kong Z-L. Environ. Sci. Technol. 2007, 41, 2064-2068
  • 80. Wang J, Sun X, Zhang Z. Eur. J. Pharm. Biopharm. 54 (3):285–290 (2002).
  • 81. Chattopadhyay N, Zastre J, Wong H-L, Wu YX, Bendayan R. Pharmaceutical Research, Vol. 25, No. 10, October 2008. DOI: 10.1007/s11095-008-9615-2.
  • 82. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. Part Fibre Toxicol 2006, 3:11.
  • 83. Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal,E, Boczkowski J, Lacroix G, Hoet P. Particle and Fibre Toxicology 2009, 6:14 doi:10.1186/1743-8977-6-14.
  • 84. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R. Cancer Res. 2003, 63, 1999–2004.
  • 85. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Science 277, 1078–1081.
  • 86. Bhattacharya R, Mukherjee P, Xiong Z, Atala A, Soker S, Mukhopadhyay D. Nano Lett. 2004, 4, 2479–2481.
  • 87. Hosta-Rigau L, Olmedo I, Arbiol J, Cruz JL, Kogan JM. Bioconjugate Chem. 2010, 21, 1070–1078.
  • 88. Nandigala P, Chen TH, Yang C, Hsu WH. Heath, C. Biotechnol. Prog. 1997, 13, 844–848.
  • 89. Deng YH, Deng CH, Yang D, Wang CC. et al. Chem. Commun. 2005, 44, 5548–5550.
  • 90. Gupta PK, Hung CT. Life Sci. 1989, 44, 175–186.
  • 91. Deng YH, Wang CC, Shen XZ, Yang WL. et al. Chem. Eur. J. 2005, 11, 6006–6013.
  • 92. Horak C, Rittich B, Safar J, Spanova A, et al. Biotechnol. Prog. 2001, 17, 447–452.
  • 93. Guiseppi-Elie A, Sheppard NF, Brahim, S, Narinesingh D. Biotechnol. Bioeng. 2001, 75, 475–484.
  • 94. Tang J, Liu Y, Yin P, Yao G, Yan G, Den C, Zhang X. Proteomics 2010, 10, 2000–2014. DOI 10.1002/pmic.200900377.
  • 95. Rana S, Gallo A, Srivastava RS, Misra RK. Acta Biomater, 2007, 3, 233–242.
  • 96. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, et al. Nat. Med. 2007, 13, 95–99.
  • 97. Sun C, Lee JH, Zhang M. Adv. Drug Deliv. Rev. 60, 2008, 1252–1265.
  • 98. Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC. Biomaterials, 2008, 29, 487–496.
  • 99. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Int. Mat. Rev. 49, 2004, 125–170.
  • 100. Ahamed M, Akhtar JM, Siddiqui AM, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi SM, Alrokayan AS. Toxicology 283 (2011). 101–108.
  • 101. Wang ZL. ACS Nano 2008;2:1987-92.
  • 102. Yuranova T, Laub D, Kiwi J. CatalToday 2007;122:109-17.
  • 103. Serpone N, Dondi D, Albini A. Inorg Chim Acta. 2007;360:794-802.
  • 104. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, et al. Nanotechnology 2008;19:295103 (10pp).
  • 105. Ostrovsky S, Kazimirsky G, Gedanken A, Brodie C. Nano Res 2009, doi:10.1007/s12274 0099089-5.
  • 106. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Nanomedicine, 2010, doi:10.1016/j.nano.2010.10.001.
  • 107. Ahamed M, Akhtar, JM, Raja M, Ahmad I, Siddiqui JKM, AlSalhi SM, Alrokayan AS. Nanomedicine: Nanotechnology, Biology, and Medicine 7 (2011) 904–913.
  • 108. Ip M, Lui SL, Poon VKM, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006, 55(1):59–63.
  • 109. Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ. 2005. J Am. Chem Soc 127(7):2285–2291.
  • 110. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, et al. Nanotoxicology, 2009, 3(2):109–138.
  • 111. Foldbjerg R, Dang AD, Autrup H. Arch Toxicol (2011) 85:743–750 DOI 10.1007/s00204-010-0545-5.
