Middle Black Sea Journal of Health Science

RESEARCH ARTICLE

In Silico Analysis of Biomarker Potentials of miRNA-Mediated ceRNAs in Gastric Neoplasms

Diler Us Altay¹, Sercan Ergün²

¹Department of Nutrition and Dietetics, Faculty of health sciences, Ordu University, Ordu, Turkey ²Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey

Received: 27 May 2019, Accepted: 2 July 2019, Published online: 28 August 2019 © Ordu University Institute of Health Sciences, Turkey, 2019

Abstract

Objectives: The objective of this study is to define novel biomarkers for gastric neoplasm (GN) via *in silico* analysis that takes GN-specific miRNAs, finds their combinatorial target genes (potential ceRNAs), selects ones containing T-UCR among them and potentiates their relevance with GN. Based on this study we can plan new in vitro and in vivo studies.

Methods: Four miRNAs of which clinical relevances with GN were proved experimentally were exported via mirTarbase. Using the ComiR database, 1008 genes targeted by these 4 miRNAs simultaneously were identified. Genes containing T-UCR and showing potential ceRNA activity were extracted. Among GN-associated ceRNAs including T-UCR, we identified genes with significant expression differences between GN and normal stomach tissue using the GEPIA database. The statistical evaluation of the association of *NFAT5* and *CLK3* genes with GN was performed by Spearman correlation test in GEPIA database.

Results: GN-associated ceRNAs cross-matching with genes including T-UCR in their exonic regions were *NFAT5* and *CLK3*. We identified genes with significant expression differences between GN and normal stomach tissues among GN-associated ceRNAs including T-UCR. According to this analysis, only *NFAT5* gene was significantly higher expressed in GN than in normal stomach tissue while the other didn't show any significant differential expression pattern. *NFAT5* and *CLK3* genes were found to be significantly correlated with GN (p<0.001; R=0.22)

Conclusion: All in all, this is the study associating *NFAT5* gene with GN for the first time and giving it ongogenic potential for GN. Still, larger and more comprehensive studies are needed on this issue. **Key words:** Gastric neoplasms; miRNA; ceRNA; T-UCR; *In silico* analysis

Suggested Citation: Us Altay D, Ergun S. In Silico Analysis of Biomarker Potentials of miRNA-Mediated ceRNAs in Gastric Neoplasms. Middle Black Sea Journal of Health Science, 2019; 5(2):106-119.

Introduction

	Introduction
Address for correspondence/reprints:	Gastric neoplasms may manifest in various
	different forms, depending on the cell of origin.
Diler Us Altay	The most common form is adenocarcinoma, while
	lymphoma, gastrointestinal stromal tumors
Telephone number: +90 (452) 861 64 27	(GISTs), carcinoids and other neoplasms are less
	frequently seen. Gastric adenocarcinoma is a
	particularly common cancer across the world, but
E-mail: surelid@hotmail.com	particularly in the Far East. A lower incidence has
	been reported in the United Kingdom, but poor
DOI: 10.19127/mbsjohs.570444	prognosis when the disease is in the late stage
	results in a significant impact on population health.
	Advanced disease is observed in the majority of
	patients at time of diagnosis (Schiller, 2017).

MicroRNAs (miRNAs) are small RNAs that are not encode a protein, but nevertheless potent coordinating capacities. They perform vital regulatory functions in a range of malign cancers, involving gastric cancer. Abnormal stated miRNAs are also involved in gastric carcinogenesis through modification of growth of cells, cell cycles, apoptosis, and migration of cells. Epigenetic and genetic alteration has been identified as one of the mechanisms responsible for miRNA dysregulation. MiRNA performs essential functions in the progression of gastric cancer by targeting oncogene or tumor suppressor gene expression. The first step in determining the roles of miRNAs in gastric cancer is to investigate differences in miRNA expression profiles between normal and tumor gastric tissues (Pan et al., 2013). Tumor suppressor miRNAs inhibit tumor formation by suppressing oncogenes. Relationship of microRNAs within cancer changes proteinencoding oncogene or tumor suppressor genes are known to cause cancer. Genetic cause of cancer with the recent demonstration of miRNAs in tumor formation.

Competing endogenous RNAs (ceRNAs) are transcripts capable of mutual regulation at the posttranscription level through competition for shared miRNAs. CeRNA networks link protein-coding mRNA functions with those of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, pseudogenic RNA and circular RNA. Since any transcripts containing an miRNA response component are in theory capable of acting as ceRNAs, these may represent a widespread form of post-transcriptional gene expression regulation in physiological and pathological terms. A number of factors are known to be capable of affecting ceRNA activity, including the abundance and subcellular localization of ceRNA components, the binding affinity of miRNAs to their sponges, RNA editing, RNA secondary structures and RNAbinding proteins. Disturbance in these may lead to deregulation of ceRNA networks and thus to human diseases, including cancer (Qi et al., 2015).

In recent years, ncRNAs have generated considerable interest terms of in cell transformation. Ultraconserved regions (UCRs) were first discovered in 2004 following bioinformatic investigation of mouse, rat, and human genomes. UCRs consist of a minimum of 481 genomic sequences at least 200 bp in length (range 200-779 bp), and which are fully conserved (100% identity without any insertions or deletions) among the above three vertebrate species. A

significant proportion of UCRs are transcribed (T-UCRs) in normal human tissues, and their expression levels have been observed to exhibit a ubiquitous and tissue-specific pattern. While the functions of T-UCRs are largely unclear, the high level of trans-species conservation they exhibit appears to suggest that they are of significant ontogenesis/phylogenesis importance to in mammals. Recent research into genome-wide expression has revealed that T-UCRs exhibit distinct profiles in different human cancers, representing further evidence of their role in carcinogenesis in humans (Fassan et al., 2014).

In recent years understanding their role in cancer, miRNAs have been hopeful in understanding the molecular pathology of cancer and developing molecular targeted therapies. Based on this feature of miRNAs, we aim to identify genes with potential oncogenic activity not previously identified *in silico* in gastric cancer. In line with our data, we aim to conduct further in vitro and in vivo studies on these miRNAs

Methods

Selection of miRNAs involved in the pathogenesis of gastric neoplasms

Four miRNAs clinically associated with gastric neoplasm and authenticated experimentally were exported over the MiRTarBase database. The miRTarBase database submits estimated and verified data concerning miRNA-target interaction. This enables researchers to confirm novel miRNA targets. The 'Comfirmed Target module' showed in this study by Chou et al. (2018).

