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resource. As an implementation, we study stability in the sense of Ulam-Hyers and a fixed
point problem’s well-posedness. In addition, some examples are given for new concepts.
Also, an application to integral equations is discussed.

1. Some basic concepts and definitions

In this work, we will write MMS to modular metric space and non-AMMS to non-Archimedean modular metric space. In 2010, Chistyakov
[1], [2] defined a new generalized space which is a modular metric space and introduced basic concepts and topological properties.
Let M be a nonempty set, a function k : (0,00) X M x M — [0, 0] be defined

K2 (5777) - K(l7§>n)
forall A >0and &, € M.

Definition 1.1. A function Kk : (0,00) x M x M — [0, 0] is named a modular metric if the following conditions are supplied.:

(i) E=n<x(€,n)=0,foral A >0;
(ii) Ky (5771) =Ky (n7§)7f0rallﬂ‘ >Oa”d§»77 eEM;
(iii) Kp4p (&,m) <K (§,V) +Ku(v,m), forall X, p>0and &,n,v € M.

Then, My is named an MMS.

In the above definition, if we make use of the condition:
(1) . (§,6)=0forallA >0and & € M,
instead of (i), then My is a pseudomodular metric space. My is called regular if the condition (i) is supplied as:

E=mn ifandonlyif Ky (§,n)=0 forsome A >0.
The space M is named convex if for A, u >0 and &, 7, v € M, the condition supplies:

K/M—p(éﬂl) < A,+,U,

Definition 1.2. [1], [2] recognised that ¥ be a pseudomodular on M and &y € M and fixed. The sets:
Mie=M(&) ={E eM: Kk, (§,8) as A — oo}

K (6 V) o ().

and
Mi=Mxp (&)= {E eM:3A =A (&) > Osuch that ky (&,&)) < o}

are identified modular spaces (around &g).
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It is trivial that My C M. Suppose that k is a modular on M; from [1], [2], it can be obtained that the modular space M can be settled with
a (nontrivial) metric, induced by x and given by:

dx (§,m) =inf{A >0:1; (&, 1) <A},

for all &,1 € M.
Consider that if k is a convex modular on M, then specify [1], [2], the two modular space coincide, i.e., My = M, and this common set can
be defined with the metric d. given by:

dﬁ(éan):mf{l >0:1K (gvn) < 1}7

for all £,1 € M. These distances are named Luxemburg distances.
Definition 1.3. [3] Let My be a MMS, A be a subset and (sn)nEN be a sequence in M. Therefore:

(1) (Sn)pen is named x—convergent to & € My if and only if &) (sp,&) — 0 as n — oo for all A > 0. § will be called the k—limit of (sy).
(2) Ifforall A >0, 1) (sp,$m) — 0, as m,n — oo, (s,),,cy is called x—Cauchy.

(3) Ais called x—closed if the k—limit of k—convergent of A always belong to A.

(4) If any x—Cauchy sequence in A is K—convergent, then A is named K—complete.

(5) Ais called k—bounded if for all A > 0, we have

80 (A) = sup{r; (§,1);6,1m €A} <oo.
Paknazar et al. [4] modified the third condition of MMS.
Definition 1.4. If in Definition 1.1, we exchange (iii) by:
(i) Kmax{a,uy (§:M) < Ky (§,v) +xu (v,1),
forall A, u>0and & ,n,v € M, then, My is called non-AMMS.
Now, denote N the set of positive integers, the set of real numbers R and \P' the set of functions y : [0,00) — [0, c0) satisfying:

(y1) v is nondecreasing,

(v2) ¥ W' (t) < oo for each RT, where y" is the nth iterate of y.
n=1

Remark 1.5. [t is trivial that if w € ¥, then y (t) <t for anyt > 0.
Definition 1.6. [5] Let I be the set of all functions @ (t1,...,tg) : Ri — R satisfying:

(1) 0 is nondecreasing in variable t| and nonincreasing in variable ts,
(§22) there exists y € ¥ such that for all u,v > 0, @ (u,v,v,u,u+v,0) <0 implies u < y (v), and o (u,v,u,v,0,u+v) <0 implies u < y (v).

Samet et al. [6] characterize a new notion by defining &t—admissible mapping.

Definition 1.7. [6] Let o : M x M — [0,00) be a function. A mapping i : M — M satisfying

amn)=1 = ashm)=1, (LD
ifforall E,n € M, is called as o,—admissible mapping.
Example 1.8. [6] Let M = (0,0) and define i : M — M and ot : M x M — [0, ) by
RE =&, forallé eM
and .
agm={§ giz
Then, i is an x—admissible mapping.

