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Abstract

In this article, we establish ακ−implicit contraction and provide some fixed point results in
non-AMMS. Our results progress and generalize some famous consequences in a suitable
resource. As an implementation, we study stability in the sense of Ulam-Hyers and a fixed
point problem’s well-posedness. In addition, some examples are given for new concepts.
Also, an application to integral equations is discussed.

1. Some basic concepts and definitions

In this work, we will write MMS to modular metric space and non-AMMS to non-Archimedean modular metric space. In 2010, Chistyakov
[1], [2] defined a new generalized space which is a modular metric space and introduced basic concepts and topological properties.
Let M be a nonempty set, a function κ : (0,∞)×M×M→ [0,∞] be defined

κλ (ξ ,η) = κ (λ ,ξ ,η)

for all λ > 0 and ξ ,η ∈M.

Definition 1.1. A function κ : (0,∞)×M×M→ [0,∞] is named a modular metric if the following conditions are supplied:

(i) ξ = η ⇔ κλ (ξ ,η) = 0, for all λ > 0;
(ii) κλ (ξ ,η) = κλ (η ,ξ ) , for all λ > 0 and ξ ,η ∈M;

(iii) κλ+µ (ξ ,η)≤ κλ (ξ ,ν)+κµ (ν ,η) , for all λ , µ > 0 and ξ ,η ,ν ∈M.

Then, Mκ is named an MMS.

In the above definition, if we make use of the condition:

(i1) κλ (ξ ,ξ ) = 0 for all λ > 0 and ξ ∈M,

instead of (i), then Mκ is a pseudomodular metric space. Mκ is called regular if the condition (i) is supplied as:

ξ = η if and only if κλ (ξ ,η) = 0 for some λ > 0.

The space Mκ is named convex if for λ , µ > 0 and ξ ,η ,ν ∈M, the condition supplies:

κλ+µ (ξ ,η)≤ λ

λ +µ
κλ (ξ ,ν)+

µ

λ +µ
κµ (ν ,η) .

Definition 1.2. [1], [2] recognised that κ be a pseudomodular on M and ξ0 ∈M and fixed. The sets:

Mκ = Mκ (ξ0) = {ξ ∈M : κλ (ξ ,ξ0) as λ → ∞}

and
M∗κ= M∗κ (ξ0)= {ξ ∈M : ∃λ = λ (ξ )> 0 such that κλ (ξ ,ξ0)< ∞}

are identified modular spaces (around ξ0).
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It is trivial that Mκ ⊂M∗κ . Suppose that κ is a modular on M; from [1], [2], it can be obtained that the modular space Mκ can be settled with
a (nontrivial) metric, induced by κ and given by:

dκ (ξ ,η) = inf{λ > 0 : κλ (ξ ,η)< λ} ,

for all ξ ,η ∈Mκ .
Consider that if κ is a convex modular on M, then specify [1], [2], the two modular space coincide, i.e., Mκ = M∗κ , and this common set can
be defined with the metric d∗κ given by:

d∗κ (ξ ,η) = inf{λ > 0 : κλ (ξ ,η)< 1} ,

for all ξ ,η ∈Mκ . These distances are named Luxemburg distances.

Definition 1.3. [3] Let Mκ be a MMS, A be a subset and (sn)n∈N be a sequence in Mκ . Therefore:

(1) (sn)n∈N is named κ−convergent to ξ ∈Mκ if and only if κλ (sn,ξ )→ 0 as n→ ∞ for all λ > 0. ξ will be called the κ−limit of (sn).
(2) If for all λ > 0, κλ (sn,sm)→ 0, as m,n→ ∞, (sn)n∈N is called κ−Cauchy.
(3) A is called κ−closed if the κ−limit of κ−convergent of A always belong to A.
(4) If any κ−Cauchy sequence in A is κ−convergent, then A is named κ−complete.
(5) A is called κ−bounded if for all λ > 0, we have

δω (A) = sup{κλ (ξ ,η) ;ξ ,η ∈ A}< ∞.