Analysis of gastric neoplasm-specific miRNAmediated ceRNAs

One thousand eight genes projected by these four miRNAs simultaneously were described using the ComiR database. ComiR is an online system employed for the purpose of combinatorial miRNA target estimation. It computes the potency of targeting by a group of miRNAs. When calculating the relay impact of one mRNA from a group of several miRNAs, the application employs utilizerdefined miRNA expression levels in а combinatorial manner based on appropriate machine learning techniques and thermodynamic modeling to elicit more accurate estimates. ComiR admits the opportunity of constituting a operational target for a group of miRNAs, based on relevant miRNA expression levels, for every gene (Coronnello and Benos, 2013).

We hope that the RNA transcripts of these genes will exhibit potential ceRNA activity for these miRNAs and that their arrangement is organized on the basis of miRNA-sponging mechanisms.

Matching of GN-associated ceRNA with genes including T-UCR

Bejerano et al. identified the UCRs in the human genome. Genes including these regions are graded as upstream, exonic or downstream in accordance, depending on the site of fixation within the gene (Bejerano et al., 2004). Genes with T-UCR in their exonic areas were also identified, and those exhibiting latent ceRNA activity were excerpted in our previous research.

Analysis of gastric neoplasm-related ceRNAs including T-UCR in the sense of differential gene expression between gastric neoplasm and normal gastric tissues

Genes exhibiting significant expression differences between gastric neoplasm and normal stomach tissue from GN-associated ceRNAs, including T-UCR were identified with the assistance of the GEPIA database. GEPIA (Gene Expression Profiling Interactive Analysis), a webbased tool to deliver fast and customizable functionalities based on The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) data. All plotting features in GEPIA are developed using R (version 3.3.2) and Perl (version 5.22.1) programs. (Tang et al., 2017).

Correl tests of NFAT5 and CLK3 genes in gastric neoplasm

Methods for analyzing gene expression are numerous and diverse. Expression-based clustering, for example, can be divided into supervised and unsupervised methods. Gene expression differential analysis is a classical supervised method, leading to the finding tumorspecific genes by comparing tumor to normal groups. Statistical analysis of the association between *NFAT5* and *CLK3* genes and gastric neoplasm was showed using the Spearman correlation test in the GEPIA database.

Results

A list of four miRNAs experimentally linked to gastric neoplasm using the miRTarbase database is shown in Table 1.

Table	1.	List	of	miRNAs	taking	role	in	gastric
neopla	sm	s path	log	enesis				

1.	hsa-miR-148a

- 2. hsa-miR-23a
- 3. hsa-miR-370
- 4. hsa-miR-429

A list of 1008 genes simultaneously targeted by these four miRNAs is shown supplementary 1. Wedeclared genes with T-UCR in their exonic regions from those listed by Bejerano et al., and these are shown in supplementary 2. Then, we extracted ones showing potential ceRNA activity in our previous analysis among them (Table 2). Genes exhibiting significant expression variation between gastric neoplasm and normal gastric tissues among gastric neoplasm-related ceRNAs with T-UCR were identified. In agreement with that analysis, expression of NFAT5 was significantly higher in gastric neoplasm compared to normal stomach tissue, while no significant differential expression patterns were detected in the other genes (Table 3).

Table 2. List of gastric neoplasms-associatedceRNAs cross-matching with genes including T-UCR in their exonic regions

CLK3	

Table 3. Expression values of GN-associatedceRNAs including T-UCR between gastricneoplasms and normal stomach tissues.

Gene ID	GN	Normal stomach
NFAT5*	8,94	4,03
CLK3	30,1	36,53

*shows significantly differential expression pattern between GN and normal stomach tissues

Statistical analysis of the link between *NFAT5* and *CLK3* genes and gastric neoplasm was conducted through the GEPIA database. Spearman correlation analysis revealed that the *NFAT5* and CLK3 gene pair exhibited significant association with gastric neoplasm (Figure 1) (p=0.000; R=0.22).

Figure 1: Spearman correlation analysis of NFAT5 and CLK3 genes with GN.

AVPR1A	0.9048	AK4	0.9053	ATF7	0.9127
AAK1	0.9202	AKAP5	0.9172	ATG9A	0.9127
ABCC3	0.9049	AKAP6	0.9054	ATP10A	0.9051
ABI2	0.9239	AKT2	0.9114	ATP11A	0.9198
ACADSB	0.9122	AMER2	0.9131	ATP11B	0.9117
ACER3	0.905	ANK2	0.9172	ATP2A2	0.9051
ACP6	0.9129	ANKFY1	0.9125	ATP8A1	0.9198
ACSS3	0.9052	ANKRD11	0.9201	ATP8A2	0.9054
ACVR1C	0.9173	ANKRD9	0.9049	ATRX	0.923
ACVR2B	0.9216	ANO5	0.9111	ATXN1	0.9216
ADAM10	0.9201	ANTXR2	0.9131	ATXN1L	0.9054
ADAM12	0.9212	AP1M1	0.9178	ATXN3	0.9202
ADAM22	0.9054	AP5M1	0.9201	ATXN7L3B	0.9175
ADAMTS4	0.9054	APC	0.9052	B3GALT5	0.9201
ADAMTS5	0.9197	APOL3	0.9104	B4GALT4	0.905
ADAMTS6	0.9213	APOL6	0.9055	B4GALT5	0.9163
ADARB1	0.9051	ARHGAP19	0.9051	BACH2	0.913
ADCY1	0.9202	ARHGAP20	0.9174	BAG2	0.9125
ADCYAP1R1	0.9128	ARHGAP31	0.9049	BCAR1	0.9128
ADRBK2	0.9055	ARHGAP32	0.9052	BCAS4	0.9054
AFF1	0.9197	ARIH1	0.9227	BCL2L11	0.9209
AFF2	0.9133	ARL10	0.9134	BICD1	0.9197
AFF3	0.9051	ARL5A	0.9167	BICD2	0.905
AGAP1	0.923	ARL8B	0.9146	BMF	0.9049
AGFG1	0.9172	ARNT2	0.9213	BMP1	0.912
AGO1	0.9217	ARPIN	0.9174	BMP2K	0.9166
AGO2	0.9116	ARSD	0.9117	BMPR1A	0.923
AGO3	0.9231	ASAP1	0.9165	BNC2	0.9216
AJAP1	0.9201	ASRGL1	0.909	BNIP2	0.917

