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ABSTRACT 

 

Optimization and decision making are closely related but two distinct fields in multi-response studies. Generally, 

multiple responses are aggregated in a single objective function and the optimization result is considered as a 
compromise solution for all the responses. However, this approach does not meet required targets of all the 

responses simultaneously. In this study, Non-dominated Sorting Genetic Algorithm-II (NSGA-II), a well known 

multi objective optimization method is preferred to optimize multiple responses and adapted with penalty function 
approach to handle constraints. In order to decide a compromise solution among the obtained many non-dominated 

solutions, two different decision making methods are used: (i) a fuzzy based clustering algorithm (fuzzy c means-

FCM), and (ii) a mostly used multi criteria decision making (MCDM) method (technique for order preference by 
similarity to an ideal solution-TOPSIS). The selected combination of the NSGA-II with FCM and TOPSIS are 

performed on a real world data set given in the literature and results are discussed. The results show the applicability 

of the FCM for decision making in multiple responses. It can be said that the FCM makes easier the selection of a 
compromise solution in the non-dominated solution set by using membership degrees of each solution to the clusters 

without removing any non-dominated solution. 

 

Key words: Multi-response optimization (MRO), NSGA-II, non-dominated solutions, FCM, TOPSIS. 

 

1. INTRODUCTION 

 

Many process and product design problems may have 

more than one response which are called multi-response 

problems. These problems are commonly analyzed in 

two main stages after data collection: (i) modeling, and 

(ii) optimization. Before modeling of responses, 

dependencies among the responses should be checked 

and considerable effort should be made to uncover their 

causes [1]. In modeling stage, possible correlations 

among the responses should be checked in order to 

compose an approximating multi-response model with 

minimum error. If the response variables are correlated, 

it is seen that the seemingly unrelated regression (SUR), 

originally developed by Zellner [2], produces more 

precise estimates of model parameters than the ordinary 

least squares (OLS) [3]. And also, Principle Component 

Analysis (PCA) is used as an alternative modeling 

method for correlated responses as in the studies of Liao 

[4], Wang [5], Šibalija and Majstorović [6].  

 

The optimization stage is generally called muti-

response optimization (MRO) in multi response studies. 

In the literature, many approaches have been seen for 

MRO such as the constrained optimization approach 

[7], desirability function approach [8-14], generalized 

distance approach [15] and loss function approach [16-

19]. The general purpose of these methods is to convert 
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the MRO problem into a single aggregated objective 

function. According to this, it is not possible to find a 

single solution that would optimize all the objectives 

simultaneously. And also, thenexisting MRO methods 

require preference parameters to incorporate the 

preference of decision maker (DM) for the responses, 

which represent the preference information on the trade-

offs among the responses, such as weights of the 

responses. However, determining the preference 

parameter values is difficult process for complex 

problems with multiple responses.  

 

Since the MRO problem can be viewed as a multi-

objective optimization (MOO) problem as in the studies 

of Park and Kim [20], Pareto optimality is employed to 

MRO problem and infinite number of alternative 

solutions are generated. These alternative solutions are 

denoted with a vector called Pareto optimal (or non-

inferior or efficient or non-dominated) set in which 

none of its components can be improved without 

deterioration to at least one of other components [21]. 

In order to get Pareto optimal set, the use of multi-

objective evolutionary algorithms (MOEAs), which are 

posterior preference approaches in nature, has been 

motivated in recent years [22]. The posterior preference 

approaches have an advantage of not requiring any 

advance information on the DM’s preference [23]. By 

using MOEAs, it is possible to find a representative set 

of non-dominated solutions without requiring any prior 

information from the DM. Then, a compromise solution 

should be selected among the representative non-

dominated solutions. The process of selection a 

compromise solution is called decision making stage 

which is necessary when the MRO is achieved with a 

set of non-dominated solutions. Generally, the most 

suitable solution is chosen by using multi-criteria 

decision making (MCDM) methods according to the 

preferences of the DM. These methods are grouped as 

the a priori, the progressive and the a posteriori decision 

in Miettinen [24].  

 

In this study, the NSGA-II is applied for MRO with 

modification by using penalty function approach to 

handle constraints with multiple responses. In decision 

making stage, FCM is used rather than the classical 

MCDM methods. The FCM prefers the most suitable 

solution by using the membership degrees of each non-

dominated solution according to the preferences of DM. 