Paknazar et al. [4] modified the third condition of MMS.

Definition 1.4. If in Definition 1.1, we exchange (iii) by:

(iv) κmax{λ ,µ} (ξ ,η)≤ κλ (ξ ,ν)+κµ (ν ,η) ,

for all λ , µ > 0 and ξ ,η ,ν ∈Mκ , then, Mκ is called non-AMMS.

Now, denote N the set of positive integers, the set of real numbers R and Ψ the set of functions ψ : [0,∞)→ [0,∞) satisfying:

(ψ1) ψ is nondecreasing,

(ψ2)
∞

∑
n=1

ψn (t)< ∞ for each R+, where ψn is the nth iterate of ψ .

Remark 1.5. It is trivial that if ψ ∈Ψ, then ψ (t)< t for any t > 0.

Definition 1.6. [5] Let Γ be the set of all functions ℘(t1, ..., t6) : R6
+→ R satisfying:

(℘1) ℘ is nondecreasing in variable t1 and nonincreasing in variable t5,
(℘2) there exists ψ ∈Ψ such that for all u,v≥ 0, ℘(u,v,v,u,u+ v,0)≤ 0 implies u≤ψ (v), and ℘(u,v,u,v,0,u+ v)≤ 0 implies u≤ψ (v).

Samet et al. [6] characterize a new notion by defining α−admissible mapping.

Definition 1.7. [6] Let α : M×M→ [0,∞) be a function. A mapping h̄ : M→M satisfying

α (ξ ,η)≥ 1 ⇒ α (h̄ξ , h̄η)≥ 1, (1.1)

if for all ξ ,η ∈M, is called as α−admissible mapping.

Example 1.8. [6] Let M = (0,∞) and define h̄ : M→M and α : M×M→ [0,∞) by

h̄ξ = lnξ , for all ξ ∈M

and

α (ξ ,η) =

{
2 if ξ ≥ η ,
0 if ξ < η .

Then, h̄ is an α−admissible mapping.

Such papers related to above concept imagined to obtain some fixed and common fixed point results (see [7] [8], [9], [10]).

2. ακ−implicit contraction and fixed point results

In the sequel the function κ is convex and regular.

Definition 2.1. Let Mκ be a non-AMMS. A mapping given as h̄ : Mκ →Mκ is called ακ−implicit contraction if there are two functions
α : Mκ ×Mκ → [0,∞) and Γ ∈℘ in such a way that

℘(α (ξ ,η)κλ (h̄ξ , h̄η) ,κλ (ξ ,η) ,κλ (ξ , h̄ξ ) ,
κλ (η , h̄η) ,κλ (ξ , h̄η) ,κλ (η , h̄ξ ))≤ 0, (2.1)

for all ξ ,η ∈Mκ .

Theorem 2.2. Let Mκ be a complete non-AMMS and h̄ : Mκ →Mκ be a ακ−implicit contraction. Assume that:

(i) h̄ satisfies (1.1),
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(ii) there is ξ0 ∈Mκ in such a manner that α (ξ0, h̄ξ0)≥ 1,
(iii) h̄ is continuous.

Then, h̄ has a fixed point.

Proof. Let ξ0 ∈Mκ be in such a way that α (ξ0, h̄ξ0)≥ 1 and let {ξn} be a Picard sequence starting at ξ0, that is ξn = h̄n
ξ0 = h̄ξn−1 for all

n ∈ N. First, imagine that κλ (ξn0 ,ξn0+1) = 0 for some n0 ∈ N, since κ is regular, we get ξn0 = ξn0+1 = h̄ξn0 . So, ξn0 is a fixed point of h̄.
Hence, we approve that ξn 6= ξn+1 such that κλ (ξn,ξn+1)> 0. Now, since the mapping h̄ is α−admissible and α (ξ0,ξ1) = α (ξ0, h̄ξ0)≥ 1,
we deduce that α (h̄ξ0, h̄ξ1) = α (ξ1,ξ2)≥ 1. Using the iterative method, we achieve

