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• This paper focuses on comparison of fuzzy and Bayesian model parameter estimates. 

• Interval arithmetic was used to compare the model parameter estimates in the study. 

• Fuzzy linear modeling can be preferred to Bayesian modeling without any strict modeling assumptions. 
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Abstract 

It is possible to define functional relationship between replicated response measures and input 

variables by using fuzzy and Bayesian modeling approaches. The main aim of the study is to 

present the alternative usability of fuzzy modeling approach to Bayesian modeling approach with 

defining a proper alpha-cut level among the many alpha-cut levels. In this study, the uncertainty 

of estimated model parameters were compared by transforming the estimated parameter values 

to intervals. Interval valued parameter estimates were obtained through alpha-cut level 

presentation and credible intervals for fuzzy and Bayesian approaches, respectively. Thus, it was 

achieved to model the replicated response measured (RRM) data set without making any 

probabilistic modeling assumptions which were hard to satisfy for small sized RRM  data set. To 

compare the interval valued model parameter estimates in the proposed study, midpoint, width, 

radius and Hausdorff metrics were used. And also, interval type residuals were calculated to see 

the performance of predicted fuzzy and Bayesian models for making clear comparison. Two data 

sets from the literature, which were called Roman Catapult and Printing Ink, were used and the 

obtained results were discussed in application part. 
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1. INTRODUCTION 

 

Experimental designs are commonly used in many fields of science before composing a predicted model 

of a response of interest and a number of associated input variables. In some cases, experimenters need to 

measure the response values with the same input levels in different experimental runs, which is called 

replication, to increase the precision of the predicted model. Analysis of replicated response measured 

(RRM) data set enables to examine multiple source of variability, e.g. changing equipment settings, 

environmental factors, which cause experimental error. In general, the unknown relationship between the 

variables is approximated by a low-degree polynomial statistical model in which the error is assumed to be 

random and the model parameters are crisp [1]. However, the unknown model parameters should have 

flexible structure for modeling of the RRM data set since the qualification of the replicated measures has 

uncertainty. It is clear here that the replicated response measures cannot be exactly represented with a single 

numerical quantity. In this case, fuzzy and Bayesian modeling approaches can be used alternatively from 

possibilistic and probabilistic modeling perspective, respectively.  

 

In the literature, it is possible to see the fuzzy approach applications for response modeling due to its ability 

about defining uncertainty of the data sets. Fuzzy set theory, firstly introduced by [2], helps to analyse the 

uncertainty by the use of fuzzy numbers with a membership function. In response surface studies, one of 
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the common way of expressing uncertainty with fuzzy approach is using fuzzy regression at modeling stage 

of the data set. The fuzzy regression model was used for an off-line quality engineering problem for the 

first time by [3]. Fuzzy approach was applied for modeling of dual responses in the study of [4]. A new 

response surface method was proposed by using fuzzy logic models by [5]. In [6], the application of fuzzy 

logic and gave comparative results with classical modeling approach for the development of sugarcane 

juice was presented. Fuzzy least squares (FLS) approach was applied to response surface problems by using 

triangular type-1 fuzzy numbers (TT1FNs) in the study of [7]. And also, application of fuzzy modeling 

approach to RRM data set through TT1FNs can be seen in the studies of [8-12]. 

 

There have been several studies about Bayesian approach for response modeling. A Bayesian approach for 

empirical regression modeling was presented in [13]. Bayesian hierarchical approach was used to model 

dual response system by [14-16]. Bayesian predictive approach for multiresponse problem was applied by 

[17]. The application of Bayesian approach to the robust parameter design problem of multiresponse was 

presented in the study of [18]. Bayesian methods in response surface methodology in the context of “off-

line quality” improvement was used by [19]. Even there have been some studies about Bayesian approach 

for response surface modeling in the literature, there is only a work for application of Bayesian approach 

to RRM data set, studied by [11].  

 

The main aim of this study is to present the alternative usability of the fuzzy approach to the Bayesian 

approach for modeling of RRM data set. The model parameters were assumed as random variables and 

TT1FNs for Bayesian and fuzzy modeling approaches, respectively. In this study, interval valued parameter 

estimates were obtained to make comparison for the uncertainty of estimated model parameters on the same 

domain. There have been several studies about application of interval type uncertainty. A new reliability 

estimation model based on the level cut strategy and volume ratio theory was proposed by [20] in the case 

that interval and fuzzy uncertainties exist simultaneously. [21] presented a non-probabilistic 

multidisciplinary uncertainty analysis method to obtain the bounds of system output variables when the 

uncertain variables were described as interval variables. A new analytic method of time-dependent 

reliability based on theory of non-probabilistic interval process for cracked structures with limited 

uncertainty information was proposed by [22].   

 

In this study, interval indication of model parameter estimates was achieved by using alpha-cut level set 

presentation and highest posterior density (HPD) credible interval related to fuzzy approach and Bayesian 

approach, respectively.  The purpose of the study was proposing an alternative flexible model, based on 

interval type fuzzy regression, instead of using Bayesian modeling for several situations, e.g. small sized 

RRM data sets, unsatistified probabilistic modeling assumptions. This was achieved by choosing a proper 

alpha-cut level among some alpha-cut levels in terms of similarity of interval valued Bayesian model 

parameter estimates.  Several comparison metrics, e.g. midpoint, width, radius and Hausdorff, were used 

to make decision. Among them, the Hausdorff-metric is a well-known distance metric to compare the 

similarity of two closed intervals through midpoints and radius metrics. Detailed information about 

Hausdorff-metric and interval data can be seen in the study of [23, 24].   

 

The paper was organized as follows. The fuzzy and Bayesian linear modeling approaches for RRM 

experiments were presented in section 2. In section 3, interval valued parameter estimates and comparison 

metrics were defined in detail. The applicability of preferable approach for fuzzy modeling was illustrated 

with the data sets from the literature in section 4. Conclusions with comparison results were given in section 

5.  

 

2. FUZZY AND BAYESIAN LINEAR MODELING APPROACHES FOR REPLICATED 

RESPONSE MEASURES 

 

Composing a proper experimental design should be considered as a basic necessary step to get most 

valuable information about a modeling problem.  In some cases, the researcher needs replicated measures 

of response variables for each experimental unit (observation). So, the experimental design is composed 

with replicated response measures as given in Table 1. 
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Table 1.  Experimental design with replicated response measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 1, n denotes the number of experimental units and r is the number of replications for each response. 