Supplementary 1. List of genes targeted bu these 4GN-associated miRNAs simultaneously

0.9171
0.9173
0.9176
0.9125
0.9168
0.92
0.9048
0.9116
0.9195
0.9056
0.9162
0.9132
0.9116
0.9208
0.9049
0.9051
0.9113
0.9176
0.9177
0.923
0.9132
0.9056
0.9201
0.911
0.913
0.905
0.913
0.9166
0.9052
0.9177
0.9201
0.9115
0.9175
0.9217
0.9128
0.9127
0.0125
0.9125
0.9055
0.9055 0.9053
0.9055 0.9053 0.9117
0.9123 0.9055 0.9053 0.9117 0.9173
0.9123 0.9055 0.9053 0.9117 0.9173 0.9214
0.9123 0.9055 0.9053 0.9117 0.9173 0.9214 0.9232

CDKL5	0.9177
CDS2	0.9133
CDYL2	0.9174
CECR2	0.9173
CELF1	0.9225
CELF2	0.9132
CENPO	0.9117
CENPP	0.9176
CEP192	0.9132
CEP250	0.9133
CEP78	0.913
CEP85L	0.9207
CERS6	0.9125
CFL2	0.9232
CFLAR	0.9057
CHML	0.9123
CHRM3	0.905
CHRNA7	0.9167
CHST11	0.9127
CHST9	0.9056
CIITA	0.9133
CLCN3	0.9104
CLCN6	0.912
CLEC16A	0.905
CLEC16A CLEC2D	0.905 0.9049
CLEC16A CLEC2D CLK3	0.905 0.9049 0.9177
CLEC16A CLEC2D CLK3 CLMN	0.905 0.9049 0.9177 0.9134
CLEC16A CLEC2D CLK3 CLMN CLOCK	0.905 0.9049 0.9177 0.9134 0.9201
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2	0.905 0.9049 0.9177 0.9134 0.9201 0.9237
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L CNTNAP2	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT4 CNOT6L CNTNAP2 CNTNAP3B	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9019
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L CNTNAP2 CNTNAP3B CNTROB	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9119 0.9121
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L CNTNAP2 CNTNAP3B CNTROB COL20A1	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9119 0.9121 0.9125
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L CNTNAP2 CNTNAP3B CNTROB COL20A1 CPD	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9119 0.9121 0.9125
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L CNTNAP2B CNTNAP3B CNTROB COL20A1 CPD CPEB3	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9119 0.9121 0.9125 0.9053
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L CNTNAP2 CNTNAP3B CNTROB COL20A1 CPD CPEB3 CPM	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9119 0.9121 0.9125 0.9053 0.9127
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L CNTNAP2B CNTNAP3B CNTROB COL20A1 CPD CPEB3 CPM CPSF6	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9121 0.9125 0.9053 0.9127
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT4 CNOT6L CNTNAP2 CNTNAP3B CNTROB COL20A1 CPD CPEB3 CPM CPSF6 CRTAP	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9119 0.9121 0.9125 0.9053 0.9127 0.9127 0.9127 0.9127 0.9127 0.9128
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNKSR3 CNNM2 CNOT6L CNTNAP2 CNTNAP3B CNTROB COL20A1 CPD CPEB3 CPM CPSF6 CRTAP CSRNP3	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9121 0.9125 0.9053 0.9127 0.9127 0.9123
CLEC16A CLEC2D CLK3 CLMN CLOCK CLVS2 CNVS2 CNSR3 CNNM2 CNOT6L CNTNAP2 CNTNAP3B CNTROB COL20A1 CPD CPEB3 CPM CPEB3 CPM CPSF6 CRTAP CSRNP3 CTNNA3	0.905 0.9049 0.9177 0.9134 0.9201 0.9237 0.9238 0.9227 0.9103 0.9228 0.9049 0.9119 0.9121 0.9125 0.9053 0.9127 0.9127 0.9123 0.9124 0.9125 0.9053 0.9127 0.9124 0.9127 0.9127 0.9121 0.9121

CUL3	0.9049
CUX1	0.9216
CXCL12	0.9162
CXorf23	0.9196
CYB561D1	0.905
CYB5R4	0.9132
СҮТН3	0.9119
DAPK2	0.9175
DBNL	0.9226
DBT	0.9133
DCAF7	0.9052
DCN	0.917
DCP2	0.9233
DCUN1D3	0.905
DCX	0.9053
DDI2	0.9177
DDX53	0.9165
DGKE	0.9131
DGKH	0.9227
DGKI	0.9176
DIRAS2	0.9113
DIS3	0.9215
DISC1	0.9052
DLG5	0.9174
DLGAP2	0.9055
DNAJC10	0.9231
DNAJC15	0.9131
DNAJC18	0.9167
DNAJC5	0.9196
DNASE1	0.9177
DNM3	0.9127
DNMT3A	0.9176
DOK6	0.9176
DR1	0.9216
DRP2	0.9122
DSC2	0.9215
DTNA	0.917
DTWD1	0.9227
DYRK2	0.9174
EEF2K	0.9051
EGFR	0.9176
EIF2AK2	0.9133
EIF4E3	0.9216
EIF4G1	0.905

