
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE

ISSN: 2147-3129/e-ISSN: 2147-3188

VOLUME: 13 NO: 1 PAGE: 216-231 YEAR: 2024

DOI:10.17798/bitlisfen.1380086

216

Comparison of New and Old Optimization Algorithms for Traveling

Salesman Problem on Small, Medium, and Large-scale Benchmark

Instances

Md Al Amin HOSSAIN1*, Züleyha YILMAZ ACAR2

1Selçuk University, Graduate School of Natural and Applied Sciences, Department of Information

Technology Engineering
2Selçuk University, Faculty of Technology, Department of Computer Engineering

(ORCID: 0000-0003-3382-5300) (ORCID: 0000-0002-4488-478X)

Keywords: Benchmark,

Metaheuristic, Optimization,

Travelling Salesman Problem.

Abstract

The Traveling Salesman Problem (TSP), a prominent combinatorial optimization

issue, is the subject of this study's evaluation of the performance of new and old

optimization techniques. This paper seeks to expand knowledge of optimization

techniques and how they might be applied to solve TSP challenges. The goal of the

research is to compare various algorithms' scalability, convergence, and computation

times on benchmark instances of several sizes. To achieve this goal, this paper carried

out extensive testing using the Artificial Bee Colony, Grey Wolf Optimization, and

Salp Swarm Algorithm as new optimization algorithms and the Genetic Algorithm,

Ant Colony Optimization, and Simulated Annealing as old optimization algorithms.

In small, medium, and large-scale benchmark cases, these algorithms were examined.

The findings of this investigation show that the new optimization techniques are more

convergent and scalable than the old ones, especially for medium-scale scenarios.

They perform better in terms of solution quality by applying objective function

values. The new methods also exhibit improved scalability, successfully adjusting to

medium-scale instances. However, there were no discernible changes between the

smaller and larger instances. This study makes an impact by offering insightful

information about how well optimization methods perform while solving the TSP.

Each algorithm's strengths and downsides have been reported, and these details offer

useful guidance for choosing an algorithm for a certain scenario. The results also

show the practical ramifications of applying novel optimization techniques,

especially in medium-scale instances.

1. Introduction

The study of optimization algorithms has grown

significantly in relevance for their effective and

economical solutions to challenging issues. The

Traveling Salesman Problem (TSP) stands out among

these issues because of its numerous real-world

applications across multiple sectors [1]. The TSP is a

prevalent issue in operations research and

computational science that requires figuring out the

quickest path a traveling salesperson can take to visit

a certain list of cities, specifically once, and then head

*Corresponding author: alamin.ict.iu@gmail.com Received: 23.10.2023, Accepted: 29.12.2023

back to the beginning point [2]. Even though its

formulation appears easy, the TSP becomes more

difficult as the number of cities increases

exponentially, creating a combinatorial eruption of

alternative solutions [3]. Optimization algorithms

provide promising avenues for tackling the inherent

complexity of the TSP. These algorithms utilize

advanced search and optimization techniques to

explore the solution space efficiently and find high-

quality solutions within a reasonable timeframe [3].

By intelligently navigating through the vast solution

space, optimization algorithms can discover near-

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1380086
https://orcid.org/0000-0003-3382-5300
https://orcid.org/0000-0002-4488-478X
mailto:alamin.ict.iu@gmail.com

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

217

optimal or even optimal solutions, resulting in

minimized travel distances, optimized resource

allocation, and improved overall efficiency in real-

world scenarios [4].

The primary objective of this research is to

comprehensively investigate and evaluate the

performance of different optimization algorithms for

solving the TSP. Specifically, we aim to compare the

effectiveness of well-established algorithms such as

Genetic Algorithms (GA), Ant Colony Optimization

(ABC), and Simulated Annealing (SA) as old

optimization algorithms and Artificial Bee Colony

(ABC), Salp Swarm Algorithm (SSA), and Grey Wolf

Optimization (GWO) as new optimization algorithms

in finding optimal or near-optimal solutions to the

TSP. By assessing their performance in terms of

solution quality, convergence, and computational

efficiency, we seek to provide valuable insights into

the strengths and limitations of these algorithms in

addressing the TSP's complexities.