α (ξn,ξn+1)≥ 1, for all n ∈ N. (2.2)

From (2.1) with ξ = ξn and η = ξn+1, we have

℘(α (ξn,ξn+1)κλ (h̄ξn, h̄ξn+1) , κλ (ξn,ξn+1) ,κλ (ξn, h̄ξn)
κλ (ξn+1, h̄ξn+1) , h̄λ (ξn, h̄ξn+1) ,κλ (ξn+1, h̄ξn))≤ 0,

that is,
℘(α (ξn,ξn+1)κλ (ξn+1,ξn+2) , κλ (ξn,ξn+1) ,κλ (ξn,ξn+1)

κλ (ξn+1,ξn+2) ,κλ (ξn,ξn+2) ,κλ (ξn+1,ξn+1))≤ 0.

By using the conditions, (iv), (2.2) and (℘1) we get

℘(κλ (ξn+1,ξn+2) , κλ (ξn,ξn+1) ,κλ (ξn,ξn+1)

κλ (ξn+1,ξn+2) ,κmax{λ ,λ} (ξn,ξn+2) ,0
)
≤ 0

=℘(κλ (ξn+1,ξn+2) , κλ (ξn,ξn+1) ,κλ (ξn,ξn+1)

κλ (ξn+1,ξn+2) ,κλ (ξn,ξn+1)+κλ (ξn+1,ξn+2) ,0)≤ 0.

Due to (℘2), we obtain

κλ (ξn+1,ξn+2)≤ ψ (κλ (ξn,ξn+1)) , for all n ∈ N. (2.3)

From (2.3), it is easy to derive that

κλ (ξn+1,ξn+2)≤ ψ
n+1 (κλ (ξ0,ξ1)) , for all n ∈ N. (2.4)

Next, we illustrate that {ξn} is a Cauchy sequence in Mκ . Take m > n; by the condition (iv) and (2.4), we write

κλ (ξn,ξm) = κmax{λ ,λ} (ξn,ξm)

≤ κλ (ξn,ξn+1)+κλ (ξn+1,ξm)
= κλ (ξn,ξn+1)+κmax{λ ,λ} (ξn+1,ξm)

≤ κλ (ξn,ξn+1)+κλ (ξn+1,ξn+2)+κλ (ξn+2,ξm)
...
≤ κλ (ξn,ξn+1)+κλ (ξn+1,ξn+2)+ ...+κλ (ξm−1,ξm)
≤
(
ψn +ψn−1 + ...+ψm−1)κλ (ξ0,ξ1)

≤
∞

∑
k=n

ψk (κλ (ξ0,ξ1)).

(2.5)

From (2.5) and (ψ2) the series
∞

∑
k=n

ψk (κλ (ξ0,ξ1)) is convergent and so {ξn} is a Cauchy sequence in Mκ . Because Mκ is a complete non-

AMMS, then there exists a point ν ∈Mκ such that κλ (ξn,ν)→ 0 as n→ ∞. Thus, κλ (h̄ξn, h̄ν)→ as n→ ∞, because h̄ is a κ−continuous.
Then, by (iv) we obtain

κλ (ν , h̄ν) = κmax{λ ,λ} (ν , h̄ν)

≤ κλ (ν , h̄ξn)+κλ (h̄ξn, h̄ν)
= κλ (ν ,ξn+1)+κλ (h̄ξn, h̄ν) .

As n→ ∞, we get κλ (ν , h̄ν) = 0. Since κ is regular, we deduce that h̄ν = ν and hence ν is a fixed point of h̄.

If we turn into the continuity of h̄ with the condition (H), we attain the other result.