Such papers related to above concept imagined to obtain some fixed and common fixed point results (see [7] [8], [9], [10]).

2. a,—implicit contraction and fixed point results

In the sequel the function k is convex and regular.

Definition 2.1. Let My be a non-AMMS. A mapping given as h : My, — M is called a,c—implicit contraction if there are two functions
o My X My — [0,00) and T € @ in such a way that

W(O‘(&vn)’fk (hévhn)JQL (évn)ﬁxl (5

7h§)7
K (,7m) K3, (8,7m) K, (17,7E)) @D

<0,
forall&,n € M.
Theorem 2.2. Let My be a complete non-AMMS and h : My — M be a ac—implicit contraction. Assume that:

(i) hsatisfies (1.1),
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(ii) there is & € My in such a manner that o (&y,h&y) > 1,
(iii) h is continuous.

Then, fi has a fixed point.

Proof. Let & € M be in such a way that o (&y,7&p) > 1 and let {&,} be a Picard sequence starting at &y, that is &, = #"&y = h&,_ for all
n € N. First, imagine that & (&, &,+1) = 0 for some ng € N, since  is regular, we get &, = &y 11 = hp,. So, &, is a fixed point of 5.
Hence, we approve that &, # &,,1 such that k3 (&,,&,+1) > 0. Now, since the mapping 7 is a—admissible and a (&y,&;) = o (&, hEp) > 1,
we deduce that o (7, h&) = a (&1,&,) > 1. Using the iterative method, we achieve

o(&n,&ur1) =1, forall n€N. 2.2)
From (2.1) with € =&, and n = &, 1, we have

fp(a (én7§n+1) Ky (héﬂvhéwrl) , K) (§n7§n+l) » Ko (émhén)
K2 (§n+17h§n+l) 7h/l (én:hérﬁl) K)o (§ﬂ+17hgn)) <0,

that is,
p(a (gménJrl) Ky (§n+17én+2) » K (énagnJrl) , Ky (gmén«rl)
Ky (€n+17§n+2) K} (ém én+2) » K (5]1+1 ) §n+l)) <0.

By using the conditions, (iv), (2.2) and (f#;) we get
282, (Gnt1,6n+2) » K2 (Gns Gnv1) 5 Ka (Ens Gnt1)

K2 (815 6nr2) s Kimax{a.,1} (s Ent2) 70> <0

= KO(KA (§n+17§n+2)7 K (énaérwl) » K)o (énagrwl)

K2 (€n+17§n+2) » Ky (5’1?57!"’1) + Ky (én+lv§n+2) 70) <0.

Due to (), we obtain

K3 (Gni158n12) S W (k) (60, Enr1)), forall neN. (2.3)

From (2.3), it is easy to derive that

K3 (Ens1,Enr2) S W (K (E0,&1)), forall neN. (2.4)

Next, we illustrate that {&, } is a Cauchy sequence in M. Take m > n; by the condition (iv) and (2.4), we write

Ko (émém) = Kmax{/l.]t} (énvém)
< Ky (énv&nJrl) + K (§n+17§m)
=K (&nsEnt1) + Kimax 2.2} (Ent1,6m)
<& (&ns Snt1) + Ky (Sn158nt2) + K (Gn2s Gm)
2.5)

A (§n>§n+l) + Ky (€n+17§n+2) T+ K (émflvém)
(v +y" T+ Ly kg (8,8)

< X (s (80.8)

From (2.5) and () the series Y, w¥ (1 (&y,&1)) is convergent and so {&,} is a Cauchy sequence in My. Because My is a complete non-
k=n

AMMS, then there exists a point v € M such that k3 (&,,V) — 0 as n — . Thus, k), (h,,AV) — as n — oo, because 7 is a K—continuous.
Then, by (iv) we obtain

K (V,V) = Kmax{a.2) (V,71V)
<K&y (v, hEn) + Ky (1, V)
=Ky, (V:Ent1) + Ky (6, T1v).

As n — oo, we get k) (V,7iv) = 0. Since K is regular, we deduce that 7iv = v and hence V is a fixed point of 7.

If we turn into the continuity of 7 with the condition (H ), we attain the other result.

(H) If {&,} is a sequence in M such that ¢ (&,,&,41) > 1 forall n € N and §, — & as n — oo, there exists a subsequence {&,, } of {&,}
such that a (&,,,&) > 1 forall k € N.

Theorem 2.3. Let My be a complete non-AMMS and h : My — My be an ou—implicit contraction. Granted that:

(i) hsatisfies (1.1),
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(ii) there exists &y € My in such a way that o (&y,h&y) > 1,
(iii) (H) is supplied.