The higher the membership degree, the more 

satisfactory solution one.  

 

The rest of the paper is organized as follows. In Section 

2, a brief description about general multi-response 

model and parameter estimation of correlated responses 

are given. The modified version of the NSGA-II and the 

FCM are presented in Section 3. A data set is chosen as 

an application and the obtained results are presented in 

Section 4. In Section 5, conclusions are given. 

 

2. THE GENERAL MULTI-RESPONSE MODEL 

AND CORRELATED RESPONSES 

 

Simultaneous modeling of the response variables as a 

function of input variables with minimum error is 

considered one of the main aim in the presence of 

multiple responses. The model associated with such a 

function is called multi-response model which can be 

defined as given below. 

Let N  be the number of experimental runs and r  be 

the number of response variables which can be 

measured for each setting of a group of k  coded input 

variables  1 2 ... kx x x x . Suppose that the i th 

response value at the u th experimental run is 

represented by the model 

 

 , , 1,2,..., , 1,2,...,ui i u uiY f u N i r   x β        (1) 

 

where 
ux  is the vector  1 2 ...u u ukx x x   with 

ujx  being 

the u th level of the j th coded variable, 1,2,...,u N ; 

1,2,...,j k , β  is a vector of unknown parameters. 
ui  

is a random error, 
if  is a function of known form for 

the i th response and is assumed to be continuous. 

 

If 
if  is linear in elements of β , then the model in Eq. 

(1) is reduced to model for r  responses represented as  

 

 Y Zβ ε             (2) 

 

in which  1 2 ... r
  Y Y Y Y ,  1 2 ... r

  β β β β , 

 1 2 ... r
  ε ε ε ε , and Z  is the block-diagonal matrix, 

 1 2 ... rdiag Z Z Z . The best linear unbiased estimator 

(BLUE) of β , given in Eq. (2), is obtained below 

 

 
1

1 1ˆ 
    β Z Z Z Y                           (3) 

 

where   is a covariance matrix of ε  denoted as 

NI . Eq. (3) requires knowledge of variance-

covariance matrix,  . If   is unknown, the estimate 

ˆ ˆ
ij   is used as  

   
11

ˆ
ij i N i i i i N j j j jI I N

         
    

Y Z Z Z Z Z Z Z Z ,  

, 1,2,...,i j r , [25]. Using this estimate of  , the 

estimator of *
β̂  is obtained as 

 

 
1

* * 1 * 1ˆ 
    β Z Z Z Y                            (4) 

 

in which * ˆ
NI   . The estimator given in Eq. (4) is 

called SUR estimator in the studies of Shah et al. [2]. In 

this study, the data set with multiple correlated 

responses is considered and the model parameters are 

estimated by using the estimator vector given in Eq. (4). 

 

3. MULTI RESPONSE OPTIMIZATION (MRO) 

AND DECISION MAKING 

 

3.1. MRO with Adapted NSGA-II 

 

The main aim of the MRO is to find an optimal setting 

of the input variables that provides the best compromise 
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solution set for the multiple responses simultaneously. 

A MRO problem, consist of r predicted response 

functions, can be formulated as following 

 

      1 2
ˆ ˆ ˆ, ,..., roptimize Y Y Y

subject to S

x x x

x
                       (5) 

 

where x  is an input vector and S is an experimental 

region. The MRO problem can be viewed as a MOO 

problem. The general form of the MOO problem can be 

formulated as 

 

 

 

 
   

min/ max

0, 1,2,...,

0, 1,2,...,

, 1,2,...,

j

t

L U

s s s

subject to g j J

h t T

x x x s k

 

 

  

f x

x

x
                 (6) 

 

in which  f x  is an objective function vector defined 

as        1 2, ,..., rf f f    f x x x x . It is well-known 

that the main aim in a MOO framework is to find out a 

set of feasible and non-dominated alternative solutions 

which form Pareto optimal set.  