(H) If {ξn} is a sequence in Mκ such that α (ξn,ξn+1)≥ 1 for all n ∈ N and ξn→ ξ as n→ ∞, there exists a subsequence {ξnk} of {ξn}
such that α (ξnk ,ξ )≥ 1 for all k ∈ N.

Theorem 2.3. Let Mκ be a complete non-AMMS and h̄ : Mκ →Mκ be an ακ−implicit contraction. Granted that:

(i) h̄ satisfies (1.1),
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(ii) there exists ξ0 ∈Mκ in such a way that α (ξ0, h̄ξ0)≥ 1,
(iii) (H) is supplied.

Then, h̄ has a fixed point.

Proof. Due to Theorem 2.2, we acquire that the sequence {ξn}, defined by ξn = h̄ξn−1 for all n∈N, is a Cauchy sequence with α (ξn,ξn+1)≥
1 for all n ∈ N, which converges to some ν ∈Mκ . Next, from the condition (iii), there is a subsequence {ξnk} of {ξn} in such a manner that
α (ξnk ,ξ )≥ 1 for all k ∈ N. We need to show that h̄ν = ν . Since h̄ is ακ−type implicit contraction with ξ = ξnk and η = ν and (iv), we
obtain

℘(α (ξnk ,ν)κλ (h̄ξnk , h̄ν) , κλ (ξnk ,ν) ,κλ (ξnk , h̄ξnk )

κλ (ν , h̄ν) ,κλ (ξnk , h̄ν) ,κλ (ν , h̄ξnk ))≤ 0

=℘(α (ξnk ,ν)κλ (ξnk+1, h̄ν) , κλ (ξnk ,ν) ,κλ (ξnk ,ξnk+1)

κλ (ν , h̄ν) ,κmax{λ ,λ} (ξnk , h̄ν) ,ωλ (ν ,ξnk+1)
)
≤ 0

≤℘(α (ξnk ,ν)κλ (ξnk+1, h̄ν) , κλ (ξnk ,ν) ,κλ (ξnk ,ξnk+1)

κλ (ν , h̄ν) ,κλ (ξnk ,ν)+κλ (ν , h̄ν) ,κλ (ν ,ξnk+1))≤ 0.

Letting k tends to infinity and using the continuity of ℘ and α (ξnk ,ξ )≥ 1, we get

℘(κλ (ν , h̄ν) , 0,0, κλ (ν , h̄ν) ,κλ (ν , h̄ν) ,0)≤ 0.

Finally, by condition (℘2), it follows that κλ (ν , h̄ν)≤ 0 which implies h̄ν = ν .

We need extra conditions to obtain uniqueness of fixed point.

(U) For all u,v ∈ Fix(h̄), we attain α (u,v)≥ 1, where Fix(h̄) gives the set of all fixed points of h̄.
(℘3) There exists ψ ∈Ψ in such a way that for all u,v > 0,

℘(u,u,0,0,u,v)≤ 0 implies u≤ ψ (v) .

Theorem 2.4. Adding conditions (U) and (℘3) to the hypotheses of Theorem 2.2 (resp Theorem 2.3), we deduce that h̄ has a unique fixed
point.

Proof. We discuss by contradiction, that is, there exist u,v ∈Mκ in such a way that u = h̄u and v = h̄v with u 6= v. From (1.1), we obtain

℘(α (u,v) κλ (h̄u, h̄v) ,κλ (u,v) ,κλ (u, h̄u) ,

κλ (v, h̄v) ,κλ (u, h̄v) ,κλ (v, h̄u))≤ 0.

Then, by condition (U), we have
℘(κλ (u,v) , κλ (u,v) ,0, 0,κλ (u,v) ,κλ (v,u))≤ 0.

Since ℘ satisfies the property (℘3), then
κλ (u,v)≤ ψ (κλ (u,v))< κλ (u,v) ,

which is a contradiction and hence u = v.

Now, we give some corollaries from above results.