It should be noted that replications are measured for each setting of a group of p input variables. The main 

purpose of creating an experimental design as given in Table 1 is obtaining much more accurate estimates 

with measuring the quantity of uncertainty for the response.  

 

A modeling methodology of the RRM data set, given in Table 1, can be considered as linear regression 

model which is well-known and commonly used one. General form of the linear regression model, used in 

this study, can be given in a matrix form as 

 

= +Y Xβ ε ,                                                                                                                                                 (1) 

 

in which  1 2 ... nY Y Y =Y  is a response vector with n observations ( )1n , 0 1 ... p    =  β  is a vector of 

unknown model parameters ( )( )1 1p +  ,  1 2 ... n   =ε  is an error vector with independent and 

identically distributed (i.i.d.) random vectors ( )1n , and X  is a matrix of settings of the input variables 

( )( )1n p + . It should be noted here that the assumptions on ε  are zero mean and common variance.  

 

Although the model given in Equation (1) is well-used one, the application of the model to RRM data set 

will need some adaptations. It is clear that representing of replicated measures with a single quantity will 

cause loss of information for each unit. Therefore, it is necessary to use modeling approaches with 

conserving natural data structure of replications which may contain uncertainty different than randomness.  

 

In this study, two different types of modeling approaches, fuzzy and Bayesian, are used to estimate the 

unknown model parameters, β , for RRM data set.  

 

2.1.  Fuzzy Linear Modeling Approach 

 

Fuzzy modeling is considered to be one of the proper modeling approach for RRM data set due to its ability 

of dealing with the uncertainties of the nature of the replicated measures. In order to apply fuzzy linear 

modeling approach to unknown response, the linear model given in Equation (1) can be written as 

 

= +Y Xβ ε                  (2) 

 

where the observed response, model parameters and error vector are assumed as fuzzy numbers denoted as 

1 2 ... nY Y Y
 =  Y , 0 1 ... p  

 =  β  and  1 2 ... n   =ε , respectively. Throughout the paper TT1FNs are 

preferred to use for the sake of simplicity. Here, the input variables are considered to be crisp. 

 

 

No 

Input levels Response 

X1  2X  … 
pX  Y  

1 11x  12x  … 1px  
11y  12y  … 1ry  

2 21x  22x  … 2 px  
21y  22y  … 2ry  

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

… 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

… 

 

n 1nx  2nx  … npx  
1ny  2ny  … npy  



254  Ozlem TURKSEN / GU J Sci, 34 (1): 251-270 (2021) 

To present the observed replicated response measures as TT1FNs, some of the descriptive statistics of the 

replicated response measures are calculated. Therefore, fuzzification of replicates is achieved by taking into 

account the data structure of replications in statistical framework.  

Let the matrix of observed replicated response measures be 

 

1 11 12 1

2 21 22 2

1 2

...

...

. . . .

. . . ... .

. . . .

...

r

r

n n n nr

y y y

y y y

y y y

   
   
   
   

= =   
   
   
      

y

y

y

y

.                                                                                                                (3) 

 

The TT1FN representations for each unit is given as 

 

( )

( )

( )

 
   
   
   
   = =   
   
   
    

 

1 1 1
1

2 2 22

, ,

, ,

. .

. .

. .

, ,

l c u

l c u

l c un
n n n

y y y

y y y

y y y

y

y

y

y

.                                                                                                   (4) 

 

Here, each fuzzy response is denoted as ( )= , ,l c u
i i i iy y yy , 1,2,...,i n= . In the studies of [10, 11], replicated 

response measures were transformed to TT1FNs by using mean and standard deviation statistics of 

replicated measures. However, these statistics may not be sufficient to present the data structure of 

replications during fuzzification. Different type of fuzzification rules for presenting the replicated response 

measures as TT1FNs were given in [12]. It was seen that the fuzzification with descriptive statistics and 

golden ratio was the most proper one. Therefore, in this study, replicated response measures are fuzzified 

by using the rule in the study of [12] as following 

 

(1)

(1)

( )

l

i i

c

i i i

u

i i r

y y

y y r

y y



=

= + 

=

 ,   i = 1,2,…,n  ,   j=1,2,…,r                                                                                             (5)      

 

where (1)iy  and ( )i ry  are the smallest and the largest order statistics for each unit, respectively. ir  is called 

as the range and obtained by ( ) (1)i i r ir y y= − , i = 1,2,…,n.   is the golden ratio and taken equal to 0.618. 

 

After fuzzification of replicated response measures, it is aimed to obtain predicted fuzzy linear response 

model.  In this case, the predicted fuzzy linear regression model is written as 

 

ˆˆ ˆ= +Y Xβ e                                                                             (6) 

 

in which 
ˆ
Y , 

ˆ
β  and ê  are predicted fuzzy response values, estimated fuzzy model parameters and predicted 

fuzzy errors, denoted as ( )=
ˆ ˆ ˆ ˆ, ,l c uY Y Y Y , ( )ˆ ˆ ˆ ˆ, ,= l c u

β β β β  and ( )ˆ ˆ ˆ ˆ, ,= l c u
e e e e , respectively. In order to obtain 

the estimates of triangular type fuzzy model parameters FLS approach is used. The FLS is based on 

minimizing the sum of the squared distance between observed and predicted fuzzy response values, 

formalized as 
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( ) ( )( )ˆ
min min , = d
β β

β Y Y                                                      (7) 

 

where d  denotes the Diamond’s distance metric, called vertex method, given in [25] as following 

 

( ) ( ) ( ) ( )( )
2 2 21ˆ ˆ ˆ ˆ,

3
= − + − + −l l c c u ud Y Y Y Y Y Y Y Y .                                     (8) 

 

The estimates of fuzzy model parameters are obtained by minimizing the Equation (7) and calculated as 

given below 

 

ˆ
=Wβ Y                                                                          (9) 

 

in which W  is equal to ( )
1−

 X X X . Assuming that the ( )
1−

X X  is nonsingular, matrix W may have negative 

values. In this case, scalar multiplication should be done with considering the elementary operations rules 

of TT1FNs. Let matrix W  be 

 

( )

11 12 1

21 22 2

1,1 1,2 1, 1

...

...

. . .

. . ... .

. . .