This study's contribution lies in its rigorous

evaluation and comparison of multiple optimization

algorithms for the TSP. While previous studies have

individually examined the performance of these

algorithms, this research takes a comprehensive

approach by directly comparing their effectiveness

side by side. This comparative analysis enables us to

identify the algorithm(s) that exhibit superior

performance characteristics for solving the TSP,

offering valuable guidance for researchers and

practitioners in selecting the most suitable algorithm

for their specific problem instances. Through a

thorough evaluation of their performance in terms of

solution quality, convergence, and computational

efficiency, this analysis strives to provide

comprehensive insights into the strengths and

limitations of each algorithm, thus facilitating

informed decision-making for future research and

practical applications. By shedding light on the

capabilities and performance trade-offs of different

optimization algorithms for the TSP, this study

endeavors to advance the understanding and

utilization of these algorithms in solving real-world

optimization problems.

The following is the format of the study's

accomplishing sections: The literature on TSP is

delved into in Section 2. Section 3 provides a

summary of the approaches used to address the

relevant TSP issues, with an emphasis on

optimization algorithms and metaheuristic

techniques. The experimental results and subsequent

discussions are outlined in Section 4. Conclusions

from the study's findings are in Section 5.

2. Literature Review

The TSP is a renowned stochastic optimization

concern that seeks the fastest route to travel between

a starting point and a number of cities. Numerous

optimization techniques have been created over time

to effectively solve the TSP. The usefulness and

performance of several optimization algorithms for

the TSP have been thoroughly evaluated through prior

comparative studies. The available literature is

reviewed in this section, and the conclusions of these

comparative investigations are outlined. The study

undertaken by Şahin [4] presents new relocation and

city selection functions that are incorporated into the

bees algorithm to improve its TSP solution efficiency.

This work demonstrates the efficiency of the

approach in optimizing TSP solutions by notably

increasing solution reliability, especially in cases with

higher city counts. Li et al. [5] proposed the TSP

solution using a differential edge information-based

ACO. Heterogeneous population automation, tour

creation, and smooth search operators improve

candidate solution quality in the algorithm. The

algorithm outperformed state-of-the-art algorithms on

TSPLIB benchmark examples for mid-scale and

small-scale TSP instances. It surpassed the other

methods, proving its efficacy. Middle-scale TSP

situations need faster solving. Ajayi et al. [6] sought

TSP optimization methods. ACO was compared to

Dijkstra's method and particle swarm optimization.

The ACO algorithm excelled in route quality and total

length, while Dijkstra's method excelled in minimum

cost calculations. The research's application to other

optimization problems, the need for further parameter

exploration, and the lack of comparison with other

state-of-the-art TSP algorithms were shortcomings.

The algorithm's large-scale TSP scalability needs

further study. Mondal and Srivastava [7] used

evolutionary algorithms to solve a time-limited TSP

with time limits for each city. The technique used

cyclic crossover and specific mutation operations.

The approach worked with benchmark instances in

computations. The authors advised future research on

multiple TSPs, probabilistic TSPs with fuzzy

parameters, cost-limited TSPs, and bi-objective TSPs

in a fuzzy environment, as well as travel time and

asymmetric cases.

Hasan [8] compared the Bat Algorithm (BA)

and ABC for solving the TSP. ABC found the best

tour faster than BA, but BA needed more parameters

and a better control method. The conclusion suggests

future research into combining both algorithms in a

system. Khajehzadeh et al. [9] introduced an Adaptive

Salp Swarm Algorithm (ASSA) for geotechnical

structure optimization. A new leader and follower

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

218

position updating equations improved exploration and

prevented premature convergence. ASSA

outperformed other optimization methods in

benchmark tests. ASSA optimized geotechnical

constructions while satisfying geotechnical and

structural limit states, yielding cost-effective designs

with superior results than competing methods. Liu et

al. [10] tackled complex optimization challenges

involving multiple objectives and modes within the

TSP. A test problem generator designed for problems

involving multiple depots and multiple traveling

salesmen simultaneously creates instances that

exhibit known Pareto optimal solutions. This tool

with three or more objectives, test problem generators

for specific features, and crossover operators that

investigate a wider solution space are future research

possibilities. Khan et al. [11] provide Modified GWO

to solve the multiple objectives and covering

constraints for the salesman problem. K-bit exchange,

K-opt, and non-dominated sorting-based GA are

incorporated to improve search and solution quality.