 

The NSGA-II, a very often used optimization method in 

multi-objective studies, is an efficient algorithm to find 

well distributed Pareto optimal or near Pareto optimal 

solutions as many as possible [22]. The NSGA-II finds 

a set of non-dominated solutions without requiring any 

preference information from the DM in a single run so 

the algorithm is called posterior preference articulation 

approach. The principle of this algorithm is to use a fast 

non-dominated sorting mechanism and a crowding 

distance to construct the population fronts that dominate 

each other in a non-dominated order. In order to 

optimize the constrained MOO problem given in Eq. (6) 

through NSGA-II, the algorithm should be adapted by 

using constraint handling strategy such as given in the 

study of Kaveh et al. [26]. In this study, penalty 

function approach is applied as constraint handling 

strategy to NSGA-II and called adapted NSGA-II. 

Before constraint violation is calculated, all constraints 

are normalized which means 
   0
u

jg x , 

1,2,...,j J , 1,2,...,u N  and all the objective 

functions are assumed to be minimized. For each 

solution 
 u

x , the constraint violation for each 

constraint is calculated as follows 

 

  
     , 0

0, .

u u

u j j

j

g g
w

otherwise

 
 


x x
x             (7) 

 

Thereafter, all constraint violations are added together 

as 
     

1

J
u u

j

j

w


 x x  to get overall constraint 

violation. This constraint violation is then multiplied 

with a penalty parameter denoted as 
iR  which makes 

the terms to have same magnitude and the product is 

added to each of the objective function values as given 

below 

 
        u u u

i i iF f R  x x x   ,  1,2,...,i r            (8) 

 

in which the functions 
iF , 1,2,...,i r  takes into 

account the constraint violations. In this study, the 

objective functions given in Eq. (8) are considered as 

objective functions for the NSGA-II and called violated 

objective functions. Since the original objective 

functions may have different magnitude, the penalty 

parameter may also vary from one objective function to 

another. If an appropriate penalty parameter is chosen, 

the NSGA-II will work well [27]. The proposed 

algorithmic steps of the adapted NSGA-II are given in 

Appendix A. 

 

3.2. Decision Making in the Pareto Optimal Set 

 

The main aim of decision making in multi-response 

studies is determining the best feasible solution 

according to the interested multiple responses. Since 

many problems are characterized by several conflicting 

responses, there may be no solution satisfying all 

responses simultaneously. Thus, the compromise 

solution can be a set of non-dominated solutions or can 

be only a solution according to the DM’s preferences. If 

the DM agrees with a set of non-dominated solutions, 

then this is possible thanks to the cluster analysis in 

which each cluster is homogeneous or compact with 

respect to certain objective criterions and each cluster is 

different from other clusters with respect to some 

objective criterions. In multi-response studies, the 

clustering analysis are applied to non-dominated set to 

organize the solutions based on their objective functions 

without removing any elements of non-dominated set 

before presenting the solutions to the DM. Yang et al. 

[28], Zio and Bazzo [29], and Buditjahjanto [30] used 

clustering analysis based approach for MRO. The 

cluster analysis can be classified in two categories: hard 

c-means (HCM) clustering and FCM clustering. HCM 

clustering methods are based on classical set theory, and 

require that a non-dominated solution either does or 

does not belong to a cluster. And also, non-dominated 

solutions have equal importance degree in a cluster. If 

the DM needs only a solution as a compromise solution, 

it is necessary a method that makes easier for the DM to 

select the best feasible one in the cluster.  

 

3.2.1 Compromise solution selection with FCM 

algorithm 
 

FCM clustering algorithm was presented by Bezdek 

[31] as the extension of HCM with the advantage of 

fuzzy set theory. The FCM allows a solution belonging 

to one or more clusters utilizing membership value 

concept with the restriction that the sum of all 

membership values for a single solution in all of the 

clusters has to be unity. Therefore, the non-dominated 

solution partially belongs to each cluster. While in 

HCM clustering membership degrees have two values 

as 0 (does not belong to cluster) and 1 (belong to 

cluster), non-dominated solutions can take all values 

between 0 and 1 in FCM, as well. Basically, the 
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algorithm calculates fuzzy partition matrix to group 

some of non-dominated solutions into c  clusters. The 

FCM starts with initial cluster centers and the aim of the 

algorithm is to cluster centers that minimize the 

following objective function 

 

 2

1 1

( , ) ,
popnc

m

ik ik k i

i k

J d S V
 

S,V U                             (9) 