...+ + + + 

 
 
 
 

=  
 
 
 
 

n

n

p p p n p n

w w w

w w w

W

w w w

                                                  (10) 

 

and the multiplication is  

 

( )

( )

, , , 0

, , , 0

 
= 

− − − 

l c u

ij ij ij ij

u c l

ij ij ij ij

w w w w
W

w w w w

Y Y Y
Y

Y Y Y
    ,    i = 1,2,…, p+1  ,   j=1,2,…,n                                         (11) 

 

where 
ijw  is the element positioned in the i th row and j th column of matrix W . Therefore, according to 

the matrix operators given in Equation (11), the triangular fuzzy model parameter estimates, 
ˆ
β , are 

obtained.   

 

2.2.  Bayesian Linear Modeling Approach 

 

Bayesian can be considered another proper modeling approach for RRM data set since the ability of 

representing uncertainty of replicated response measures in the predicted model with assuming model 

parameters as random variables instead of crisp values. And also, Bayesian approach allows learning from 

the data with combining prior information of model parameters. Posterior distribution of unknown model 

parameters is called as Bayesian estimates of model parameters. Linear regression methods can be thought 

of as Bayesian posterior inference based on a non-informative prior distribution for the parameters of the 

normal linear model. 

 

Consider the linear regression model given in matrix form as in Equation (1) and recall the assumptions 

concerning the elements of ε  with Normally distributed, ( )2~ 0,n nN Iε . It is clear that the model which 

relates parameters and observations is written as 
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( )2 2, , ~ , n nN IY β X Xβ .                                                       (12) 

 

After defining the model, Bayesian analysis focuses to discover the posterior distribution for the parameters. 

The analysis begins with a prior distribution for the parameters. A non-informative prior distribution, 

commonly used for linear regression, can be defined as 

 

( ) ( )
1

2 2, 
−

h β ,      pRβ  ,   
2 0  .                  (13) 

 

The expression given in Equation (13) means that the joint probability distribution of β  and 
2  is a flat 

surface with a constant level proportional to 
2

1


. Applying Bayes Theorem, the posterior density of the β  

and 
2 , conditional on the data,  is given by a proportion below [11]  

                      

( ) ( ) ( )
( ) ( )

2

22

1 ˆ ˆ
1

2 2 2 222 2, . .   
   − − −−− + −       

kSk p

h e e
β β X X β β

β Y .                                                                       (14) 

 

While the posterior distribution of β  given 
2  and Y  is 

 

( )( )12 2

1
ˆ, ~ , 

−

+


pNβ Y β XX                                                    (15) 

 

and the marginal posterior distribution of β  is multivariate Student-t distribution given as 

 

( )( )12

1
ˆ~ ; ,

−

+


pt k Sβ Y β XX                                                        (16) 

 

where β̂  and 
2S  are the maximum likelihood estimates of β  and 

2  parameters, respectively. Here, 

( ) ( )2 ˆ ˆ
= − −kS Y Xβ Y Xβ , ( )1= − +k n p  and ( )

1ˆ −
 =β XX XY  [26]. Thus, the marginal posterior 

distribution of each regression model parameter  j
, 0,1,2,...,=j p  is obtained as 

 

( )( )12

1
ˆ~ ; , 

−


j j jj
Y t k S X X .                                                                                                                     (17) 

 
3. INTERVAL VALUED PARAMETER ESTIMATES  

 

Determining the uncertainty of model parameters through fuzzy and Bayesian approaches are distinct from 

each other. For this purpose, it is necessary to define a common uncertainty presentation for the model 

parameters. In this study, interval valued parameter estimates are obtained to present the fuzzy and Bayesian 

linear model parameters since transforming the model parameter estimates to intervals provides 

convenience for comparison of the parameters uncertainty on the same domain.  

 

3.1. Fuzzy alpha-cut level interval 

 

To define the fuzzy parameter estimates as crisp intervals, a well-known approach is representing the 

( )ˆ ˆ ˆ ˆ, ,= l c u
β β β β  as a family of sets called alpha-level set. The alpha-level set of 

ˆ
β  is defined as 

 

( ) ˆ

ˆ ˆ ˆ:  =  R
β

β β β                                                           (18) 

 



257  Ozlem TURKSEN / GU J Sci, 34 (1): 251-270 (2021) 

where ( )ˆ
ˆ

β
β  is identified as below 

 

( )ˆ

ˆ ˆ
ˆ ˆ ˆ,

ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ,

ˆ ˆ

0 , . .



 −
 

−


−
=  

−




l
l c

c l

u
c u

u c

o w

β

β β
β β β

β β

β β
β β β β

β β
.                                                   (19) 

It is possible to obtain a crisp interval of 
ˆ
β  easily by alpha-cut operation, denoted with 

ˆ
β , as follows 

 

( ) ( )

( ) ( )

ˆ
,

ˆ ˆ ˆ ˆ ˆ ˆ,

  

 

=   

 = + − − −
 

l c l u u c

L Uβ

β β β β β β
                                        (20) 

 

in which  0,1  . It should be noted here that the smaller the value of alpha, the higher the uncertainty. 

 

3.2. Bayesian credible interval 

 

In order to define the Bayesian parameter estimates as crisp intervals, Bayesian credible interval is defined 

as a measure of the variation of model parameters. The Bayesian credible interval is similar to frequentist 

confidence interval and generally called as HPD credible interval.  

 

In this study, HPD credible interval is used for analyzing the variation of each model parameters 

, 0,1,2,..., =j j p , defined as 

 

( )
( )

( )
( )

1 12 1 2 11 1ˆ ˆ,
2 2

 
 

− −− − − −   
 − +    

    
k kj t j tjj jj

S F S FX X X X                         (21) 

 

where 
( )

1−

ktF  is a quantile of the Student-t posterior distribution with ( )1 %−  confidence level. 

 

3.3. Comparison metrics for interval valued estimates of model parameters 

 

One of the main important aspect of the analysis of interval valued parameter estimates is the usage of 

convenient distance metric which is expected to be easy to calculate and interpret. In this study, midpoint, 

width, radius and the Hausdorff metrics are used for comparison purpose of the interval valued parameter 

estimates. More brief information on this topics can be seen in the study of [27, 28].  