  • 112. Velev OD, Kaler E. W. In Situ Assembly of Colloidal Particles into Miniaturized Biosensors. Langmuir 1999, 15,3693–3698.
  • 113. Rogach A, Susha A, Caruso F, Sukhorukov G, Kornowski A, Kershaw S, M€ohwald H, Eychm€uller A, Weller H. Adv. Mater. 2000, 12, 333–337.
  • 114. Boal AK, Ilhan F, DeRouchey J.E Thurn-Albrecht T, Russell TP, Rotello VM. Nature 2000, 404, 746–748.
  • 115. Florence ATJ. Drug Target. 2004, 12, 65–70.
  • 116. Yu S, Chow GMJ. Mater. Chem. 2004, 14, 2781–2786.
  • 117. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, et al. 2009, 8, 543–557.
  • 118. Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus UG, Musyanovych A, Mail€ander V, Landfester K, Simmet T. ACS Nano VOL. 5 ’ NO. 3 ’ 1657–1669 ’ 2011.
  • 119. AshaRani PV, Mun, KLG, Hande, PM, Valiyaveettil S. ACS Nano, 2009;3:279–90.
  • 120. Morones JR, Elechiguerra LJ, Camacho A, Holt K, Kouri BJ, Ramirez TJ, et al. Nanotechnology 2005;16:2346–53.
  • 121. Sukirtha R, Priyanka MK, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S. Process Biochemistry 47 (2012) 273–279.
  • 122. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 2008;60:1289–306.
  • 123. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nano—a trove for retinal therapies. J Control Release 2010;145:76–90.
  • 124. Arulvasu C, Prabhu D, Manikandan R, Srinivasan P, Sellamuthu S, Dinesh D, et al. Int J Drug Discov 2010;2(1):1–7.
  • 125. Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochemistry 48 (2013) 317–324.
  • 126. Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq AH. International Journal of Nanomedicine, 6 March, 2013.
  • 127. Sharma M, Salisbury LR, Maurer IE, Hussain MS, Sulentic EVC. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line. Nanoscale, 2013, 5, 3747.
  • 128. Bhattacharya R, Mukherjee P. Adv Drug Deliv Rev 2008, 60(11):1289–306.
  • 129. Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S. Journal Control Release 2010, 145(2):76–90.
  • 130. Govender R, Phulukdaree A, Gengan MR, An K, Chuturgoon AA. Journal of Nanobiotechnology 2013, 11:5 http://www.jnanobiotechnology.com/content/11/1/5.
  • 131. Lacaille-Dubois MA, Wagner H. Edited by Attaur R. The Netherlands: Elsevier Science B. V.; 2000:633–687.
  • 132. Haddad M, Laurens V, Lacaille-Dubois MA. Bioorg Med Chem 2004, 12(17):4725–34.
  • 133. Mujoo K, Haridas V, Hoffmann JJ, Wachter GA, Hutter LK, Lu Y, Blake ME, Jayatilake GS, Bailey D, Mills GB, Gutterman JU. Cancer Res 2001, 61(14):5486–90.
  • 134. Francis G, Kerem Z, Makkar HP, Becker K. Br J Nutr 2002, 88(6):587–605.
  • 135. Lacaille-Dubois MA, Wagner H, Atta-Ur-Rahman (Eds.), Studies in Natural Products Chemistry, vol. 633, Elsevier, Amsterdam, 2000 (Chapter 21).
  • 136. Haddad M, Khan IA, Dubois MAL. Two new prosapogenins from Albizia adianthifolia. Pharmazie 57 (2002) 705.
  • 137. Haddad M, Laurens V, Lacaille-Dubois MA. Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia. Bioorg. Med. Chem. 12 (2004) 4725.
  • 138. Haddad M, Miyamoto T, Lacaille-Dubois MA. New triterpenoidal saponins acylated with monoterpenic acid from Albizia adianthifolia. Helv. Chim. Acta 87 (2004) 1228.
  • 139. Eldeen IMS, Elgorashi EE, Staden JV. Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. Journal Ethnopharmacol. 102 (2005) 457.