 

where c  is the number of clusters, 
popn  is the size of 

Pareto optimal set,  1 2, ,..., cV V VV  is a vector of 

cluster centers, U  is a membership degrees matrix 

(fuzzy partition matrix), m  is fuzziness index 

(weighting parameter) (  1,m  ), 
ik  is the 

membership value of the k th solution to the i th 

cluster, 
kS  is a k th non-dominated solution in the 

Pareto optimal set. And also,  ,k id S V  is Euclidean 

distance between non-dominated solutions and cluster 

centers calculated by 

 

   
, , 1,..., , 1,...,

i

ik k i k i popd S V S V i c k n        (10) 

 

where 
 i
kS  is the k th solution belonging to the i th 

cluster. Here, the cluster centers are calculated using 

following formulation 

 

1

1

pop

pop

n

m

ik kj

k
ij n

m

ik

k

x

V














,  1,2,...,i c  ,   1,2,...,j r              (11) 

 

in which r  is the number of features and kjx  is the k th 

solution for the j th feature. In this study, the features 

are considered as objective functions which wanted to 

be optimized. The algorithm keeps reassigning the 

solutions to clusters until the predefined accuracy 

criterion for cluster centers is satisfied which is defined 

as  

 
   1t t




 V V    ,   1,2,...t                       (12) 

 

in which t  is the iteration number and   is a tolerance 

level for termination which varies between 0 and 1.  

 

The FCM is an iterative algorithm. The algorithmic 

steps of the FCM are summarized in Appendix B. It 

should be noted here that the differences of measuring 

units in the data may effect the clustering and the final 

results would be deviated from the essence of data. To 

eliminate such nagging effect, it is important to work on 

dimensionless transformation, e.g. normalization 

methods [32]. 

 

3.2.2 TOPSIS for compromise solution selection 

 

TOPSIS method is presented in Chen and Hwang [33], 

with reference to Hwang and Yoon [34]. It is based on 

an aggregating function representing closeness to the 

reference points. TOPSIS method uses two reference 

points: (i) ideal solution, and (ii) negative-ideal 

solution. The basic principle of the TOPSIS is that the 

chosen alternative solution should have the “shortest 

distance” from the ideal solution and the “farthest 

distance” from the negative ideal solution. In this study, 

the TOPSIS procedure given in the studies of Opricovic 

and Tzeng [35] is used.  

  

4. APPLICATION 

 

In this section, the suggested approach is illustrated to a 

MRO problem originally presented in the work of Tseo 

et al. [36] and used in the studies of Shah et al. [2]. The 

data set is about washing treatments for quality 

improvement of minced mullet flesh. The effects of 

three input variables; washing temperature (
1X ), 

washing time (
2X ), and washing ratio (

3X ) on 4r   

response variables are investigated. The response 

variables include springiness (
1Y ), thiobarbituric acid 

(TBA) number (
2Y ), percent cooking loss (

3Y ), and 

whiteness index (
4Y ). The goal is to find the values of 

input variables that satisfy the following conditions on 

the response variables simultaneously: 

 

 
 
 
 

1

2

3

4

max 1.7

min 21

min 20

max 45 .

Y

Y

Y

Y









                          (13) 

 

The input settings in the original variables with coded 

values and the multi-response data in central composite 

design (CCD) are given in Table 1. 

 

Initially, it should be checked that if the multiple 

responses are correlated or not. Therefore, the Pearson 

correlation coefficients matrix is calculated as given 

below 

 

 1 2 3 4

1

0.932 1(0.000)
, , , 0.673 0.685 1(0.003) (0.002)

0.024 0.168 0.118 1(0.924) (0.519) (0.652)

Y Y Y Y

 
 

 
   
 
  
  

          (14) 

 

where the correlation coefficients of three pairs such as 

 1 2,Y Y ,  1 3,Y Y , and  2 3,Y Y  are significant at 

0.05  . Note that the number in parenthesis are the 

p  values in the matrix given in Eq. (14).  
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Table 1. Experimental CCD and response values (Khuri and Cornell [25]) 

 

 Original Input Variables  

Coded Input 

Variables 

Responses 

Temp 

(
oC ) 

Washing 

Time (min) 

Washing 

Ratio 

Springiness 

(mm) 

TBA 

No. 