 

Let   ,  − + =  i i i  , 1,2,...,=i p , be an interval valued parameter estimates on R . The midpoint of  i , 

1,2,...,=i p , is defined as the real number 

 

 ( ) ( )
1

2
  − += +i i imid , 1,2,...,=i p                                             (22) 

 

and the width and radius of  i , 1,2,...,=i p , are defined as, respectively, 

 

 ( )  + −= −i i iw  , 1,2,...,=i p                                                (23) 
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and 

 

 ( )  ( ) ( )
1 1

2 2
   + −= = −i i i irad w , 1,2,...,=i p .                              (24) 

 

Let   ,  − + =  i i i  and   ,  − + =  i i i , 1,2,...,=i p , be two intervals on R . Then, the Hausdorff-metric 

between  i  and  i  is given by 

 

   ( )  , max ,     − − + += = − −i i i i i i iH H , 1,2,...,i p= .                           (25) 

 

The Equation (23) can also be expressed in terms of midpoints and radius: 

 

   ( )  ( )  ( )  ( )  ( ),     = = − + −i i i i i i iH H mid mid rad rad , 1,2,...,i p= .             (26) 

 

The higher the quantity of    ( ), i iH , the lower the similarity of  i  and  i . In this study, Hausdorff 

metric is used to compare the two interval valued parameter estimates since it considers midpoint and radius 

metrics together as given in Equation (26). 

 

4.    APPLICATION 

 

In this section, two data sets, called Roman Catapult data set and Printing Ink data set, are used for 

application purpose. Even though, the data sets are previously used in the study of [11], these data sets are 

preferred to use to present the alternatively usability of fuzzy approach providing that the definition of 

proper alpha-cut levels of fuzzy parameter estimates. 

 

Roman Catapult data set: Roman Catapult data set is originally used in the study of [29] for an example 

of dual response analysis. The catapult experiment is designed with three inputs (length - 1X , stop angle -

2X , pivot height - 3X ) and three replicated response measures by using second order central composite 

design. The RRM data set can be seen in the study of [11]. In order to apply fuzzy modeling to Roman 

Catapult data set, it is necessary to present the replicated response measures as TT1FNs. The fuzzification 

of response is achieved according to the data structure of replicated measures. In order to understand the 

data structure of the replicated measures, box-plots of the responses were plotted. The distribution of the 

replicated measures can be seen from the box-plots, given in Figure 1, for each unit. It’s clear from Figure 

1 that the replicated values have skewed distribution.  

 
Figure 1.  Box-plots of replicated response measures for each unit of Roman Catapult data. 

 

 

By using the fuzzification rule, given in Equation (5), the data set with triangular fuzzy response values is 

obtained as in Table 2.  
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The predicted fuzzy response model is obtained by using FLS approach as below: 

( ) ( )
( ) ( )
( ) ( )

1

2 3
2
2 2 3

ˆ
75.1712,85.2183,92.5516 6.1973,14.6454,22.3317

-7.9474,3.1401,12.4972 11.1594,19.9862,27.1707

-17.8744,-8.3820,-0.7558 -15.75,-3.7625,6.75 .

= +

+ +

+ +

Y X

X X

X X X

                                                            (27) 

 

Table 2. The Roman Catapult data set with fuzzy responses 

No 
Run 

order 1X  2X  3X  Y  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

20 

9 

11 

14 

15 

10 

12 

1 

7 

4 

19 

18 

12 

8 

6 

5 

17 

3 

2 

16 

-1 -1 -1 (34, 38.944, 42) 

-1 -1 1 (71, 83.36, 91) 

-1 1 -1 (44, 48.944, 52) 

-1 1 1 (60, 82.866, 97) 

1 -1 -1 (53, 62.27, 68) 

1 -1 1 (104, 118.214, 127) 

1 1 -1 (64, 72.652, 78) 

1 1 1 (75, 108.99, 130) 

-1.682 0 0 (51, 56.562, 60) 

1.682 0 0 (102, 111.27, 117) 

0 -1.682 0 (43, 51.652, 57) 

0 1.682 0 (43, 70.81, 88) 

0 0 -1.682 (50, 56.18, 60) 

0 0 1.682 (109, 117.034, 122) 

0 0 0 (78, 84.798, 89) 

0 0 0 (79, 83.326, 86) 

0 0 0 (81, 85.326, 88) 

0 0 0 (82, 86.326, 89) 

0 0 0 (79, 84.562, 88) 

0 0 0 (79, 85.798, 90) 

 

 

The predicted Bayesian model is taken into consideration as in the study of [11]. It is clear to say that the 

comparison of parameter estimates of fuzzy and Bayesian models is not possible unless transforming the 

parameter estimates to intervals. In this study, the same interval type Bayesian parameter estimates, which 

are obtained 95% confident with HPD credible interval, are used as in the study of [11]. The previously 

obtained Bayesian interval estimates of model parameters with midpoint, width and radius metrics are 

summarized in Table 3. 

 

Table 3. Interval type parameter estimates of Bayesian model with 

midpoint, width and radius metrics for Roman Catapult data set 

Interval type 

parameters 

 β  

Interval estimates 

of parameters 

, 
 
β β  

 

Midpoint 

( )mid β  

 

Width 

( )w β  

 

Radius 

( )Rad β  

 0  [77.3075   91.3816] 84.3445 14.0741 7.0371 

 1  [7.2240  20.5418] 13.8829 13.3178 6.6589 

 2  [-6.0375  7.2803] 0.6214 13.3178 6.6589 

 3  [11.9831  25.3009] 18.6420 13.3178 6.6589 

 4  [-17.2997 -4.4539] -10.8768 12.8458 6.4229 

 5  [-14.0757  3.3257] -5.3750 17.4014 8.7007 
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In order to obtain interval type fuzzy parameter estimates, alpha-cut operation is applied to fuzzy parameter 

estimates. The predicted fuzzy model with alpha-cut level presentation of parameter estimates is given 

below 

 

   
   
 

1

2 3
2
2

ˆ
75.1712 10.0471 , 92.5516 7.3333 6.1973 8.4481 , 22.3317 7.6863

-7.9474 11.0875 , 12.4972 9.3571 11.1594 8.8268 , 27.1707 7.1845

-17.8744 9.4925 , -0.7558 7.6262  -15.75 11.9875 , 6.75 10.

   

   

  

= + − + + −

+ + − + + −

+ + − + + −

Y X

X X

X   2 35125 . X X

                 (28)     

 

It is possible to obtain different real valued closed interval type parameter estimates by using different 

alpha-cut levels,  0,1  , e.g.  0, 0.05, 0.10, ... ,0.90, 0.95  . The obtained interval type fuzzy parameter 

estimates, midpoint, width and radius metrics are presented in Table 4 for each alpha-cut levels.  