  • 140. Gengan RM, An K, Phulukdaree A, Chuturgoon A. 2013. Colloids and Surfaces B: Biointerfaces 105 (2013) 87– 91.
  • 141. Faedmaleki F, Shirazi HF, Salarian A-A, Ashtiani AH, Rastegar H. Iranian Journal of Pharmaceutical Research (2014), 13 (1): 235-242.
  • 142. Selim ME, Hendi AA. Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev, 2012, 13, 1617-20.
  • 143. El-Kassas YH, El-Sheekh MM. Cytotoxicity of Biosynthesized Gold Nanoparticles with an Extract of the Corallina officinalis in MCF-7 Cells. Asian Pac. J. Cancer Prev, 2014, 15(10), 4311-4317.
  • 144. Dykman L, Khlebtsov N. Chem. Soc. Rev. 41 (2012) 2256.
  • 145. Chueh JP, Liang R-Y, Lee Y-H, Zeng Z-M, Chuang S-M. Journal of Hazardous Materials 264 (2014) 303– 312.
  • 146. Medarova Z, Pham W, Kim Y, Dai G, Moore A. In vivo imaging of tumor response to therapy using a dual-modality imaging strategy. Int J Cancer 2006, 118:2796–2802.
  • 147. Huang FK, Chen WC, Lai SF, Liu CJ, Wang CL, Wang CH, Chen HH, et al. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles. Phys Med Biol.2010, 55:469–482.
  • 148. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008, 176(1):1–12.
  • 149. Han WJ, Gurunathan S, Jeong J-K, Choi Y-J, Kwon D-N, Park J-K, Jin-Hoi Kim J-H. Nanoscale Research Letters 2014, 9:459.
  • 150. Alghamdi IG, Hussain II, AlghamdiMS, El-Sheemy MA. The incidence rate of female breast cancer in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi Cancer Registry 2001-2008. Breast Cancer Targets Ther 2013, 5:103–109.
  • 151. van der Zee J. Heating the patient: a promising approach? Annals of Oncology 2002; 13(8):1173–1184.
  • 152. Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 2002, 43(1):33–56.
  • 153. Alarifi, S., Ali, D., Alkahtani, S., Alhader M. S. Biol Trace Elem Res. DOI 10.1007/s12011-014-99720.
  • 154. Schultz S, Smith DR, Mock JJ, Schultz DA. PNAS 97 (2000) 996-1001.
  • 155. Ramar M, Manikandan B, Marimuthu NP, Raman T., Mahalingam, A., Subramanian, P., et al. 2014. doi:http://dx.doi.org/10.1016/j.saa.2014.12.060.
  • 156. Merget R, Bauer T, Küpper HU, Philippou S, Bauer HD, Breitstadt R, Bruening T. Health hazards due to the inhalation of amorphous silica. Arch. Toxicol. 2002, 75, 625–634.
  • 157. Steenland K, Ward E. Silica: A lung carcinogen. CA Cancer J. Clin. 2014, 64, 63–69.
  • 158. Taylor KML, Kim JS, Rieter WJ. An H, Lin W, Lin W. Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc. 2008, 130, 2154–2155.
  • 159. Nakamura T, Sugihara F, Matsushita H, Yoshioka Y, Mizukami S, Kikuch K. Mesoporous silica nanoparticles for 19F magnetic resonance imaging, fluorescence imaging, and drug delivery. Chem. Sci.2015, 6, 1986–1990.
  • 160. Wu X, Min MS, Zao JX. Recent development of silica nanoparticles as delivery vectors from cancerimaging and therapy. Nanomedicine 2014, 10, 297–312.
  • 161. Kempen PJ, Greasley S, Parker KA, Campbell JC, Chang HY, Jones JR, Sinclair R, et al. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 2015, 6, 631–642.
  • 162. Peters R, Kramer E, Oomen AG, Rivera ZE, Oegema G, Tromp PC, Fokkink R, Rietveld A, Marvi HJ, Weigel S, et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 2012, 6, 2441–2451.
  • 163. Voicu PNS, Dinu D, Sima C, Hermenean A, Ardelean A, Codrici E, Stan SM, Z˘arnescu O, Dinischiotu A. Int. J. Mol. Sci. 2015, 16, 29398–29416; doi:10.3390/ijms161226171.