Cooking 

Loss (%) 

Whiteness 

Index 

No 
1X  

2X  
3X  

1x  
2x  

3x  
1Y  

2Y  
3Y  

4Y  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

26 

40 

26 

40 

26 

40 

26 

40 

21.2 

44.8 

33 

33 

33 

33 

33 

33 

33 

2.8 

2.8 

8.2 

8.2 

2.8 

2.8 

8.2 

8.2 

5.5 

5.5 

1 

10 

5.5 

5.5 

5.5 

5.5 

5.5 

18 

18 

18 

18 

27 

27 

27 

27 

22.5 

22.5 

22.5 

22.5 

14.9 

30.1 

22.5 

22.5 

22.5 

-1 

1 

-1 

1 

-1 

1 

-1 

1 

-1.68 

1.68 

0 

0 

0 

0 

0 

0 

0 

-1 

-1 

1 

1 

-1 

-1 

1 

1 

0 

0 

-1.68 

1.68 

0 

0 

0 

0 

0 

-1 

-1 

-1 

-1 

1 

1 

1 

1 

0 

0 

0 

0 

-1.68 

1.68 

0 

0 

0 

1.83 

1.73 

1.85 

1.67 

1.86 

1.77 

1.88 

1.66 

1.81 

1.37 

1.85 

1.92 

1.88 

1.90 

1.89 

1.88 

1.87 

29.31   

39.32   

25.16   

40.81   

29.82   

32.20   

22.01   

40.02   

33.00   

51.59   

20.35   

20.53   

23.85   

20.16   

21.72   

21.21   

21.55 

29.5    

19.4    

25.7    

27.1    

21.4    

24.0    

19.6    

25.1    

24.2    

30.6    

20.9    

18.9    

23.0    

21.2    

18.5    

18.6    

16.8 

50.36 

48.16 

50.72 

49.69 

50.09 

50.61 

50.36 

50.42 

29.31 

50.67 

48.75 

52.70 

50.19 

50.86 

50.84 

50.93 

50.98 

 

 

The predicted functions of responses are obtained by using SUR estimators as below: 

 
2 2

1 1 1

2 2

2 1 2 1 1 2

2

3 1 2 3 1
2

3 1 2 1

ˆ 1.8846 0.0974 0.1039 ; 0.9211, 0.0015

ˆ 22.6488 5.6148 0.3411 7.8304 2.6819 ; 0.9328, 6.2258

ˆ 18.9564 0.7444 0.2075 1.3311 3.2227

1.3925 1.5874 1.8049

Y x x R MSE

Y x x x x x R MSE

Y x x x x

x x x x x

    

      

    

   2

3

2 2

4 1 1

; 0.8309, 2.91

ˆ 51.91 2.4364 3.4287 ; 0.5407, 13.2703.

R MSE

Y x x R MSE

 

    

 

 

Here, 2R , called coefficient of determination, indicates that how well data points fit a statistical model. And also, MSE  is 

the mean squared error of an estimator measures the average of the squares of the errors. The individual optimal input 

values  *

1 2 3x x xx  and optimal values of predicted responses, *
f , are given in Table 2. Here, these optimal values are 

considered as ideal solutions. 

 

Table 2. Location of individual optimum for the predicted responses 

 

 

Responses 

Location of  

individual optimum 

Individual 

optimum 

 *

1 2 3x x xx  *
f  

1Ŷ  [-0.4687   0    0] 1.9074 

2Ŷ  [-0.6466    1.682   0] 18.8016 

3Ŷ  [-0.8106   1.682  1.0034] 16.5555 

4Ŷ  [0.3553   0   0] 52.3428 

 

 

 

After modeling of correlated multiple responses, it is 

aimed to achieve the MRO. The constrained MRO 

problem can be given below: 

 

http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Expected_value
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1

2

3

4

1

2

3

4

ˆmax

ˆmin

ˆmin

ˆmax

ˆ 1.7

ˆ 21

ˆ 20

ˆ 45

1.682 1.682 , 1,2,3.i

Y

Y

Y

Y

subject to Y

Y

Y

Y

x i









   

   (15) 

 

By taking into account the correlation structure of the 

responses, the uncorrelated response/responses can be 

negligible in the objective space which helps to reduce 

the number of objectives. Thus, the MRO becomes 

easier with the dimension reduction of objective space. 