 

Table 4. Interval type parameter estimates of fuzzy model with midpoint, width and radius metrics for 

Roman Catapult data set 

alpha-cut levels 

Interval type 

parameters 
  β  

Interval estimates of 

model parameters 

,
 

  
β β  

 

Midpoint 

( )mid β  

 

Width 

( )w β  

 

Radius 

( )Rad β  

 

 

 

 

0 

0
 

 
 [75.1712   92.5516] 83.8614 17.3804 8.6902 

1
 

 
 [6.1973   22.3317] 14.2645 16.1344 8.0672 

2
 

 
 [-7.9474   12.4972] 2.2749 20.4446 10.2223 

3
 

 
 [11.1594   27.1707] 19.165 16.0113 8.0056 

4
 

 
 [-17.8744   -0.7558] -9.3151 17.1187 8.5593 

5
 

 
 [-15.75    6.75] -4.5 22.5 11.25 

 

 

 

 

 

0.05 

 

0
 

 
 [75.6736   92.1849] 83.9292 16.5114 8.2557 

1
 

 
 [6.6197   21.94749 14.2835 15.3277 7.6639 

2
 

 
 [-7.3931   12.0294] 2.3181 19.4224 9.7112 

3
 

 
 [11.6008   26.8115] 19.2061 15.2107 7.6054 

4
 

 
 [-17.3998   -1.1371] -9.2684 16.2627 8.1314 

5
 

 
 [-15.1506    6.2244] -4.4631 21.3750 10.6875 

 

 

 

 

 

0.10 

0
 

 
 [76.1759   91.8183] 83.9971 15.6424 7.8212 

1
 

 
 [7.0421   21.5631] 14.3026 14.5210 7.2605 

2
 

 
 [-6.8387   11.5615] 2.3614 18.4002 9.2001 

3
 

 
 [12.0421   26.4522] 19.2472 14.4101 7.2051 

4
 

 
 [-16.9252   -1.5184] -9.2218 15.4068 7.7034 

5
 

 
 [-14.5513    5.6988] -4.4262 20.2500 10.1250 

 

 

 

0
 

 
 [77.1806   91.0850] 84.1328 13.9043 6.9522 

1
 

 
 [7.8869   20.7945] 14.3407 12.9075 6.4538 
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0.20 

2
 

 
 [-5.7299   10.6258] 2.4479 16.3557 8.1779 

3
 

 
 [12.9248   25.7338] 19.3293 12.8090 6.4045 

4
 

 
 [-15.9759   -2.281] -9.1285 13.6949 6.8475 

5
 

 
 [-13.3525    4.6475] -4.3525 18.0000 9.0000 

 

 

 

 

 

0.30 

0
 

 
 [78.1853   90.3516] 84.2685 12.1663 6.0831 

1
 

 
 [8.7317   20.0258] 14.3788 11.2941 5.6470 

2
 

 
 [-4.6212    9.6901] 2.5344 14.3112 7.1556 

3
 

 
 [13.8074   25.0153] 19.4114 11.2079 5.6039 

4
 

 
 [-15.0267   -3.0436] -9.0352 11.9831 5.9915 

5
 

 
 [-12.1538    3.5963] -4.2788 15.75 7.875 

 

 

 

 

 

0.40 

0
 

 
 [79.1901   89.6183] 84.4042 10.4282 5.2141 

1
 

 
 [9.5765   19.2572] 14.4169 9.6807 4.8403 

2
 

 
 [-3.5124    8.7544] 2.621 12.2668 6.1334 

3
 

 
 [14.6901   24.2969] 19.4935 9.6068 4.8034 

4
 

 
 [-14.0774   -3.8062] -8.9418 10.2712 5.1356 

5
 

 
 [-10.9550    2.545] -4.205 13.5 6.75 

 

 

 

 

 

0.50 

0
 

 
 [80.1948   88.885] 84.5399 8.6902 4.3451 

1
 

 
 [10.4214   18.4886] 14.4550 8.0672 4.0336 

2
 

 
 [-2.4037    7.8186] 2.7075 10.2223 5.1112 

3
 

 
 [15.5728   23.5784] 19.5756 8.0056 4.0028 

4
 

 
 [-13.1282   -4.5689] -8.8485 8.5593 4.2797 

5
 

 
 [-9.7562    1.4938] -4.1312 11.25 5.625 

 

 

 

 

 

0.60 

0
 

 
 [81.1995   88.1516] 84.6756 6.9522 3.4761 

1
 

 
 [11.2662   17.7199] 14.4931 6.4538 3.2269 

2
 

 
 [-1.2949    6.8829] 2.7940 8.1779 4.0889 

3
 

 
 [16.4555   22.86] 19.6577 6.4045 3.2023 

4
 

 
 [-12.1790   -5.3315] -8.7552 6.8475 3.4237 

5
 

 
 [-8.5575    0.4425] -4.0575 9 4.5 

 

 

 

 

 

0
 

 
 [82.2042   87.4183] 84.8113 5.2141 2.6071 

1
 

 
 [12.1110   16.9513] 14.5311 4.8403 2.4202 

2
 

 
 [-0.1862    5.9472] 2.8805 6.1334 3.0667 
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0.70 
3
 

 
 [17.3382   22.1415] 19.7399 4.8034 2.4017 

4
 

 
 [-11.2297   -6.0941] -8.6619 5.1356 2.5678 

5
 

 
 [-7.3588   -0.6087] -3.9837 6.75 3.375 

 

 

 

 

 

0.80 

0
 

 
 [83.2089   86.685] 84.947 3.4761 1.738 

1
 

 
 [12.9558   16.1827] 14.5692 3.2269 1.6134 

2
 

 
 [0.9226    5.0115] 2.9670 4.0889 2.0445 

3
 

 
 [18.2208   21.4231] 19.8220 3.2023 1.6011 

4
 

 
 [-10.2805   -6.8567] -8.5686 3.4237 1.7119 

5
 

 
 [-6.1600   -1.66] -3.9100 4.5 2.25 

 

 

 

 

 