Corollary 2.5. Let Mκ be a complete non-AMMS and h̄ : Mκ →Mκ be a function. If there is a function α : Mκ ×Mκ → [0,∞) in such a
manner that

α (ξ ,η)κλ (h̄ξ , h̄η)≤ pκλ (ξ ,η)+qκλ (ξ , h̄ξ )+ rκλ (η , h̄η)
+sκλ (ξ , h̄η)+ tκλ (η , h̄ξ ) ,

for all ξ ,η ∈Mκ , where p,q,r,s, t > 0, p+q+ r+ s+ t < 1. Assume also that:

(i) h̄ satisfies (1.1),
(ii) there is ξ0 ∈Mκ in such a way that α (ξ0, h̄ξ0)≥ 1,

(iii) h̄ is continuous or the condition (H) holds true.

Then, h̄ has a fixed point. Additionally, if p+ r+ s < 1 and the conditions (U) and (℘3) hold true, then h̄ has a unique fixed point.

Corollary 2.6. Let Mκ be a complete non-AMMS and h̄ : Mκ →Mκ be a function. If there is a function α : Mκ ×Mκ → [0,∞) in such a
manner that

α (ξ ,η)κλ (h̄ξ , h̄η)≤ k max{κλ (ξ ,η) , κλ (ξ , h̄ξ ) ,κλ (η , h̄η) ,
κλ (ξ , h̄η) ,κλ (η , h̄ξ )} ,

for all ξ ,η ∈Mκ , where k ∈
[
0, 1

2
)
. Furthermore:

(i) h̄ satisfies (1.1),
(ii) there is ξ0 ∈Mκ such that α (ξ0, h̄ξ0)≥ 1,

(iii) h̄ is continuous or the property (H) is satisfied.
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Then, h̄ has a fixed point. Moreover, the conditions (U) and (℘3) hold true, then h̄ has a unique fixed point.

Example 2.7. Mκ = R endowed with the non-Archimedean modular metric κλ (ξ ,η) = 1
λ
|ξ −η |, for all ξ ,η ∈Mκ and λ > 0. Obviously,

Mκ is an κ−complete non-AMMS.
Consider the self-map h̄ : Mκ →Mκ defined by h̄ξ = ξ

6 .
Also define

α (ξ ,η) =

{
1, if ξ ,η ∈ [0,1]
0, otherwise,

and ℘ : R6
+→ R+ defined by

℘(t1, t2, t3, t4, t5, t6) = t1−
3
4

max
{

t2, t3, t4,
t5 + t6

2

}
.

Let α (ξ ,η)≥ 1, then ξ ,η ∈ [0,1]. Also, h̄ξ ∈ [0,1], for all ξ ∈ [0,1] and so α (h̄ξ , h̄η)≥ 1. Therefore h̄ is an α−admissible mapping. Let
ξ ,η ∈ [0,1], we have

℘

(
α (ξ ,η)κλ (h̄ξ , h̄η) ,κλ (ξ ,η) ,κλ (ξ , h̄ξ ) ,κλ (η , h̄η) ,

κλ (ξ ,h̄η)+κλ (η ,h̄ξ )
2

)
= α (ξ ,η)κλ (h̄ξ , h̄η)− 3

4 max{κλ (ξ ,η) ,κλ (ξ , h̄ξ ) ,κλ (η , h̄η) ,

κλ (ξ ,h̄η)+κλ (η ,h̄ξ )
2

}
≤ 1

6λ
|ξ −η |− 3

4 max
{

1
λ
|ξ −η | , 6

5λ
|ξ | , 6

5λ
|η | , 1

12λ
(|6ξ −η |+ |6η−ξ |)

}
≤ 0.

Similarly, it is obvious that contractive condition (2.1) holds in the case (ξ ,η /∈ [0,1] and ξ or η is not in [0,1].) Thus, h̄ is ακ−type implicit
contraction. Next, it is easy to illustrate that conditions h̄ is κ−continuous, (H) and (U) are satisfied.
Thus, the axioms of the Theorem 2.2, Theorem 2.3, and Theorem 2.4 are supplied and 0 is a unique fixed point.