Their proposed algorithm outperforms other multi-

objective optimization algorithms on standard

benchmark examples, proving its multi-objective-

based problem-solving efficiency. The suggested

approach can only handle this covering problem with

crisp data sets and needs adjustments to accommodate

imprecise data sets.

Panwar and Deep [12] stated the Discrete

Salp Swarm Algorithm (DSSA) as an improved

version of the SSA for solving the TSP. Swap, shift,

and symmetry operators are used for global

exploration and local exploitation, while the 2-opt

technique improves local search. DSSA outperformed

the GA, ABC, Spider Monkey, Jaya, Black Hole, and

Symbiotic Organism Search on 45 TSP instances. The

paper advises using DSSA to solve other discrete

optimization problems like scheduling and routing

issues. Khan and Maiti [13] offer a modified ABC

algorithm to solve the TSP in their research paper.

Swap sequences and city sequence swap procedures

create various solution-updating rules in the

algorithm. The suggested method is tested on TSPLIB

benchmark TSP problems, showing its accuracy,

efficiency, and consistency compared to existing

algorithms. With appropriate changes, ABC can

handle discrete optimization problems, including

TSP, according to the study. The existing literature

includes computational evaluations on large-scale

TSP scenarios, algorithm behavior analysis under

varied issue forms or restrictions, and a defined

benchmarking methodology for fair contrasts. These

gaps suggest a full comparative study to solve these

constraints and better understand TSP optimization

algorithms' strengths and drawbacks. The literature

review section summarizes TSP optimization

techniques, evaluates comparative research, and

highlights gaps that require a complete comparative

investigation. A brief summary of the explored

literature is listed in Table 1.

3. Methodology

This section covers the theoretical basis of TSP as

well as how the performance of various optimization

algorithms, including GA, ACO, SA, ABC, SSA, and

GWO, was compared in this study. Figure 1 displays

the methodological approach's structural flowchart.

Figure 1. Structural flowchart of methodology.

3.1. Traveling Salesman Problem (TSP)

The TSP is a prominent optimization problem that

includes finding the most efficient way for a

salesperson to visit a series of cities and return to the

beginning city [14]. The TSP reduces the salesman's

route distance and cost [7]. This problem is formally

described by creating choice variables to represent

direct travel between cities and a distance or cost

matrix to show distances between pairs of cities: a

collection of n cities, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}, and a

distance or cost matrix 𝐷, where 𝐷𝑖𝑗 is the distance

between cities 𝑐𝑖 and 𝑐𝑗. Some TSP variables and

parameters represent :

End

Compare between old and new
algorithms

Perform statistical analysis

(T-test)

Run optimization algorithms on
benchmark instances

Define experimental setup

Select benchmark instances

Define optimization algorithms

Start

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

219

Table 1. A brief overview of the reviewed literature

 Choice variables: If the salesman travels directly

from city 𝑖 to city 𝑗, 𝑥𝑖𝑗 = 1, otherwise 𝑥𝑖𝑗 = 0.

 Parameters: 𝐷𝑖𝑗 = Cost or distance between cities

𝑖 and 𝑗.

Mathematically optimize the TSP:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑍 = 𝛴𝛴𝐷𝑖𝑗 ∗ 𝑥𝑖𝑗 (1)

 Subject to:

1) For each city 𝑖, ∑𝑥𝑖𝑗 = 2, ensuring that

each city is visited precisely once.

2) ∑𝑥𝑖𝑗 = 2 for each city 𝑗 to leave each

city precisely once.

3) The salesman travels to and from each

city by setting ∑𝑥𝑖𝑗 - ∑𝑥𝑖𝑗 = 0

Solving the TSP involves finding choice variables 𝑥𝑖𝑗

that minimize the total distance or cost 𝑍 while

fulfilling constraints. As the number of cities rises,

solving the TSP optimally becomes an extremely

difficult issue [3].