Then, h has a fixed point.

Proof. Due to Theorem 2.2, we acquire that the sequence {&, }, defined by &, = h&,_| forall n € N, is a Cauchy sequence with @ (€,,&,+1) >
1 for all n € N, which converges to some v € M. Next, from the condition (iif), there is a subsequence {&,, } of {&,} in such a manner that
o (&n,, &) > 1 forall k € N. We need to show that iv = v. Since 7 is o —type implicit contraction with § = &, and 1 = v and (iv), we

obtain
D0 (G V) 5 (G 1Y), 1 (B V) (B,
3 (V,1V) K1 (& V). K (1, ) <0
= (0 (V) 3 B 1.1V) g (V) 8n (B )
K (V1Y) K 1.0} (G V), 0 (v, 11) ) <0

< ‘@((X (5)‘1[{7 V) Ky, (gnkJrlvhv) » Ky (énwv) » Ko (énkvgnﬂrl)

K2 (Vi 1iv) k3 (Guys V) + 1 (V. RV) 16 (V, En41)) <0
Letting k tends to infinity and using the continuity of @ and o (&,,,&) > 1, we get
o (ky (v,hiv), 0,0, k5 (v, V), Kk (v,iv),0) <O0.
Finally, by condition (), it follows that k; (v,#v) < 0 which implies Av = v. O
We need extra conditions to obtain uniqueness of fixed point.

(U) For all u,v € Fix (h), we attain o (u,v) > 1, where Fix (h) gives the set of all fixed points of 7.
(423) There exists ¥ € ¥ in such a way that for all u,v > 0,

£ (u,u,0,0,u,v) <0 implies u<wy(v).
Theorem 2.4. Adding conditions (U) and (23) to the hypotheses of Theorem 2.2 (resp Theorem 2.3), we deduce that h has a unique fixed
point.
Proof. We discuss by contradiction, that is, there exist u,v € My in such a way that u = hiu and v = hv with u # v. From (1.1), we obtain
[@((X (u7 V) Ky (huvhv) , Ky (uv V) » Ko (uvhu) )
K (v ), &y (u,v) i, (v, ) < 0.
Then, by condition (U), we have
2Ky (u,v), K3 (,v),0, 0,57 (u,v), K5 (v,u)) <O.
Since @ satisfies the property (), then
Ky (u,v) Sy (K (u,v) < Ky (,v),
which is a contradiction and hence u = v. O
Now, we give some corollaries from above results.

Corollary 2.5. Let My be a complete non-AMMS and h : M — My be a function. If there is a function o : Mic X My — [0,00) in such a
manner that

a(éﬂ?) K)o (hévhn) < pxy (5777)4“]’91 (gvhé)'i'r’(l (7177”1)
+sk; (8,7m) + 1Ky (n,7E)

forall E,n € My, where p,q,r,s,t >0, p+q-+r—+s+1t < 1. Assume also that:

(i) h satisfies (1.1),
(ii) there is &y € My in such a way that o (§y,hEy) > 1,
(iii) h is continuous or the condition (H) holds true.

Then, h has a fixed point. Additionally, if p+r+s < 1 and the conditions (U) and () hold true, then h has a unique fixed point.
Corollary 2.6. Let My be a complete non-AMMS and h : M — My be a function. If there is a function o : Mic X My — [0,00) in such a
manner that
o (8,1) &y (A, in) < kmax{, (§,1), & (§,78) 1 (11,7im) ,
K (&.7m), x5 (n,1E)},
forall E,n € My, where k € [07 %) . Furthermore:

(i) h satisfies (1.1),
(ii) there is &y € My such that o (&g, hEp) > 1,
(iii) h is continuous or the property (H) is satisfied.
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Then, h has a fixed point. Moreover, the conditions (U) and () hold true, then I has a unique fixed point.

Example 2.7. My = R endowed with the non-Archimedean modular metric «; (§,m) = % |E —n|, for all £, € My and A > 0. Obviously,
M is an K—complete non-AMMS.

Consider the self-map h : M — My defined by h = %.

Also define

1, if&,nelo,1]

0, otherwise,

azm={

and @ Ri — R defined by

3 15 +1g
p@m%mM@mQ:n—me 0,134, =5 ¢ -

Let a(&,m) > 1, then &,m € [0,1]. Also, h€ € [0,1], for all £ € |0,1] and so o (RE ,Aim) > 1. Therefore h is an ot—admissible mapping. Let
&,n €10,1], we have

o (o(&m) 0 (hE,7m) Ky (E,1), Kz (€,7E) iy (1, ), BeEH (1) )

= 0‘(5777)’91 (hévhn)_ %maX{Kl (5777)’;(/1 (éuhé)axﬂt (7777”1)7

2

S&\é—nl—%max{%\é—nl,ﬁléhﬁlnl, 127 (166 —n|+[6n — &)}

<0.