  • 164. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82.
  • 165. Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J, Xing JZ. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small. 2008;4(9):1537–43.
  • 166. Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S, Pervez N, Yee D, Moore R, Roa W. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Inv Med. 2008;31(3): E160–7.
  • 167. Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33(27): 6408–19.
  • 168. Tsiamas P, Liu B, Cifter F, Ngwa WF, Berbeco RI, Kappas C, Theodorou K, Marcus K, Makrigiorgos MG, Sajo E, Zygmanski P. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys Med Biol. 2013;58(3):451–64.
  • 169. Hainfeld JF, Smilowitz HM, O’Connor MJ, Dilmanian FA, Slatkin DN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond). 2012. doi:10.2217/nnm.12.165.
  • 170. Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, Chen J, Kong B. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 2011;22(28): 285101.
  • 171. Wang C, Jiang Y, Li X, Hu L. Breast Cancer (2015) 22:413–420 DOI 10.1007/s12282-013-0496-9.
  • 172. Paul W, Shelma R, Sharma CP. Alginate Encapsulated Anacardic Acid-Chitosan Self Aggregated Nanoparticles for Intestinal Delivery of Protein Drugs. J Nanopharm Drug Deliv. 2013;1:82–91.
  • 173. Limpeanchob N, Tiyaboonchai W, Lamlertthon S, Viyoch J, Jaipan S. Efficacy and Toxicity of Amphotericin B-Chitosan Nanoparticles in Mice with Induced Systemic Candidiasis. (Naresuan Univ J). 2013;14:27–34.
  • 174. Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J. 2013;11:51–66.
  • 175. Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, Zhao J, et al. Journal of Nanobiotechnology 2015 13:1https://doi.org/10.1186/s12951-014-0062-4.
  • 176. Bose AC, Thangadurai P, Ramasamy S. Grain size dependent electrical studies on nanocrystalline SnO2. Mater Chem Phys, 2006, 95, 72–78.
  • 177. Roopan MS, Kumar SHS, Madhumitha G, Suthindhiran K. Appl Biochem Biotechnol (2015) 175:1567–1575.
  • 178. Szewczuk VD, Mongelli ER, Pomilio AB. In vitro anthelmintic activity of Melia azedarach naturalized in Argentina. Phytother Res 2006;20:993–6.
  • 179. Jabeen K, Javaid A, Ahmad E, Athar M. Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Nat Prod Res 2010:1–13.
  • 180. Nathan SS, Savitha G, George DK, Narmadha A, Suganya L, Chung PG. Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 2006;97:1316–23.
  • 181. Kaneria M, Baravalia Y, Vaghasiya Y, Chanda S. Determination of antibacterial and antioxidant potential of some medicinal plants from Saurashtra Region, India. Indian J Pharm Sci 2009;71:406–12.
  • 182. Lacaille-Dubois MA, Wagner H. Bioactive saponins from plants: An update. In Studies in Natural Products Chemistry. Edited by Attaur R. The Netherlands: Elsevier Science B. V.; 2000:633–687.
  • 183. Haddad M, Laurens V, Lacaille-Dubois MA. Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia. Bioorg Med Chem 2004, 12(17):4725–34.
  • 184. Perumal Samy R, Ignacimuthu S, Sen A. Screening of 34 medicinal plants for antibacterial properties. J Ethnopharmacol 1998;62:173–82.
  • 185. Manikandan R, Sundaram R, Srinivan P, Beulaja S, Arulvasu C. Isolation of 1, 2 di-substituted idopyranose from Vitex negundo and its effects on diabetic rats. Int J Pharmaceu Anlys 2009;2:4–10.
  • 186. Telang RS, Chatterjee S, Varshneya C. Studies on analgesic and antiinflammatory activities of Vitex negundo Linn. Indian J Pharmacol 1999;31:363–6.
  • 187. Umamaheswari M, Asokumar K, Somasundaram A, Sivashanmugam T, Subhadradevi V, Ravi TK. Xanthine oxidase inhibitory activity of some Indian medical plants. J Ethnopharmacol 2007;109:547–51.