It can be easily said from Eq. (14) that the fourth 

response (
4Y ) is uncorrelated with all other three 

responses,  1 2 3, ,Y Y Y . In this case, 
4Y  may be 

negligible in the objective space.  

 

The constrained MRO problem given in Eq. (15) is 

transformed to following constrained MOO problem, by 

omitting uncorrelated response 
4Y , 
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













   

x

x

x
                        (16) 

           

The adapted NSGA-II is applied to problem given in 

Eq. (16) with the predefined parameter specification. 

The Pareto optimal set is obtained by using the adapted 

NSGA-II with the tunable parameter values given in 

Table 3. The obtained 50 non-dominated solutions are 

presented in Fig.1 with respect to 
1f , 

2f  and 
3f .  

 

Table3. The tunable parameters of the adapted NSGA-II 

Algorithm parameters 

Number of input variables ( ) 3 

Population size (
popn ) 50 

Selection operator Tournament  

Crossover operator SBX  

Mutation operator Polynomial  

Crossover probability ( Prcr
) 0.90 

Mutation probability ( Pr 1mut  ) 1/3 

Crossover index (
c ) 20 

Mutation index (
m ) 20 

Number of generations (
genn ) 100 

Penalty parameter ( R ) 10 

 

 

In decision making stage, compromise solution should 

be selected among the many non-dominated solutions 

according to the DM’s preference. Seven arbitrary 

decision scenarios, given in Table 4, are prepared for 

the problem. In this study, it is assumed that all the 

objective functions have equal importance. So, the 

decision scenario “G” is considered. The FCM 

clustering algorithm and TOPSIS method are used to 

select the compromise solution. In order to evaluate the 

closeness of the selected best compromise solution 

vector,  1 2 ... rf f ff , to the individual optimal vector, 

* * * *

1 2 ... rf f f   f , given in Table 2, the following two 

criteria, root mean square error ( RMSE ) and arithmetic 

mean absolute error ( MAE ), are used. 

 

(i)    
1 2

2
*

1

1
r

i i

i

RMSE r f f


 
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 
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(ii)   *

1
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i i

i

MAE r f f


  . 
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Figure 1. Pareto optimal set with 50 non-dominated solutions for the three responses with respect to 
1 1

ˆf Y , 
2 2

ˆf Y  and 

3 3
ˆf Y  

 

 

Before applying FCM to the Pareto optimal set, given in 

Fig.1, the solution set is normalized by using min-max 

normalization due to the differences of measuring units. 

The fuzziness index and error level are supposed to be 

2m   and 510  , respectively. The number of 

clusters, c , is chosen equal to 7. The common decision 

scenarios are presented in Table 4 where each scenario 

represents a cluster. In FCM, a non-dominated solution 

may belong to several clusters at the same time with 

different membership degrees. This is an important 

feature for multi-response decision making studies to 

get the most satisfying solution which belongs to related 

cluster with the greatest membership degree. In this 

study, all the objective functions are assumed to have 

equal importance. Therefore, the decision scenario G 

(the 7th cluster) is considered. According to the 

obtained results, the 28th non-dominated solution of the 

Pareto optimal set is selected as a compromise solution 

with the highest membership degree, 7,28 0.9838  . 

And also, the 4th non-dominated solution is chosen as a 

compromise solution by using TOPSIS method. The 

selected compromise solutions are presented in Fig.2 

for both decision making methods. 

 

 

Table 4. Decision scenarios for the problem 

Cluster 

Number 

Decision 

Scenarios 

Objective function ranking 

1 A ( 1 2 3f f f ) 

2 B ( 1 3 2f f f ) 

3 C ( 2 1 3f f f ) 

4 D ( 2 3 1f f f ) 

5 E ( 3 1 2f f f ) 

6 F ( 3 2 1f f f ) 

7 G ( 1 2 3f f f  ) 
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Figure 2. Compromise solutions obtained by FCM and TOPSIS in the Pareto optimal set 

 

 

Table 5 gives the distance metric values between the 

selected compromise solutions and individual optimal 

vector. And also, the RMSE and MAE values for 

desirability function approach, given in the study of 

Shah et al. [3], are presented in Table 5. It should be 

noted here that the desirability function approach gives 

a single solution as an optimization result which is also 

considered as a compromise solution. It can be easily 

seen from the Table 5 that the compromise solution, 

obtained by FCM, gives the smallest distance values to 

the individual optimal response vector, *
f . And also, 

the compromise solution of FCM have more responses 

closer to their target, given in Table 2, than the 

compromise solutions of other decision methods. The 

compromise values of temperature ( oC ), washing time 

(min), washing ratio are obtained as -0.4761, 1.68, 

0.681 corresponding to original input values 29.67, 10, 

and 25.56, respectively. 