3. Stability problem in the sense of Ulam-Hyers

Now, we obtain the stability problem in the sense of Ulam-Hyers of fixed point. That this problem correspondences to Corollary 2.5.
Let Mκ be a non-AMMS and h̄ : Mκ →Mκ be a function. Imagine the fixed point problem

ξ = h̄ξ (3.1)

and the inequality (for ε > 0)

κλ (h̄η ,η)< ε. (3.2)

We are said to be a h̄ is stable in the sense of Ulam-Hyers in non-AMMS if there are L > 0 such that for each ε > 0 and a ε−solution
v∗ ∈Mκ , that is, v∗ supplies the condition (3.2), there is a solution u∗ ∈Mω of the fixed point equation (3.1) such that

κλ (u∗,v∗)< Lε. (3.3)

Theorem 3.1. Let Mκ be a non-AMMS. Suppose that all the hypotheses of Corollary 2.5 hold and α (u,v)≥ 1 for all ε−solution u and v,
then the equation (3.1) is stable in the sense of Ulam-Hyers.

Proof. By Corollary 2.5, we have a unique u ∈Mκ such that u = h̄u, that is, u ∈Mκ is a solution of the fixed point equation (3.1). Let ε > 0
and v ∈Mκ be an ε−solution, that is,

κλ (h̄v,v)≤ ε.

Since κλ (u, h̄u) = κλ (u,u) = 0≤ ε , u and v are ε−solutions. By hypotheses, we get α (u,v)≥ 1 and from (3.3), so

κλ (u,v) = κλ (h̄u,v)
= κmax{λ ,λ} (h̄u,v)
≤ κλ (h̄u, h̄v)+κλ (h̄v,v)
= α (u,v)κλ (h̄u, h̄v)+ ε

≤ aκλ (u,v)+bκλ (u, h̄u)+ cκλ (v, h̄v)
+dκλ (u, h̄v)+ eκλ (v, h̄u)+ ε

= aκλ (u,v)+bκλ (u, h̄u)+ cκλ (v, h̄v)
+dκmax{λ ,λ} (u, h̄v)+ eκmax{λ ,λ} (v, h̄u)+ ε

≤ aκλ (u,v)+bκλ (u, h̄u)+ cκλ (v, h̄v)
+d (κλ (u,v)+κλ (v, h̄v))+ e(κλ (v,u)+κλ (u, h̄u))+ ε.

We deduce

κλ (u,v)≤
(

1+ c+d
1−a−d− e

)
ε = Lε,

where L =
(

1+c+d
1−a−d−e

)
> 0. Thus, h̄ is Ulam-Hyers stable.
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4. Well posedness of the fixed point problem

Now, we show well-posedness of a function h̄ on non-AMMS.

Definition 4.1. Let Mκ be a non-AMMS and let h̄ : Mκ →Mκ , α : Mκ ×Mκ → [0,∞) be two functions. h̄ is well-posedness if:

(i) u ∈Mκ is the unique fixed point when α (u, h̄u)≥ 1,
(ii) there exists a sequence {ξn} in such a manner that κλ (ξn, h̄ξn)→ 0 as n→ ∞ , then κλ (ξn,u)→ 0 as n→ ∞.

We define a new condition which needs to be the following result.

(R) If {ξn} is a sequence in Mκ in such a way that κλ (ξn, h̄ξn)→ 0 as n→ ∞, then α (ξn, h̄ξn)≥ 1 for all n ∈ N.

Theorem 4.2. Let Mκ be a non-AMMS. If all the conditions of Corollary 2.5 and the condition (R) hold, hence (3.1) is well posed.