  • 188. Woradulayapinij W, Soonthonhareonnon N, Wiwat C. In vitro HIV type1 reverse transcriptase inhibitory activities of Thai medicinal and Canna indica L. rhizome. J Ethnopharmacol 2005;101:84–9.
  • 189. Alam MI. A Gomes snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. J Ethnopharmacol 2003;86:75–80.
  • 190. Pushpalatha E, Muthukrishnan J. Larvicidal activity of few plant extracts against culex quinque-fasciatus and Anopheles stephensi. Indian J Malariol 1995;32:14–23.
  • 191. Schipper NGM, Olsson S, Hoogstraate JA, deBoer AG, Vårum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 2: Mechanism of absorption enhancement. Pharm. Res. 14:923–929 (1997).
  • 192. Qin C, Du Y, Xiao L, Li Z, Gao X. Int. J. Biol. Macromol. 2002, 31, 111.
  • 193. Sudarshan NR, Hoover DG, Knorr D. Food Biotechnol. 1992, 6, 257.
  • 194. Tsai GJ. Su W-H. Antibacterial Activity of Shrimp Chitosan against Escherichia coli. Journal of Food Prot. 1999, 62, 239.
  • 195. Tan G, Onur MA, Sağlam N. Utilization of gold nanostructures in biomedical applications", Turkish Journal of Biology, 2012, 36: 607- 621.
  • 196. Guo S, E. Wang, Anal. Chim. Acta 598 (2007) 181–192.
  • 197. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC W. Nano Lett. 9 (2009) 1909–1915.
  • 198. Rosi, NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulatio, Science, 2006, 312: 1027-1030.
  • 199. Lee J.-S, Han MS, Mirkin CA, Angew. Chem., Int. Ed. 46 (2007) 4093–4096.
  • 200. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA, Nano Lett. 7 (2007) 3818–3821.
  • 201. Smith BD, Dave N, Huang PJJ, Liu JW. Assembly of DNA-Functionalized Gold Nanoparticles with Gaps and Overhangs in Linker DNA. J. Phys. Chem. C 2011 , 115 , 7851 –7857Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ. Anal. Chem. 74 (2002) 2217–2223.
  • 202. Zhang JD, Oyama M. Electrochim. Acta 50 (2004) 85–90.
  • 203. El-Sayed IH, Huang XH, El-Sayed MA. Nano Lett. 5 (2005) 829–834.
  • 204. Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei BW, Burda C. Journal Am. Chem. Soc. 130 (2008) 10643–10647.
  • 205. Garcia ME, Baker LA, Crooks RM. Anal. Chem. 71 (1999) 256–258.
  • 206. Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy.Chem. Soc. Rev. 41 (2012) 2885–2911.
  • 207. Lu F, Doane TL, Zhu JJ, Burda C. Gold nanoparticles for diagnostic sensing and therapy. Inorganica Chimica Acta, Vol. 393, 1 December 2012, Pages 142-153.
  • 208. Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs. Small. 2007;3:1341–1346.
  • 209. Han YJ, Stucky GD, Butler A. Journal Am. Chem. Soc. 1999, 121, 9897.
  • 210. Stein A, Melde BJ, Schroden RC. Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv. Mater. 2000, 12, 1403.
  • 211. Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman CL, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention.Cancer Letters, Volume 266, Issue 1, 18 July 2008, Pages 60-72.
Toplam 210 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Yeşim Dağlıoğlu 0000-0001-8740-1162

Huri Özkan Yılmaz Bu kişi benim 0000-0003-0257-7105

Orhan Yılmaz Bu kişi benim 0000-0002-3691-8679

Yayımlanma Tarihi 30 Haziran 2018
Kabul Tarihi 27 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 27 Sayı: 2

Kaynak Göster

AMA Dağlıoğlu Y, Özkan Yılmaz H, Yılmaz O. Memeli Tümör ve Normal Hücre Hatlarında Nanopartikül Uygulamaları. aktd. Haziran 2018;27(2):136-174. doi:10.17827/aktd.346216

Cited By