EIF5	0.9048	FGF7	0.9121	GOLGB1	0.9133
ELFN2	0.9129	FGFR1OP	0.9217	GOLT1B	0.9106
ELK4	0.9174	FIGN	0.9215	GPATCH2L	0.9238
ELP2	0.9052	FILIP1	0.9123	GPR107	0.913
EMC10	0.9056	FKBP15	0.905	GPR161	0.9049
ENAH	0.9176	FKTN	0.913	GPR180	0.9197
ENTPD1	0.9056	FLNA	0.9056	GPRC5B	0.9125
EPHA5	0.9123	FLRT2	0.9241	GPRIN3	0.9134
EPHA8	0.9106	FMN1	0.9177	GRAMD1B	0.9049
EPHB6	0.9122	FNTA	0.9049	GREM1	0.9227
EPN1	0.9217	FOSL2	0.9128	GRIK3	0.9229
EPT1	0.9053	FOXK1	0.9177	GRIN2A	0.9132
ERBB2	0.9049	FOXP2	0.913	GRIN2B	0.9241
ERBB2IP	0.916	FREM2	0.9052	GTDC1	0.9176
ERBB4	0.9175	FRK	0.9231	GTF2H5	0.9132
ERI1	0.911	FRY	0.9192	GTF3C4	0.9123
ESRRG	0.9162	FSD1L	0.9209	GTPBP10	0.9213
ETNK1	0.913	FTO	0.9056	GUCY1A2	0.9134
ETV5	0.9109	FUT4	0.9224	GXYLT1	0.9197
EXOC5	0.9052	FUT9	0.9233	HDAC2	0.9053
EXOSC9	0.9111	FXR1	0.9175	HDAC9	0.9198
EXT1	0.9171	FZD3	0.9134	HECW2	0.9174
FAM126A	0.9133	GAB1	0.9051	HEG1	0.9194
FAM126B	0.9225	GABRA4	0.9054	HELB	0.9176
FAM168B	0.917	GABRG3	0.9176	HELZ	0.9174
FAM179A	0.9176	GALR1	0.9133	HEMK1	0.9231
FAM193B	0.9049	GAN	0.9217	HFE	0.9116
FAM204A	0.9202	GAS2L3	0.9189	HHIP	0.9051
FAM217B	0.9103	GCC2	0.9054	HIF1AN	0.9227
FAM26E	0.9201	GDAP2	0.9199	HIPK2	0.9234
FAM63B	0.92	GDF11	0.9056	HIPK3	0.9123
FAM83F	0.9178	GFOD1	0.9176	HLA-A	0.908
FAM9C	0.9209	GFPT1	0.9053	HLA-A	0.9194
FARP1	0.9175	GJA3	0.9122	HMGA2	0.9053
FARP2	0.9126	GLRA3	0.9173	HMHA1	0.9049
FAT3	0.9198	GMFB	0.9214	HNRNPA3	0.9049
FBXL4	0.9172	GMPPB	0.9051	HOOK3	0.9056
FBXO22	0.923	GMPS	0.905	HS2ST1	0.9171
FBXO25	0.9177	GNAI3	0.9238	HS6ST3	0.9131
FBXO30	0.9174	GNAO1	0.9168	HSBP1	0.9132
FBXO32	0.9129	GNB1L	0.9054	HSD17B2	0.9055
FEM1A	0.9055	GNB5	0.9132	HSPA12A	0.9122
FER	0.9216	GNPDA2	0.9118	HTT	0.9194
FGF14	0.9236	GOLGA6L2	0.9228	ICA1L	0.9173

ICE2	0.9175	KCNQ5	0.9119	LRRK2	0.9173
ICOSLG	0.913	KCTD15	0.9121	LSAMP	0.9176
IDS	0.9127	KCTD16	0.9226	LYNX1	0.9123
IFITM10	0.9164	KDM3B	0.9199	LYRM2	0.9126
IGF2BP1	0.9129	KDM5A	0.9051	MACC1	0.9171
IGSF10	0.9119	KDM7A	0.9213	MAP3K2	0.9201
IKZF1	0.9125	KIAA0930	0.9198	MAP3K9	0.9133
IL17RD	0.9054	KIAA1045	0.9124	MAPK1	0.9201
IL6R	0.9124	KIAA1244	0.9216	MAPK13	0.9052
IL6ST	0.913	KIAA1456	0.9053	MAS1	0.9056
ILDR2	0.9201	KIAA1462	0.9171	MBNL3	0.9176
IMPG1	0.9125	KIAA1549	0.9054	MBOAT2	0.9054
INO80D	0.9201	KIAA1614	0.9175	MBP	0.9177
INPP4A	0.9176	KIAA1958	0.9175	MCC	0.905
INTS6	0.9217	KIAA2018	0.9129	MCFD2	0.9205
INTU	0.9133	KIDINS220	0.9199	MCTP2	0.9169
IPCEF1	0.9172	KIF1B	0.9128	MDGA1	0.9055
IPMK	0.9125	KIF26B	0.9054	MDM2	0.9131
IPO9	0.9216	KIF6	0.9215	MDM4	0.9133
IRAK3	0.9051	KLC1	0.9234	MECP2	0.9056
IRGQ	0.9053	KLF12	0.9216	MED12L	0.9123
ITGA11	0.9172	KLHL21	0.9051	MED13L	0.9201
ITGA9	0.9212	KLHL28	0.9116	MEGF9	0.919
ITM2B	0.9132	KLHL42	0.905	MEIS1	0.9123
ITSN1	0.9178	KLHL6	0.9126	MESDC2	0.9122
IYD	0.9213	KMT2C	0.9236	METTL8	0.9175
JAKMIP2	0.9168	KPNA4	0.913	MEX3C	0.9121
JMY	0.905	KRR1	0.9226	MGAT4A	0.9131
KALRN	0.9053	KRT222	0.9105	MGAT4C	0.9238
KAT7	0.9132	KSR1	0.9212	MGAT5	0.9173
KATNAL1	0.913	KSR2	0.9134	MGLL	0.9124
KCNA1	0.9052	KYNU	0.9236	MIEF1	0.9165
KCNB1	0.9132	LANCL3	0.9056	MITF	0.9114
KCNC1	0.9052	LCOR	0.9054	MKLN1	0.923
KCNC4	0.9238	LCORL	0.9048	MLEC	0.9128
KCND3	0.9113	LDLRAD4	0.9053	MLXIP	0.9126
KCNH5	0.92	LGALS8	0.9127	MLYCD	0.9134
KCNJ15	0.9131	LPGAT1	0.9214	MMP16	0.9057
KCNJ6	0.924	LPHN3	0.9131	MOB1B	0.913
KCNK5	0.9103	LPP	0.9231	MON2	0.9131
KCNMA1	0.9055	LRIG2	0.9199	MOSPD2	0.9103
KCNN3	0.9134	LRRC58	0.9197	MPP6	0.9128
KCNQ3	0.9215	LRRC8B	0.9051	MPRIP	0.9176
KCNQ4	0.9099	LRRK1	0.9133	MR1	0.9131