Similarly, it is obvious that contractive condition (2.1) holds in the case (§,1 ¢ [0,1] and & or 1 is not in [0,1].) Thus, T is ax—type implicit
contraction. Next, it is easy to illustrate that conditions h is K—continuous, (H) and (U) are satisfied.
Thus, the axioms of the Theorem 2.2, Theorem 2.3, and Theorem 2.4 are supplied and 0 is a unique fixed point.

3. Stability problem in the sense of Ulam-Hyers

Now, we obtain the stability problem in the sense of Ulam-Hyers of fixed point. That this problem correspondences to Corollary 2.5.
Let M be a non-AMMS and /i : My — My be a function. Imagine the fixed point problem

£ = he 3.1

and the inequality (for € > 0)

K (hn.n) <e. (3.2)

We are said to be a 7 is stable in the sense of Ulam-Hyers in non-AMMS if there are L > 0 such that for each € > 0 and a €—solution
v* € My, that is, v* supplies the condition (3.2), there is a solution u* € My, of the fixed point equation (3.1) such that

Ky, (u*,v*) < Le. (3.3)

Theorem 3.1. Let My be a non-AMMS. Suppose that all the hypotheses of Corollary 2.5 hold and o, (u,v) > 1 for all e—solution u and v,
then the equation (3.1) is stable in the sense of Ulam-Hyers.

Proof. By Corollary 2.5, we have a unique u# € My such that u = 7w, that is, u € M\ is a solution of the fixed point equation (3.1). Let € >0
and v € My be an €—solution, that is,
Ky (Av,v) <e.

Since & (u,hu) = &, (u,u) =0 < &, u and v are €—solutions. By hypotheses, we get & (u,v) > 1 and from (3.3), so

Ky (u,v) = Ky, (hu,v)
= Kmax{a,1) (7, v)
< &y (hu,hv) + Ky, (Av,v)
= o (u,v) Ky (hu,hv) + €
<axy, (u,v) + biy, (u,hu) + cky, (v, v)
+dxy, (u, ) + ey (v, i) + €
= aky (u,v) + bk, (u,hu) + ciy (v,Av)
+dKmaxa,2) (U, 7V) + eKnax a2y (v, i) + €
<aky (u,v)+bxy (u,hu) + cxy (v,v)
+d (), (u,v) + x5, (v, ) + e (K, (vu) + &5, (u,lin)) + €.

We deduce

where L = ( Ltctd ) > 0. Thus, % is Ulam-Hyers stable. O

l—a—d—e
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4. Well posedness of the fixed point problem

Now, we show well-posedness of a function / on non-AMMS.

Definition 4.1. Let My be a non-AMMS and let i : My — My, o : My X My — [0,00) be two functions. h is well-posedness if:

(i) u € My is the unique fixed point when o (u,hiu) > 1,
(ii) there exists a sequence {&y} in such a manner that K (&,,h&,) — 0 as n — oo, then Ky (&,,u) = 0 as n — oo,

We define a new condition which needs to be the following result.
(R) If {&n} is a sequence in My in such a way that &, (&,,hE,) — 0 as n — oo, then o (&,,1&,) > 1 foralln € N.
Theorem 4.2. Let My be a non-AMMS. If all the conditions of Corollary 2.5 and the condition (R) hold, hence (3.1) is well posed.

Proof. By Corollary 2.5, we have a unique u € My in such a manner that u = fu and o (u, i) > 1. Let {&,} is a sequence in My in such a
way that k3 (&,,h&,) — 0 as n — co. By condition (R), we get & (&,,&,) > 1. Now, we have

Ky, (él’hu) =Ki (éﬂﬁhu)
= Kmax{2,1} (&n, fitt)
<Ky (énahén) + Ky (hénahu)
< o (&nyu) Ky (R, ) + 163, (En, iEn)
< akxy (én’u) +bKl (émhgn) + Ky, (u7h”) +dK). (gnvhu)
+ekKy, (uvhén) +K) (énvhgn)
< aky, (&n,u) +bxy (&n,18n) + iy, (u, i) + d Knax 2,2y (S Tiue)
+eKmax(a,2) (Us71n) + Ky (En, 118n)
< aky (&n,u) +bky (§n, 1n) + iy (u,ue) +d (Ky, (o) + K (u,ue))
+e (K3, (u,8n) + Ky (En, 1En)) + 14, (8ns ) -