3.2. Optimization Algorithms and Benchmark

Instances

In this study, a comprehensive comparison of

optimization algorithms is conducted. A brief

description is provided for each optimization

algorithm, focusing on their underlying principles,

search strategies, and important parameters that

contribute to their performance. The algorithms

considered in this research are GA, ACO, SA, ABC,

SSA, and GWO, all recognized for their efficacy in

solving optimization problems.

I. Genetic Algorithm : Genetics-inspired GA

optimizes. It addresses complicated problems like

evolution [15]. GA analyzes potential solutions.

Selection, crossover, and mutation generate new

solutions. Repeat until a termination requirement is

reached [7]. GA is utilized in many fields because it

can handle complex search spaces and identify

optimal or near-optimal answers. The stepwise GA

algorithm to solve TSP is illustrated in Algorithm 1.

II. Ant Colony Optimization algorithm: ACO

optimizes like ants. Pheromone trails help it find

optimal solutions [16]. Ants use probabilistic

pheromones and heuristics to solve problems. The

quality of solutions determines pheromone trail

updates. ACO promotes exploration and delays

convergence [5]. It solved optimization difficulties.

Algorithm 2 illustrates the stepwise ACO approach to

solve TSP.

III. Simulated Annealing algorithm:

Metallurgy's annealing process influenced SA's

metaheuristic algorithm [17]. It starts with a solution

and allows occasional "worse" steps based on a

probability distribution to find better ones. Simulating

cooling and adopting a worse answer reduces over

time. SA helps avoid local optima and explore

solution space [18]. Many optimization problems

utilize it. Algorithm 3 depicts the stepwise SA

algorithm to solve TSP.

Author, Year Used Algorithm Problem – Average Value Instance Size

1 Khan and Maiti, 2019

[13]

Swap sequece based ABC berlin52 – 7543 small

2 Şahin, 2022 [4] Improved bees algorithm kroA100 – 21466 small

3 Ajayi et al., 2022 [6] Particle swarm optimization and

ant colony optimization with

Dijkastra’s algorithm

No specific problem -

4 Hasan, 2022 [8] Artificial bee colony and bat

algorithm

No specific problem -

5 Khajehzadeh et al.,

2022 [9]

Adaptive salp swarm

optimization

Real world problems -

6 Panwar and Deep,

2022 [12]

Discrete salp swarm

optimization

tsp225 – 3940.23 medium

7 Li et.al., 2023 [5] Heuristic smoothing differential

ACO

dsj1000 – 18897396.15 large

8 Mondal and

Srivastava, 2023 [7]

cyclic crossover based GA kro124p – 36612.94 small

9 Liu et al., 2023 [10] Evolutionary mutltimodal

multiobjective algorithm

TSPXEA problems -

10 Khan et al., 2023 [11] Decomposition based GWO – -

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

220

Algorithm 1. GA algorithm to solve TSP

1: Initialize population p using the

initialize_population method.

2: Calculate the fitness for each individual in p using

the evaluate_fitness method.

3: Set the iteration counter T = 0.

4: Set max_iterations = 1000.

5: while T < max_iterations do

6: Select parents from the population p using the

selection method.

7: Perform crossover on the selected parents with a

probability of 0.8 using the crossover method to

generate offspring.

8: Perform a mutation on the offspring with a

probability of 0.2 using the mutation method.

9: Calculate fitness for each offspring using the

evaluate_fitness method.

10: Replace the worst individuals in the population p

with the best offspring.

11: Update the best solution found so far.

12: Increment iteration counter T = T + 1

13: End while

14:Return the best solution found (best_individual).

Algorithm 2. ACO algorithm to solve TSP

1: Initialize the pheromone matrix with

initial_pheromone

2: Set best_tour = none and best_distance = infinity.

3: Start timer

4: Repeat num_iterations times:

5: Generate tours using construct_tour method for

num_ants.

6: For each tour:

7: Calculate tour distance

8: If distance is less than best_distance:

9: Update best_tour and best_distance

10: Update pheromone matrix using the

update_pheromone_matrix method.

11: End repeat

12: Stop timer

13: Calculate computation_time as the difference

between start_time and end_time.

13: Return best_tour, best_distance, and

computation_time.