Proof. By Corollary 2.5, we have a unique u ∈Mκ in such a manner that u = h̄u and α (u, h̄u)≥ 1. Let {ξn} is a sequence in Mκ in such a
way that κλ (ξn, h̄ξn)→ 0 as n→ ∞. By condition (R), we get α (ξn, h̄ξn)≥ 1. Now, we have

κλ (ξn,u) = κλ (ξn, h̄u)
= κmax{λ ,λ} (ξn, h̄u)
≤ κλ (ξn, h̄ξn)+κλ (h̄ξn, h̄u)
≤ α (ξn,u)κλ (h̄ξn, h̄u)+κλ (ξn, h̄ξn)
≤ aκλ (ξn,u)+bκλ (ξn, h̄ξn)+ cκλ (u, h̄u)+dκλ (ξn, h̄u)
+eκλ (u, h̄ξn)+κλ (ξn, h̄ξn)
≤ aκλ (ξn,u)+bκλ (ξn, h̄ξn)+ cκλ (u, h̄u)+dκmax{λ ,λ} (ξn, h̄u)
+eκmax{λ ,λ} (u, h̄ξn)+κλ (ξn, h̄ξn)

≤ aκλ (ξn,u)+bκλ (ξn, h̄ξn)+ cκλ (u, h̄u)+d (κλ (ξn,u)+κλ (u, h̄u))
+e(κλ (u,ξn)+κλ (ξn, h̄ξn))+κλ (ξn, h̄ξn) .

Hence

κλ (ξn,u)≤
(

1+b+ e
1−a−d− e

)
κλ (ξn, h̄ξn) .

Since κλ (ξn, h̄ξn)→ 0 as n→ ∞, it implies that κλ (ξn,u)→ 0 as n→ ∞. Thus, h̄ is well posed.

5. Consequences

Next, we will obtain non-AMMS version of some fixed point results.
In the Definition of 1.6, if we take ψ (t) = ht, h ∈ [0,1), we get Berinde’s results in [11].
Let Γ be the set of all continuous real functions ℘ : R6

+→ R+, for which we consider the following conditions:

(℘1a) F is non-increasing in the fifth variable and

℘(ξ ,η ,η ,ξ ,ξ +η ,0)≤ 0, for ξ ,η ≥ 0 ⇒ ∃h ∈ [0,1) such that ξ ≤ hη ;

(℘1b) ℘ is non-increasing in the fourth variable and

℘(ξ ,η ,0,ξ +η ,ξ ,η)≤ 0, for ξ ,η ≥ 0 ⇒ ∃h ∈ [0,1) such that ξ ≤ hη ;

(℘1c) ℘ is non-increasing in the third variable and

℘(ξ ,η ,ξ +η ,0,η ,ξ )≤ 0, for ξ ,η ≥ 0 ⇒ ∃h ∈ [0,1) such that ξ ≤ hη ;

(℘2) ℘(ξ ,ξ ,0,0,ξ ,ξ )> 0, for all ξ > 0.

Example 5.1. The function ℘∈ Γ, given by
℘(t1, t2, t3, t4, t5, t6) = t1−at2,

where a ∈ [0,1), satisfies (℘1a)-(℘1c) and (℘2),with h = a.

Example 5.2. The function ℘∈ Γ, given by
℘(t1, t2, t3, t4, t5, t6) = t1−b(t3 + t4) ,

where b ∈
[
0, 1

2
)
, satisfies (℘1a)-(℘1c) and (℘2),with h = b

1−b < 1.

Example 5.3. The function ℘∈ Γ, given by
℘(t1, t2, t3, t4, t5, t6) = t1− c(t5 + t6) ,

where c ∈
[
0, 1

2
)
, satisfies (℘1a)-(℘1c) and (℘2),with h = c

1−c < 1.