0.90 

0
 

 
 [84.2136   85.9517] 85.0826 1.738 0.869 

1
 

 
 [13.8006   15.4141] 14.6073 1.6134 0.8067 

2
 

 
 [2.0313    4.0758] 3.0535 2.0445 1.0222 

3
 

 
 [19.1035   20.7046] 19.9041 1.6011 0.8006 

4
 

 
 [-9.3312   -7.6193] -8.4753 1.7119 0.8559 

5
 

 
 [-4.9612   -2.7112] -3.8362 2.25 1.125 

 

 

 

 

 

0.95 

0
 

 
 [84.716   85.585] 85.1505 0.869 0.4345 

1
 

 
 [14.2230   15.0297] 14.6264 0.8067 0.4034 

2
 

 
 [2.5857    3.6079] 3.0968 1.0222 0.5111 

3
 

 
 [19.5449   20.3454] 19.9451 0.8006 0.4003 

4
 

 
 [-8.8566   -8.0006] -8.4286 0.8559 0.428 

5
 

 
 [-4.3619   -3.2369] -3.7994 1.125 0.5625 

 

It can be easily seen from Table 4 that the larger the alpha-cut levels, the smaller the w  metric values. The 

small value of w  metric means that the variation of parameter estimates is small. In order to define the 

similarities between interval type parameter estimates of Bayesian model, given in Table 3, and interval 

type parameter estimates of fuzzy model, given in Table 4, Hausdorff metric is calculated. The obtained 

results are presented in Table 5.  

 

Table 5. Hausdorff metric of interval type parameter estimates for Roman Catapult data set 

alpha-cut 

levels 1H  2H  3H  4H  5H  6H  7H  

0 

0.05 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

2.1363 

1.6339 

1.1316 

0.2966 

1.0300 

1.8826 

2.8873 

3.8920 

1.7899 

1.4056 

1.0213 

0.6629 

1.5077 

2.3525 

3.1974 

4.0422 

5.2169 

4.7491 

4.2812 

3.3455 

2.4098 

2.5251 

3.6338 

4.7426 

1.8698 

1.5106 

1.1513 

0.9417 

1.8243 

2.7070 

3.5897 

4.4724 

3.6981 

3.3168 

2.9355 

2.1729 

2.2730 

3.2223 

4.1715 

5.1207 

3.4243 

2.8987 

2.3731 

1.3218 

1.9219 

3.1207 

4.3194 

5.5182 

18.1353 

15.5147 

12.8940 

8.7414 

10.9668 

15.8101 

21.7991 

27.7880 
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0.70 

0.80 

0.90 

0.95 

4.8967 

5.9014 

6.9061 

7.4085 

4.8870 

5.7318 

6.5766 

6.9990 

5.8513 

6.9601 

8.0688 

8.6232 

5.3551 

6.2377 

7.1204 

7.5618 

6.0700 

7.0192 

7.9685 

8.4431 

6.7169 

7.9157 

9.1144 

9.7138 

33.7770 

39.7660 

45.7549 

48.7494 

 

 

From Table 5, it is possible to say that the small H  values are obtained for alpha-cut level is between 0.20 

and 0.30 roughly. The smaller the H  values, the higher the similarity of interval type parameter estimates. 

According to the H  metric values in Table 5, someone can prefer to use fuzzy modeling approach for 

 0.20,0.30  - cut level instead of using Bayesian approach for 95% confident without making any 

assumptions for interval type parameter estimates.  

 

Printing Ink Data Set: Printing Ink data set is originally used in the studies of [30] to model printing 

machine ability. The printing ink process is designed with three inputs (speed - 1X , pressure - 2X , distance 

- 3X ) and three replicated response measures by using 33 full factorial design. In this study, the same 

interval type Bayesian parameter estimates, which are obtained 95% confident with HPD credible interval, 

are used as in the study of [11]. The previously obtained Bayesian interval estimates of model parameters 

with midpoint, width and radius metrics are summarized in Table 6. 

 

 

Table 6. Interval type parameter estimates of Bayesian  model with midpoint, width and radius metrics 

for Printing Ink data set 

Interval 

type 

parameters 

 β  

Interval estimates 

of parameters 

, 
 
β β  

 

Midpoint 

( )mid β  

 

Width 

( )w β  

 

Radius 

( )Rad β  

 0  [274.8511  354.4823] 314.6667 79.6312 39.8156 

 1  [128.236   225.764] 177 97.528 48.764 

 2  [60.662   158.1899] 109.426 97.5279 48.7639 

 3  [82.699   180.2269] 131.463 97.5279 48.764 

 4  [6.3044   125.7512] 66.0278 119.4468 59.7234 

 5  [15.7488   135.1956] 75.4722 119.4468 59.7234 

 6  [-16.1401   103.3067] 43.5833 119.4468 59.7234 

 

In order to understand the data structure of the replicated measures, box-plots of the responses were plotted. 

In this study, fuzzification rule, given in Equation (5), is used for replicated response measures since the 

replicated measures have skewed distribution, presented with box-plots in Figure 2 for each unit.  
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Figure 2. Box-plots of replicated response measures for each unit of Printing Ink data set. 

 

The printing ink data set with fuzzy response values is given in Table 7.  

 

Table 7. The Printing Ink data set with fuzzy responses 

No 1X  2X  3X  Y  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

-1 

-1 

-1 

0 

0 

0 

1 

1 

1 

-1 

-1 

-1 

0 

0 

0 

1 

1 

1 

-1 

-1 

-1 

0 

0 

0 

1 

1 

1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

    (10, 24.8, 34) 

    (115, 124.3, 130) 

    (186, 233.6, 263) 

    (82, 85.7, 88) 

    (44, 133, 188) 

    (322, 339.3, 350) 

    (86, 120, 141) 

    (251, 255.9, 259) 

    (245, 272.8, 290) 

    (81, 81, 81) 

    (90, 109.8, 122) 

    (319, 354.2, 376) 

    (154, 170.1, 180) 

    (372, 372, 372) 

    (396, 502.3, 568) 

    (192, 266.2, 312) 

    (336, 445.4, 513) 

    (713, 738.3, 754) 

    (99, 262.8, 364) 

    (221, 248.8, 266) 

    (408, 429.6, 443) 

    (182, 213.5, 233) 

    (434, 484.1, 515) 

    (535, 727.2, 846) 

    (126, 194, 236) 

    (403, 561.8, 660) 

    (878, 1052.9, 1161) 

 

The predicted fuzzy response model, with alpha-cut parameter estimates, is obtained as 

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 1011121314151617181920 21222324252627
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   
   
 

1

2 3

1 2

ˆ
269.6296 56.4211 ,360.9259 34.8752 129.6111 49.9587 ,224.3889 44.8191

63.9444 49.3016 ,155.3889 42.1429 85.7222 57.9027 ,187.9444 44.3196

21.25 48.3393 ,113.9167 44.3273  21.9167 55

   

   

 

= + − + + −

+ + − + + −

+ + − + +

Y X

X X

X X  
 

1 3

2 3

.107 ,129.4167 52.393 (31)

-3.75 53.8695 ,97.8333 47.7138 .