MRE11A	0.9167
MROH5	0.9124
MRPL35	0.9114
MRPL42	0.9217
MRPS25	0.9126
MTF1	0.9198
MTMR10	0.9211
MTMR9	0.9197
MTR	0.9054
MTUS1	0.9118
MXD1	0.9125
MYLK	0.9199
MYO18A	0.92
MYO18B	0.9225
MYO5C	0.9172
МҮО9А	0.916
N4BP2	0.9176
N4BP2L2	0.92
NA	0.9049
NA	0.9053
NA	0.9055
NA	0.9125
NA	0.913
NA	0.9216
NA	0.9239
NABP1	0.9201
NACC2	0.9051
NAP1L1	0.9215
NCKAP1	0.924
NCOA2	0.9122
NDST1	0.9171
NDUFA5	0.9127
NDUFA9	0.9055
NDUFS1	0.9133
NEDD4	0.9198
NEGR1	0.9226
NF1	0.9176
NFASC	0.9215
NFAT5	0.9236
NFIA	0.9233
NFIB	0.9175
NFIC	0.9053
NHLRC2	0.9055
NIN	0.9127

NIPA1	0.9197
NKD1	0.9174
NKTR	0.9131
NLGN4X	0.9116
NOL4L	0.9049
NOVA1	0.9214
NOVA2	0.9198
NOX5	0.9174
NQO2	0.9216
NR6A1	0.905
NRDE2	0.9227
NRXN3	0.9175
NT5DC1	0.905
NT5DC3	0.9053
NTNG2	0.9157
NTPCR	0.905
NTRK3	0.9238
NUCKS1	0.9127
NUDCD2	0.9051
NUDT3	0.92
NUDT4	0.9132
NUFIP2	0.9198
NUPL1	0.9171
ODF2L	0.9196
OGFRL1	0.9176
ONECUT2	0.9134
ORAI2	0.9134
ORC4	0.9049
OSBPL8	0.9122
OTUD4	0.9115
OTUD7A	0.9216
OTULIN	0.9175
PAG1	0.9216
PAK3	0.9132
PANK3	0.9133
PAPD5	0.9051
PARD3B	0.9168
PAX5	0.9226
PAXIP1	0.9122
PBX1	0.9198
PCDH10	0.9194
PCDH19	0.912
PCDH9	0.9239
PCDHA4	0.9052

PCNXL4	0.9236
PCYT1B	0.9122
PDE4B	0.9098
PDE4DIP	0.9049
PDE5A	0.919
PDE7A	0.915
PDIK1L	0.9101
PDK1	0.9231
PDPR	0.9174
PDXK	0.9131
PDZD8	0.9166
PEAK1	0.9231
PELP1	0.9159
PEX11A	0.9152
PEX26	0.9234
PGBD5	0.9056
PHACTR1	0.9167
PHACTR2	0.92
PHC3	0.9176
PHEX	0.9121
PHF3	0.9053
PHKG2	0.9126
PIGP	0.9131
PIK3C3	0.9173
PIK3CA	0.9223
PITPNM3	0.9048
PLCXD3	0.9048
PLEKHA1	0.9057
PLEKHA3	0.9057
PLEKHA8	0.9174
PLEKHG4B	0.9233
PLEKHM1	0.9128
PLLP	0.9052
PLXNA4	0.9199
PNRC2	0.9146
POLE	0.9226
POLR1A	0.9175
POLR3D	0.9048
POU2F1	0.9178
PPARA	0.9175
PPIP5K2	0.9202
PPM1A	0.9175
PPM1F	0.9169
PPP1CB	0.9166

PPP1R12B	0.9177
PPP1R13B	0.9128
PPP2R1B	0.9188
PPP2R5E	0.921
PRDM11	0.9132
PRDM15	0.9226
PRDM16	0.9052
PRKAA2	0.9054
PRKCA	0.9132
PRKCB	0.9052
PRLR	0.9176
PRPF38A	0.9122
PRRC2B	0.9048
PRRG3	0.9049
PRTG	0.9233
PSD3	0.92
PSMG4	0.9049
PTAR1	0.9215
PTBP2	0.9133
PTBP3	0.905
PTCH1	0.9057
PTCHD1	0.923
PTEN	0.9172
PTGER3	0.9198
PTK2	0.9171
PTPN11	0.9125
PTPN14	0.923
PTPN23	0.9048
PTPRT	0.9133
PURA	0.9201
PURB	0.9054
PVRL1	0.9048
PYGO1	0.9174
QKI	0.9226
RAB11FIP2	0.9165
RAB11FIP4	0.92
RAB15	0.9106
RAB21	0.9217
RAB3C	0.9201
RAB3IP	0.9132
RAB6B	0.9173
RAD51D	0.9131
RALY	0.9052
RAP1A	0.9206

RAP1B	0.9227
RAPGEF1	0.9162
RASAL2	0.9133
RASGEF1B	0.9049
RASSF5	0.9128
RASSF8	0.9166
RBBP4	0.9129
RBM25	0.9124
RBM28	0.9227
RBMS2	0.9129
RBMS3	0.905
RC3H2	0.9212
REL	0.9055
REPS1	0.9125
REPS2	0.913
RET	0.9116
REV1	0.9127
REV3L	0.9216
RFX7	0.92
RGMA	0.9057
RICTOR	0.9053
RIF1	0.9199
RILPL2	0.9051
RIMKLA	0.9198
RIMS2	0.9168
RNF115	0.9055
RNF150	0.9054
RNF152	0.9132
RNF165	0.9055
RNF217	0.92
RNF24	0.9175
RORA	0.9133
RORB	0.9175
RPAP2	0.9217
RPS6KA5	0.9241
RPS6KB1	0.9118
RRP15	0.9199
RTEL1- TNFRSF6B	0.9118
RTKN2	0.9049
RUNX1T1	0.9126
S100A7A	0.9049
SAMD12	0.9131
SAR1A	0.9052
SARM1	0.9201