Example 5.4. The function ℘∈ Γ, given by

℘(t1, t2, t3, t4, t5, t6) = t1−amax
{

t2,
t3 + t4

2
,
t5 + t6

2

}
,

where a ∈ [0,1), satisfies (℘1a)-(℘1c) and (℘2),with h = a.
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Example 5.5. The function ℘∈ Γ, given by

℘(t1, t2, t3, t4, t5, t6) = t1−at2−b(t3 + t4)− c(t5 + t6) ,

where a,b,c≥ 0 and a+2b+2c < 1 satisfies (℘1a)-(℘1c) and (℘2),with h = a+b+c
1−b−c < 1.

Corollary 5.6. Let Mκ be a non-Archimedean modular metric space, h̄ : Mκ →Mκ be a self map for which℘∈ Γ such that for all ξ ,η ∈Mκ ,

℘(κλ (h̄ξ , h̄η) ,κλ (ξ ,η) ,κλ (ξ , h̄ξ ) ,κλ (η , h̄η) ,κλ (ξ , h̄η) ,κλ (η , h̄ξ ))≤ 0.

If ℘ satisfies (℘1a) and (℘2), then h̄ has a unique fixed point.

Proof. It suffices to take α (ξ ,η) = 1 and ψ (t) = kt, k ∈ [0,1) in Theorem 2.2.

6. Application to integral equation

Next, we give implementation to show the nonlinear integral equation.

ξ (z) =
t∫

a

K (z, p,ξ (p)) d p, (6.1)

where ξ ∈ I = [a,b] and K : I× I×R→ R is continuous. Let M =C (I,R) with the usual supremum norm, that is,

‖ξ‖= max
z∈I
|ξ (z)| ,

and the metric
κλ (ξ ,η) =

1
λ
‖ξ −η‖= 1

λ
d (ξ ,η) ,

for all ξ ,η ∈M. For r > 0 and ξ ∈M we denote by

Bλ (ξ ,r) = {v ∈M : κλ (ξ ,η)≤ r} ,

the closed ball concerned at ξ and of radius r. Note that Mκ is a κ−complete non-AMMS.
Now, imagine the mapping h̄ : Mκ →Mκ

h̄ξ (z) =
z∫

a

K (z, p,ξ (p)) d p. (6.2)

Notice that (6.1) has a solution if and only if h̄ has a fixed point in (6.2).

Theorem 6.1. Let r > 0 and we granted that the following conditions are supplied:

(i) if y ∈ Bλ (ξ ,r) , λ > 0, then

|K (z, p,ξ (p))−K (z, p,η (p))| ≤ q(z, p)
b−a

|ξ (p)−η (p)|,

for all z, p ∈ I, ξ ,η ∈ R and for some continuous function q : I× I→ R+;
(ii) sup

z∈I
q(z, p) = k < 1.

Hence, (6.1) has a solution.

Proof. Since η ∈ Bλ (ξ ,r) and from (ii), we have

|h̄ξ (z)− h̄η (z)| ≤
∣∣∣∣ z∫
a
[K (z, p,ξ (p))−K (z, p,η (p))]d p

∣∣∣∣
≤

t∫
a
|K (t, p,ξ (p))−K (z, p,η (p))|d p

≤
b∫
a
|K (z, p,ξ (p))−K (z, p,η (p))|d p

≤
b∫
a

q(z,p)
b−a |ξ (p)−η (p)|d p

≤ ‖ξ (p)−η (p)‖
b∫
a

k
b−a d p

= k‖ξ (p)−η (p)‖ .

(6.3)

This implies that
κλ (h̄ξ , h̄η) = 1

λ
‖h̄ξ − h̄η‖

≤ 1
λ
|h̄ξ (z)− h̄η (z)|

≤ 1
λ

k‖ξ (p)−η (p)‖
≤ kκλ (ξ ,η) .

Now, ℘ : R6
+→ R+ defined by

℘(t1, t2, t3, t4, t5, t6) = t1− kt2,

where k ∈ [0,1), and so the integral operator h̄ satisfies all conditions of Corollary 5.6. Thus, h̄ has a fixed point, i.e., (6.1) has a solution in
Mκ .
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