 

 

−

+ + −

X X

X X

  

The obtained interval type fuzzy parameter estimates, midpoint, width and radius metrics are presented in 

Table 8 for each alpha-cut levels. 

 

Table 8. Interval type parameter estimates of fuzzy model with midpoint, width and radius metrics for 

Printing Ink data set 

alpha-cut levels 

Interval type 

parameters 
  β  

Interval estimates 

of model 

parameters 

,
 

  
β β  

 

Midpoint 

( )mid β  

 

Width 

( )w β  

 

Radius 

( )Rad β  

 

 

 

 

 

 

0 

0
 

 
 [269.6296  360.9259] 315.2778 91.2963 45.6481 

1
 

 
 [129.6111  224.3889] 177.0000 94.7778 47.3889 

2
 

 
 [63.9444  155.3889] 109.6667 91.4444 45.7222 

3
 

 
 [85.7222  187.9444] 136.8333 

102.222

2 
51.1111 

4
 

 
 [21.25  113.9167] 67.5833 92.6667 46.3333 

5
 

 
 [21.9167  129.4167] 75.6667 

107.500

0 
53.7500 

6
 

 
 [-3.75   97.8333] 47.0417 

101.583

3 
50.7917 

 

 

 

 

 

 

0.05 

 

0
 

 
 [272.4507  359.1822] 315.8164 86.7315 43.3657 

1
 

 
 [132.109  222.1479] 177.1285 90.0389 45.0194 

2
 

 
 [66.4095  153.2817] 109.8456 86.8722 43.4361 

3
 

 
 [88.6174  185.7285] 137.1729 97.1111 48.5556 

4
 

 
 [23.667  111.7003] 67.6836 88.0333 44.0167 

5
 

 
 [24.672  126.797] 75.7345 

102.125

0 
51.0625 

6
 

 
 [-1.0565   95.4476] 47.1956 96.5042 48.2521 

 

 

 

 

 

 

0.10 

0
 

 
 [275.2717  357.4384] 316.3551 82.1667 41.0833 

1
 

 
 [134.607  219.907] 177.2570 85.3000 42.6500 

2
 

 
 [68.8746  151.1746] 110.0246 82.3000 41.1500 

3
 

 
 [91.5125  183.5125] 137.5125 92.0000 46.0000 

4
 

 
 [26.0839  109.4839] 67.7839 83.4000 41.7000 

5
 

 
 [27.4274  124.1774] 75.8024 96.7500 48.3750 

6
 

 
 [1.6369   93.062] 47.3494 91.4250 45.7125 
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0.20 

0
 

 
 [280.9139  353.9509] 317.4324 73.0370 36.5185 

1
 

 
 [139.6028  215.4251] 177.5140 75.8222 37.9111 

2
 

 
 [73.8048  146.9603] 110.3825 73.1556 36.5778 

3
 

 
 [97.3028  179.0805] 138.1916 81.7778 40.8889 

4
 

 
 [30.9179  105.0512] 67.9845 74.1333 37.0667 

5
 

 
 [32.9381  118.9381] 75.9381 86.0000 43.0000 

6
 

 
 [7.0239   88.2906] 47.6572 81.2667 40.6333 

 

 

 

 

 

 

0.30 

0
 

 
 [286.556  350.4634] 318.5097 63.9074 31.9537 

1
 

 
 [144.5987  210.9432] 177.7709 66.3444 33.1722 

2
 

 
 [78.7349  142.746] 110.7405 64.0111 32.0056 

3
 

 
 [103.093  174.6486] 138.8708 71.5556 35.7778 

4
 

 
 [35.7518  100.6185] 68.1851 64.8667 32.4333 

5
 

 
 [38.4488  113.6988] 76.0738 75.2500 37.6250 

6
 

 
 [12.4108   83.5192] 47.9650 71.1083 35.5542 

 

 

 

 

 

 

0.40 

0
 

 
 [292.1981  346.9759] 319.5870 54.7778 27.3889 

1
 

 
 [149.5946  206.4612] 178.0279 56.8667 28.4333 

2
 

 
 [83.6651  138.5317] 111.0984 54.8667 27.4333 

3
 

 
 [108.8833  170.2166] 139.5500 61.3333 30.6667 

4
 

 
 [40.5857   96.1857] 68.3857 55.6000 27.8000 

5
 

 
 [43.9595  108.4595] 76.2095 64.5000 32.2500 

6
 

 
 [17.7978   78.7478] 48.2728 60.9500 30.4750 

 

 

 

 

 

 

0.50 

0
 

 
 [297.8402  343.4883] 320.6643 45.6481 22.8241 

1
 

 
 [154.5904  201.9793] 178.2849 47.3889 23.6944 

2
 

 
 [88.5952  134.3174] 111.4563 45.7222 22.8611 

3
 

 
 [114.6736  165.7847] 140.2291 51.1111 25.5556 

4
 

 
 [45.4197   91.753] 68.5863 46.3333 23.1667 

5
 

 
 [49.4702  103.2202] 76.3452 53.7500 26.8750 

6
 

 
 [23.1847   73.9764] 48.5806 50.7917 25.3958 

 

 

 

 

0.60 

0
 

 
 [303.4823  340.0008] 321.7416 36.5185 18.2593 

1
 

 
 [159.5863  197.4974] 178.5419 37.9111 18.9556 

2
 

 
 [93.5254  130.1032] 111.8143 36.5778 18.2889 
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3
 

 
 [120.4638  161.3527] 140.9083 40.8889 20.4444 

4
 

 
 [50.2536   87.3203] 68.7869 37.0667 18.5333 

5
 

 
 [54.9809   97.9809] 76.4809 43.0000 21.5000 

6
 

 
 [28.5717   69.205] 48.8884 40.6333 20.3167 

 