SCAI	0.9176
SCN3B	0.9048
SCN8A	0.9209
SCO1	0.9056
SCOC	0.9119
SCUBE1	0.9132
SDHC	0.9057
SDK2	0.905
SDR42E1	0.9216
SEC22C	0.9049
SEMA3A	0.9051
SEMA5A	0.9133
SEMA6D	0.9169
SERINC3	0.9116
SERINC5	0.9052
SESN2	0.9096
SESN3	0.9225
SF3B3	0.9053
SGCD	0.9199
SH3BP2	0.9056
SH3PXD2A	0.9215
SH3TC2	0.9132
SHE	0.913
SHPRH	0.9216
SHROOM4	0.9198
SIK2	0.9175
SIK3	0.9209
SIM1	0.9129
SIX4	0.9122
SKP1	0.9216
SLC16A7	0.9133
SLC1A2	0.9201
SLC24A4	0.9214
SLC30A4	0.9052
SLC30A9	0.9126
SLC35B4	0.9194
SLC35C2	0.9129
SLC35E3	0.9217
SLC39A9	0.9122
SLC43A2	0.9214
SLC44A1	0.9132
SLC4A4	0.912
SLC4A7	0.9104
SLC4A8	0.9056

SLC5A3	0.9177
SLC7A11	0.9133
SLC7A14	0.9172
SLC7A2	0.9048
SLC7A6	0.905
SLC8A1	0.9236
SLCO5A1	0.905
SLITRK5	0.9238
SMAD2	0.9241
SMAD5	0.9225
SMC1A	0.9198
SMG9	0.9121
SMURF2	0.9131
SNAP91	0.9125
SNTB2	0.9199
SNX1	0.9133
SNX27	0.9173
SNX30	0.9054
SNX33	0.913
SNX8	0.9191
SOD2	0.9134
SOGA3 KIAA0408	0.9055
SORT1	0.9128
SOS1	0.9194
SOX5	0.9122
SP3	0.9115
SPATA2	0.911
SPEF2	0.9097
SPRY3	0.9131
SREK1IP1	0.9131
SRGAP1	0.9237
SRRM4	0.9172
SSBP2	0.9132
SSH2	0.9124
SSTR2	0.9052
ST6GALNAC3	0.9124
ST8SIA1	0.9132
ST8SIA3	0.9176
ST8SIA5	0.9057
STAM2	0.9116
STARD8	0.9197
STK24	0.9216
STK35	0.9212
STOX2	0.913

STRN	0.9049
STX7	0.9217
STXBP4	0.9134
STXBP6	0.9155
SUGT1	0.9202
SULT1B1	0.905
SV2B	0.9228
SV2C	0.9176
SYK	0.9121
SYNE3	0.9216
SYNJ1	0.9119
SYT14	0.9134
SYT16	0.9134
TAB3	0.9052
TACR3	0.9166
TBC1D15	0.9119
TBC1D16	0.9201
TBC1D32	0.9173
TBC1D5	0.9121
TBX18	0.9169
TCF4	0.913
TET2	0.9198
TET3	0.913
TEX14	0.905
TFDP2	0.9104
TFEC	0.9195
TG	0.9195
TGFBR3	0.913
THBS1	0.9124
THRB	0.9051
THSD7A	0.9168
THUMPD3	0.9101
TMED3	0.924
TMED5	0.9171
TMED7	0.9181
TMEM120B	0.9053
TMEM127	0.913
TMEM132B	0.9174
TMEM154	0.9235
TMEM164	0.9196
TMEM168	0.9049
TMEM170A	0.921
TMEM170B	0.9133
TMEM178B	0.9177

TMEM184A	0.9052
TMEM192	0.9176
TMEM200C	0.9052
TMOD1	0.9101
TMOD2	0.9132
TMOD3	0.92
TNFAIP8	0.92
TNKS1BP1	0.921
TNPO1	0.9053
TNRC6A	0.9226
TNRC6B	0.9134
TOM1L2	0.9194
TPCN1	0.9116
TPPP	0.9052
TREM1	0.909
TRHDE	0.9234
TRIL	0.9102
TRIM33	0.9168
TRIM44	0.9227
TRIOBP	0.9237
TRMT5	0.9122
TROVE2	0.9199
TRPM3	0.9129
TRPS1	0.9127
TSC1	0.9053
TSC2	0.9051
TSC22D2	0.9177
TSPAN14	0.9231
TSPAN3	0.9129
TTBK2	0.9173
TTC39B	0.9176
TTC7B	0.924
TTL	0.9057
TTPAL	0.9128
TXLNG	0.9108
TXNDC15	0.9115
TXNL1	0.9128
UBA6	0.9051
UBN2	0.9238
UBXN10	0.9048
UBXN7	0.9132
UFM1	0.9151
UHMK1	0.9131
UNC119B	0.9124