Hence b
+b+e
K (Gnou) < (m) K. (Ens 1) -
Since & (&y,1E,) — 0 as n — oo, it implies that K (&,,u) — 0 as n — eo. Thus, & is well posed. O

5. Consequences

Next, we will obtain non-AMMS version of some fixed point results.
In the Definition of 1.6, if we take y (¢) = ht, h € [0,1), we get Berinde’s results in [11].
Let I" be the set of all continuous real functions & : Ri — R, for which we consider the following conditions:

(#14) F is non-increasing in the fifth variable and

PE NN, EE+N,0)<0,forE,n>0 = 3Fhe0,1) suchthat & < hn;
(#1p) #ois non-increasing in the fourth variable and

2(E,1,0,E+n,E,n) <0, forE,m >0 = Fhe|0,1) suchthat < hn;
(#1.) o 1is non-increasing in the third variable and

#(Em,E+n,0,m,8) <0, for§,n >0 = Fhe(0,1) suchthat§ < hm;

(n) #(£,£,0,0,&,&) >0, forall & > 0.

Example 5.1. The function g € T, given by
P(t1,12,13,14,15,16) = ] — aty,
where a € |0,1), satisfies ($214)-(#1c) and (), with h = a.

Example 5.2. The function g €T, given by
P(t1,12,13,14,15,16) =11 = b (13+14),
where b € |0, %) satisfies ($14)- (1) and (), with h = % <1.

Example 5.3. The function @ €T, given by
p(t17[27t37l47t5716) =1 _C(ZS +t6)7
where ¢ € |0, %), satisfies (@1a4)-($1c) and (), with h = 1< < 1.

Example 5.4. The function g € T, given by

B34ty t5+16
) ’

P(t1,1,13,14,15,16) =11 —amaX{Q,

where a € [0,1), satisfies ($14)-(#1c) and ($»),with h = a.
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Example 5.5. The function o € T, given by
#1112, 13,14, 15,16) =t —aty — b (13 +14) — ¢ (5 +1¢) ,

where a,b,c > 0 and a+2b+2c < 1 satisfies (#14)-(#1c) and (§),with h = "+b+‘ <1.

Corollary 5.6. Let My be a non-Archimedean modular metric space, i : My — MK be a self map for which g € T such that for all £, 1 € M,

oy (hE.1m) . x5, (8.1) . %, (§.1E) 15 (n.7m) .,y (§.5m) .1y (11,7E)) <O
If @ satisfies (§14) and ($»), then h has a unique fixed point.

Proof. Tt suffices to take o (§,1) =1 and y (t) = kz, k € [0,1) in Theorem 2.2.

6. Application to integral equation

Next, we give implementation to show the nonlinear integral equation.

9= [Kp.& @) dp.

where & € I = [a,b] and K : I x I x R — R is continuous. Let M = C(I,R) with the usual supremum norm, that is,

151} = max|E (2)]
and the metric
K2 (6,1) = AH% nl\—fd(én)?
forall £, € M. For r > 0 and £ € M we denote by
By (&r)={veM:Kk,(E,n) <r},

the closed ball concerned at & and of radius r. Note that My is a k—complete non-AMMS.
Now, imagine the mapping 7 : My — My

A= [K@p.& ) dp.

Notice that (6.1) has a solution if and only if 7 has a fixed point in (6.2).
Theorem 6.1. Let r > 0 and we granted that the following conditions are supplied:
(i) ifye By (&,r), A >0, then
q(z,p)
K (z,p.& (P)) —K(z,p.n(p))| < 1&(p)—n(p)l,

forallz,p €1, £, € R and for some continuous function q : I x [ — Ry;
(ii) supq(z,p) =k < 1.
zel

Hence, (6.1) has a solution.

Proof. Since 1 € By (&,r) and from (ii), we have

4 (0= ()] < | IK (0. & (p)~ K o (p)]dp
< [IK (0.8 (p) ~ K (ep.n () d
< 1K p.&(p) =K e (p)dp
< D) -n (plap

b
<lig(p) - (p)l\{ﬁdp
=klIg(p)—n(p)]-

This implies that

K/x(hé,hn)=%lh§ hnll
ST —hn (z)]
< gk Hé ) n(p)ll
<k (&,m).

Now, #£: Rf_ — R defined by
P(t1,12,13,14,15,16) = t| — ki,

6.1)

(6.2)

(6.3)

where k € [0, 1), and so the integral operator 7 satisfies all conditions of Corollary 5.6. Thus, 7 has a fixed point, i.e., (6.1) has a solution in

M.

O
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