 

 

 

 

 

0.70 

0
 

 
 [309.1244  336.5133] 322.8189 27.3889 13.6944 

1
 

 
 [164.5822  193.0155] 178.7988 28.4333 14.2167 

2
 

 
 [98.4555  125.8889] 112.1722 27.4333 13.7167 

3
 

 
 [126.2541  156.9208] 141.5874 30.6667 15.3333 

4
 

 
 [55.0875   82.8875] 68.9875 27.8000 13.9000 

5
 

 
 [60.4916   92.7416] 76.6166 32.2500 16.1250 

6
 

 
 [33.9586   64.4337] 49.1961 30.4750 15.2375 

 

 

 

 

 

 

0.80 

0
 

 
 [314.7665  333.0258] 323.8961 18.2593 9.1296 

1
 

 
 [169.578  188.5336] 179.0558 18.9556 9.4778 

2
 

 
 [103.3857  121.6746] 112.5301 18.2889 9.1444 

3
 

 
 [132.0444  152.4888] 142.2666 20.4444 10.2222 

4
 

 
 [59.9215   78.4548] 69.1881 18.5333 9.2667 

5
 

 
 [66.0023   87.5023] 76.7523 21.5000 10.7500 

6
 

 
 [39.3456   59.6623] 49.5039 20.3167 10.1583 

 

 

 

 

 

0.90 

0
 

 
 [320.4086  329.5383] 324.9734 9.1296 4.5648 

1
 

 
 [174.5739  184.0517] 179.3128 9.4778 4.7389 

2
 

 
 [108.3158  117.4603] 112.8881 9.1444 4.5722 

3
 

 
 [137.8346  148.0568] 142.9457 10.2222 5.1111 

4
 

 
 [64.7554   74.0221] 69.3887 9.2667 4.6333 

5
 

 
 [71.513   82.263] 76.8880 10.7500 5.3750 

6
 

 
 [44.7326   54.8909] 49.8117 10.1583 5.0792 

 

 

 

 

 

0.95 

0
 

 
 [323.2297  327.7945] 325.5121 4.5648 2.2824 

1
 

 
 [177.0718  181.8107] 179.4413 4.7389 2.3694 

2
 

 
 [110.7809  115.3531] 113.0670 4.5722 2.2861 

3
 

 
 [140.7298  145.8409] 143.2853 5.1111 2.5556 

4
 

 
 [67.1724   71.8057] 69.4890 4.6333 2.3167 

5
 

 
 [74.2683   79.6433] 76.9558 5.3750 2.6875 
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6
 

 
 [47.426   52.5052] 49.9656 5.0792 2.5396 

 

The Hausdorff metric calculation results are presented in Table 9.  

 

Table 9. Hausdorff metric of interval type parameter estimates Printing Ink data set 

alpha-cut 

levels 1H  2H  3H  4H  5H  6H  7H  8H  

0 

0.05 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

0.95 

6.4436 

4.6999 

2.9561 

6.0628 

11.7049 

17.3470 

22.9891 

28.6312 

34.2733 

39.9154 

45.5575 

48.3786 

1.3751 

3.8730 

6.3710 

11.3668 

16.3627 

21.3586 

26.3544 

31.3503 

36.3462 

41.3420 

46.3379 

48.8358 

3.2824 

5.7475 

8.2126 

13.1428 

18.0729 

23.0031 

27.9332 

32.8634 

37.7935 

42.7237 

47.6538 

50.1189 

7.7175 

5.9184 

8.8135 

14.6038 

20.3940 

26.1843 

31.9746 

37.7648 

43.5551 

49.3454 

55.1356 

58.0308 

14.9456 

17.3626 

19.7795 

24.6135 

29.4474 

34.2813 

39.1153 

43.9492 

48.7831 

53.6171 

58.4510 

60.8680 

6.1679 

8.9232 

11.6786 

17.1893 

22.7000 

28.2107 

33.7214 

39.2321 

44.7428 

50.2535 

55.7642 

58.5195 

12.3901 

15.0836 

17.7770 

23.1640 

28.5510 

33.9379 

39.3248 

44.7118 

50.0987 

55.4857 

60.8727 

63.5661 

52.3222 

61.6082 

75.5883 

110.1430 

147.2329 

184.3229 

221.4128 

258.5028 

295.5927 

332.6828 

369.7727 

388.3177 

 

 

It can be easily seen from Table 9 that the similarity of fuzzy and Bayesian model parameter estimates are 

high at  0, 0.10  - cut levels according to the H  metric. From Table 9, it is possible to prefer fuzzy 

modeling approach for  0, 0.10  - cut levels alternatively modeling with Bayesian approach for interval 

type parameter estimates. 

 

5. CONCLUSION 

 

This study presents the alternatively preferability of possibilistic modeling approach to probabilistic 

modeling approach for RRM data sets. For this purpose, fuzzy and Bayesian linear modeling approaches 

are applied to RRM data sets. After obtaining model parameter estimates, it is aimed to compare the 

uncertainty of model parameters. Therefore, it is needed to define the estimated values of parameters on 

the same domain. This is achieved with interval type presentation of parameter estimates through alpha-cut 

level intervals and HPD credible intervals for fuzzy and Bayesian approaches, respectively.  ( )mid β , 

 ( )w β ,  ( )rad β  and H  metrics of intervals are used as comparison metric tools for both deterministic 

closed intervals of fuzzy and Bayesian models. It should be noted here that the comparison is achieved 

between Bayesian interval type estimates with fuzzy interval type estimates for each defined alpha-cut 

levels,  0, 1  . It is seen from the results that the H  metric values of interval type estimates are roughly 

similar for  0.20,0.30  -cut and  0, 0.10  -cut levels of fuzzy approach with 95 % confident of 

Bayesian approach for Roman Catapult data set and Printing Ink data set, respectively.  Thus, someone can 

prefer to use fuzzy linear modeling approach instead of Bayesian to model the RRM data set and to analyse 

the uncertainty of unknown model parameters with great flexibility and without any strict modeling 

assumptions. It is possible to say that the fuzzy modeling could be directly applied to RRM data set with 

 0,0.30  -cut levels without making comparison analysis with Bayesian approach. For future work, 

different types of fuzzy numbers and different confidence levels are planned to apply to the RRM data set 

for fuzzy modeling and Bayesian modeling, respectively.  
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