UNC13A	0.905	WNT2B	0.9233	ZHX3	0.9175
USP15	0.9215	WSCD1	0.9118	ZNF107	0.9164
USP31	0.9174	WTIP	0.9177	ZNF117	0.9238
USP35	0.9163	XIAP	0.9174	ZNF138	0.9226
USP38	0.9052	XKR4	0.9234	ZNF142	0.913
USP42	0.9049	XPO1	0.917	ZNF189	0.9114
USP45	0.905	XPO4	0.9225	ZNF207	0.923
USP46	0.913	XYLT1	0.9131	ZNF223	0.9106
USP49	0.9054	YIPF4	0.9217	ZNF226	0.9231
USP6	0.9053	YIPF6	0.9051	ZNF230	0.9125
USP6NL	0.9227	YOD1	0.9198	ZNF233	0.9182
USP8	0.9231	YY1	0.913	ZNF257	0.9232
UVSSA	0.9126	ZADH2	0.9131	ZNF26	0.9234
VAMP4	0.9049	ZBED3	0.9126	ZNF268	0.9057
VANGL1	0.9176	ZBTB25	0.9215	ZNF273	0.9227
VAPA	0.9199	ZBTB34	0.9195	ZNF286A	0.9128
VASH2	0.9181	ZBTB37	0.9239	ZNF286B	0.9127
VCPIP1	0.9173	ZBTB44	0.9053	ZNF292	0.9111
VGLL3	0.9175	ZBTB8A	0.9049	ZNF37A	0.9131
VKORC1L1	0.9126	ZBTB8B	0.9202	ZNF431	0.9177
VLDLR	0.9129	ZC3H12C	0.9172	ZNF445	0.9176
VPS35	0.9123	ZC3H14	0.9239		
VTA1	0.9131	ZC3H6	0.9215		
VTI1A	0.9164	ZC3H8	0.917		
VWC2	0.9132	ZDHHC17	0.9183		
WASF3	0.9161	ZDHHC18	0.9121		
WDFY2	0.9133	ZDHHC2	0.9127		
WDR11	0.9161	ZDHHC21	0.9215		
WDR62	0.9197	ZEB1	0.9232		
WDR7	0.9216	ZFHX4	0.9114		
WDR82	0.916	ZFP90	0.9127		
WHSC1L1	0.9126	ZFYVE20	0.9167		
WNK3	0.9196	ZFYVE26	0.9054		

Supplementary 2: List of genes containing T-UCR in their exonic regions according to the study of Bejerano et al.

	•	U	U	U	<u> </u>	N
uc.143		218	AB014560	uc.393	275	CLK3
uc.203		203	AB067798	uc.185	411	CLK4
uc.135		201	AK096400	uc.184	230	CPEB4
uc.339		252	ATP5G2	uc.471	239	DDX3X
uc.413		272	BC060758	uc.331	218	DLG2
uc.49		207	BC060860	uc.13	237	EIF2C1
uc.61		326	BCL11A	uc.194	201	EPHA7
uc.324		225	C11orf8	uc.183	236	FBXW1B
uc.285		232	CARP-1	uc.333	270	FLJ25530
uc.233		266	CENTG3	uc.478	252	GRIA3

uc.479	302	GRIA3
uc.282	207	GRIN1
uc.97	442	HAT1
uc.144	205	HNRPDL
uc.186	305	HNRPH1
uc.263	207	HNRPK
uc.264	267	HNRPK
uc.443	239	HNRPM
uc.45	203	HNRPU
uc.46	217	HNRPU
uc.409	244	L32833
uc.174	260	MATR3
uc.129	212	MBNL1
uc.356	251	MBNL2
uc.375	300	MIPOL1
uc.292	217	MLR2
uc.406	211	NFAT5
uc.473	222	NLGN3
uc.378	251	NRXN3
uc.475	397	OGT
uc.280	220	PBX3
uc.338	223	PCBP2
uc.376	290	PRPF39
uc.377	217	PRPF39
uc.33	312	PTBP2
uc.102	338	PTD004
uc.48	298	PUM2
uc.477	209	RAB9B
uc.395	249	RBBP6
uc.330	207	RBM14
uc.455	245	RNPC2
uc.419	289	SFRS1
uc.138	419	SFRS10
uc.28	355	SFRS11
uc.189	573	SFRS3
uc.456	320	SFRS6
uc.50	222	SFRS7
uc.454	208	SLC23A1
uc.193	319	SYNCRIP
uc.436	210	TCF4
uc.414	246	THRA
uc.313	231	TIAL1
uc.208	218	TRA2A
uc.209	250	TRA2A

uc.77	296	ZFHX1B
uc.151	214	ZFR
uc.474	210	ZNF261

Discussion

Gastric neoplasm is the leading cause of cancerrelated deaths. According to research conducted in 2008, gastric neoplasm is the fourth most common cancer in the world and ranks second among cancers that cause death. The death rate from this cancer is higher than that from malignant tumors such as colon, breast and prostate cancers. The development of this cancer is complex, involving a number of genetic and epigenetic alterations of oncogenes, tumor suppressor genes. deoxyribonucleic acid (DNA) repair genes, cell regulators, and signaling molecules. cvcle Oncogenes are activated at different stages of the course of gastric neoplasm, and some tumor suppressor genes are inactivated. Numerous studies have shown that miRNAs can be effective in carcinogenesis. Changes in expression levels of miRNAs in different types of cancer have been investigated, and miRNAs have been observed to differ between normal and pathological tissues (Sevignani et al., 2006; Zhou et al., 2010). Various miRNAs have been shown to play a specific role in tumor progression and metastasis in the differentiation of cancer cells (Kim et al., 2011; Calin et al., 2002; Michael et al., 2003; Metzler et al., 2004; Chan et al., 2005; He et al., 2005; Sevli et al., 2010; Lamy et al., 2006; Iorio et al., 2005) The purpose of this study was to describe novel biomarkers for GN through in silico analysis involving gastric neoplasm-specific miRNAs, by determining their combinatorial target genes (potential ceRNAs), selecting those with T-UCR and potentiating their association with gastric neoplasm using statistical correlation techniques.

Four miRNAs experimentally related to gastric neoplasm were identified through the miRTarbase database (Table I). Genes with equal ComiR abundance were listed through 1008 genes targeted concurrently by these four miRNAs. Genes with T-UCR in their exonic regions were described from the genes containing T-UCR listed by Bejerano et al. (Bejerano et al., 2004). We then considered those exhibiting probable ceRNA activity in our earlier analysis (Table II). Next, we choosed genes with significant differences in expression between gastric neoplasm and normal gastric tissues from GN-related ceRNAs involving T-UCR. This test revealed significantly higher NFAT5 expression in gastric neoplasm than in normal stomach tissue, while the other exhibited no significantly different expression pattern. In addition, the NFAT5 and CLK3 gene pair were substantively associated with gastric neoplasm based on the Spearman correlation analysis findings.