 

 

 

Table 5. Comparison of compromise solutions  

Method RMSE MAE  *

1 2 3x x xx  1 2 3 4[ ]f f f ff  

FCM 1.2008 0.7284 [-0.4761  1.68  0.681] [1.9074 19.0324 16.8683 49.9728] 

TOPSIS 1.2083 0.7672 [-0.474  1.6783  0.4365] [1.9074 19.0407 17.0274 49.9848] 

Desirability 1.2484 1.0672 [-0.5  1  0.79] [1.9073 20.1169 17.4932 49.8346] 

 

 

 

5. CONCLUSIONS 

 

In this study, correlation structure of responses is 

considered during the modeling and optimization 

processes of multiple responses. In modeling stage, the 

SUR estimators are used. Then, MRO is achieved by 

ignoring the uncorrelated response. Hence, 

computational complexity is reduced by dimension 

reduction of objective space. Besides, NSGA-II is 

adapted with penalty function approach to get Pareto 

solution set for constrained multi-response problem. 

Hence, many non-dominated solutions are obtained in a 

single run without aggregating of objective functions. In 

order to get a compromise solution among the many 

non-dominated solutions in Pareto set, FCM and 

TOPSIS methods are used for decision making stage. It 

is well-known that clustering algorithms group the non-

dominated solutions into smaller sets which show a 

certain degree of similarity. In this case, the non-

dominated solutions are used as alternative solutions 

and DM gets a set of compromise solutions instead of a 

compromise solution. Then, it seems necessary to use 

additional decision making method for obtaining a 

compromise solution. However, in FCM, the DM 

provides an opportunity to select a compromise solution 

among the many alternative non-dominated solutions by 

using membership degrees in a single application. It is 

seen from the results that the FCM can be used as a 

decision making tool to decide a compromise solution 

than a classical decision making method, e.g. TOPSIS.  
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Appendix A 

 

The proposed algorithmic steps of the adapted NSGA-II 

are given in the following: 

Initial: Initialize the tunable parameters 

           Define the number of input variables ( ), 

population size (
popn ), number of generations 

(
genn ), selection operator, crossover operator, 

mutation operator, crossover probability 

( Prcr
), mutation probability ( Pr 1mut  ), 

distribution index for crossover (
c ), 

distribution index for mutation (
m ), penalty 

parameter ( R ). 

Step 1: Generate a random initial population P and 

create an offspring population Q of size popn  

by using constraint handling rule given in 

Eq.(8). Set 0genn  .

Step 2: Combine the parent and offspring population,  

            S PQ. 

Step 3: Generate all non-dominated fronts, 

 1 2, ,...F F F  of S. 

Step 4: Sort the non-dominated fronts by using non-

dominated sorting and crowding distance   

operator. 

Step 5: Choose the best solution needed to fill the       

population. 

Step 6: Create an offspring solution Q from P by 

applying the selection operator, crossover 

operator with probability Prcr
, and mutation 

operator with probability Pr 1mut   with 
c  

and 
m  indexes. Set 1gen genn n  . 

Step 7: If the genn  is not reached, go to Step 2, else go  

to Step 8. 

Step 8: End 

 

 

Appendix B 

 

The steps of the FCM clustering algorithm are given 

below: 

Initial: Initialize the tunable parameters 

          Number of clusters ( c ), fuzziness index ( m ), 

tolerance level for termination (  ), generate 

randomly cluster centers (  1 2, ,..., cV V VV ). 

Step 1: Compute membership degree of non-dominated 

solution to each cluster and compose  the 

fuzzy partition matrix, U . 

Step 2: Compute cluster centers by using Eq.(11). 

Step 3: If 
   1

, 1,2,...
t t

t


  V V  then stop the 

algorithm, otherwise go to Step 1.  

           (Here, t  is defined as iteration counter) 
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