These NFAT5 genes have not previously been experimentally linked to gastric neoplasm. Ours is the first study to associate these two genes with gastric neoplasm. NFAT family contains five different proteins one of them is NFAT5 protein. But, NFAT1 to 4 proteins are regulated by calcineurin, NFAT5 is controlled by osmotic pressure at the nuclear localization, transcriptional and expression levels. When stimulated, NFAT5 triggers target gene transcription by binding to tonicity enhancer elements) in various coordinator domains which are all responsible for supplying cells in order to facilitate their survival under hypertonic conditions (Cheung and Ko, 2017). NFAT5 gene shows its oncogenic role via different pathways in such diseases as renal cell carcinoma, breast cancer, lung adenocarcinoma and colon cancer. NFAT5-related expression of S100A4 projects the migration and proliferation of renal carcinoma cells (Küper et al., 2014). Additionally, NFAT5/STAT3 interaction soften synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells (Amara S et al., 2016). NFAT5 also stimulates the migration and proliferation of pulmonary adenocarcinoma cells, in part by modulating AQP5 expression (Guo and Jin, 2015). The Src kinase pathway is also involved in NFAT5-mediated S100A4 induction through hyperosmotic stress in colon cancer cells (Chen et al., 2011). NFAT5 is also a tumor suppressor that functions by suppressing invasion and triggering apoptosis in hepatocellular carcinoma.

Conclusion

The NFAT5 gene was correlated with gastric neoplasm in our study, and *in silico* analysis results predict that they may potentially play an oncogenic role in gastric neoplasm. The inconsistent results concerning their roles in varying forms of cancer suggests that our study findings will be preliminary for subsequent in vitro and in vivo studies performed to determine the roles of the NFAT5 gene in gastric neoplasm progression. Fatal one among urological cancers. RCC is causedby the accumulation of many genetic and

Ethics Committee Approval:

Since it is a in silico study, there is no need for an ethics committee approval

Peer-review: Externally peer-reviewed.

Author Contributions: Externally peer-reviewed. Author Contributions: Concept- D.U.A.; Design D.U.A., S.E.; Supervision-D.U.A., S.E.; Materials D.U.A., S.E.; Data Collection and/or Processing D.U.A., S.E.; Analysis and/or Interpretation-D.U.A; Literature Review-D.U.A.; Writing-D.U.A.; Critical Review- S.E

Conflict of Interest: No conflict of interest was declared by the author.

Financial Disclosure: The authors declared that this study hasn't received no financial support.

References

- Amara S, Alotaibi D, Tiriveedhi V. NFAT5/STAT3 interaction mediates synergism of high salt with IL-17 towards induction of VEGF-A expression in breast cancer cells. Oncol Lett. 2016; 12(2):933-43.
- Bejerano G, Pheasant M, Makunin I. Ultraconserved Elements in the Human Genome. Science. 2004; 304(5675), pp. 1321-1325
- Calin GA, Dumitru CD, Shimizu M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002; 99(24):15524-9.
- Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005; 65:6029
- Cheung CY, Ko BC. NFAT5 in cellular adaptation to hypertonic stress–regulations and functional significance. J Mol Signal. 2013; 8(1):5.
- Chen M, Sastry SK, O'Connor KL. Src kinase pathway is involved in NFAT5-mediated S100A4 induction by hyperosmotic stress in colon cancer cells. Am J Physiol-Cell Ph. 2011; 300(5):C1155-C63.
- Chou CH, Shrestha S, Yang, CD. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions Nucleic Acids Research, 2018; 46 (D1), D296–D302,
- Coronnello C, Benos PV. ComiR: combinatorial microRNA target prediction tool. Nucleic acids research. 2013; 41(W1), W159-W164.

- Fassan M, Dall'Olmo L, Galasso M, Braconi C, Pizzi M, Realdon S, Volinia S, Valeri N, Gasparini P, Baffa R, Souza RF, Vicentini C, D'Angelo E, Bornschein J, Transcribed ultraconserved noncoding RNAs (TUCR)are involved in Barrett's esophaguscarc inogenesis.Onco Target.2014: 30;5(16):7162-71.
- Guo K, Jin F. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression. Biochem Bioph Res Co. 2015; 465(3):644-9.
- He H, Jazdzewski K, Li W, Liyanorachchi S, Nagy R, Volinia S. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 2005; 102:19075-80.
- Iorio MV, Ferracin M, Liu C, Veronese A, Spizzo R, Sabbioni S. MicroRNA gene expression deregulation in human breast cancer. Cancer Research 2005; 65:7065-70.
- Kim YK, Yeo J, Ha M. Cell adhesion- dependent control of microRNA decay. Molecular Cell 2011; 43:1005-14.
- Küper C, Beck F-X, Neuhofer W. NFAT5mediated expression of S100A4 contributes to proliferation and migration of renal carcinoma cells. Front Physiol. 2014; 5:293
- Lamy P, Andersen CL, Dyrskjøt L, Tørring N, Ørntoft T, Wiuf C. Are microRNAs located in genomic regions associated with cancer? Br J Cancer 2006; 95 (10): 1415-18
- Metzler M, Wilda M, Busch K. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer. 2004; 39:167-9.
- Michael MZ, O.Connor SM, van Holst Pellekaan NG. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003; 1:882-91.
- Pan H.W, Li S.C, Tsai K.W. MicroRNA Dysregulation in Gastric Cancer, Current Pharmaceutical Design, 2013; 19(7):1273-84.
- Qi X, Zhang D.H, Wu N, Xiao J.H, Wang X, Ma W. CeRNA in cancer: possible functions and clinical implications. J Med Genet 2015; 0:1–9. doi:10.1136/jmedgenet-2015-103334.
- Sevignani C, Calin GA, Siracusa LD. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome. 2006; 17(3):189-202.

- Sevli S, Uzumcu A, Solak M, Ittman M, Ozen M. The function microRNAs, small potent molecules in human prostate cancer. Prostate Cancer P D 2010; 13:208-17.
- Schiller MP, Wilkerson PM. Gastric neoplasms. Surgery. 2017: 35:(11): 635-643
- Tang Z, Li C, Kang B. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic acids research. 2017; 45(W1), W98-W102.
- Zhou YM, Chen LJ, Barlogie B. High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107: 7904-9.