IV. Artificial Bee Colony algorithm:

Honeybee browsing inspired ABC, a population-

based metaheuristic algorithm [19]. It simulates bee

colony intelligence to find optimal solutions. The

algorithm uses employed, bystanders, and scout bees.

Onlooker bees choose solutions based on fitness,

while employed bees move solutions across the

search space. Scout bees randomly investigate new

areas [20]. ABC solves complicated optimization

issues quickly and easily. Algorithm 4 illustrates the

stepwise ABC approach to solve TSP.

V. Salp Swarm Algorithm (SSA): The SSA

optimizes marine invertebrates, salps, and swarming.

Buoyancy guides salps to better solutions when

traversing the search space [21]. The SSA has found

optimal solutions to several optimization issues [22].

The stepwise SSA algorithm to solve TSP is

illustrated in Algorithm 5.

Algorithm 3. SA algorithm to solve TSP

1: Initialize Simulated Annealing with cities,

initial_temperature, cooling_rate, num_iterations

2: Initialize the distances matrix by calculating the

distances between cities.

3: Define the calculate_tour_distance function to

calculate the total distance of a tour.

4: Define the generate_neighbor function to generate a

neighbor tour by swapping two cities.

5: Define the acceptance_probability function to

calculate the acceptance probability based on

current_distance, new_distance, and temperature.

6: Initialize current_tour with a random tour.

7: Initialize best_tour and current_distance as

current_tour and its distance.

8: Initialize best_distance as current_distance and

temperature as initial_temperature.

9: Start the timer T.

10: Repeat num_iterations times:

11: Generate a new tour, new_tour, as a neighbor of

current_tour.

12: Calculate the distance of new_tour, new_distance

13: If acceptance_probability (current_distance,

new_distance, temperature) is greater than a random

number:

14: Update current_tour and current_distance as

new_tour and new_distance

15: If current_distance is less than best_distance:

16: Update best_tour and best_distance as current_tour

and current_distance.

17: Decrease temperature by multiplying with

cooling_rate.

18: End the timer.

19: Calculate computation_time as the difference

between start_time and end_time.

20: Return best_tour, best_distance, and

computation_time.

Algorithm 4. ABC algorithm to solve TSP

1: Initialize population p

2: Set iteration counter T = 0.

3: Set max_iterations = 1000

4: while T < max_iterations do

5: Calculate fitness for each individual in p using fi

6: Perform an employed bees phase to generate a new

population.

 list new_population

 select and swamp two positions (i and j) from

the bee's solution.

7: Perform the onlooker bee phase to select the

population based on fitness

 list selected_population

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

221

 Calculate the selection probabilities based on

the fitness values.

8: Perform the scout bee phase to replace poor

solutions.

 Find the index of the bee with the best fitness

(min distance)

 Find the best fitness value

 list new_population

9: Update the best solution found so far.

 Find the index of the bee with the best fitness

(min distance)

 Update the best solution and best distance if the

current best fitness is better

10: Increment iteration counter T = T + 1

11: End while

12: Return the best solution found.

VI. Grey Wolf Optimization algorithm: Grey

wolves inspired GWO's metaheuristic algorithm. It

simulates wolf leadership and cooperative hunting to

find the best solutions. Alpha, beta, delta, and omega

wolves signify hierarchy in the algorithm [23].

Wolves position themselves according to the alpha

and hunting distance. Exploration and exploitation

help GWO uncover optimal solutions [24]. It solved

optimization difficulties. Algorithm 6 depicts the

stepwise GWO algorithm to solve TSP.

Algorithm 5. SSA algorithm to solve TSP

1: Initialize salps population

2: Calculate the distance for each salp in the population

using the given cities.

3: Set best_salp as None

4: Set the iteration counter to 0.

5: Set max_iterations = 1000.

6: while iteration_counter < max_iterations do

7: For each salp in the population, do

8: If best_salp is None or the distance of the

current salp is smaller than the distance of best_salp,

then

9: set best_salp as the current salp

10: Create a new salp by updating the position of

the current salp based on the best_salp.

11: Update the population with the new salps.

12: Increment the iteration counter by 1.

13: End while

14: Return best_salp(best_solution)

Algorithm 6. GWO algorithm to solve TSP

1: Initialize wolves

2: Set the iteration counter.

3: Set the maximum number of iterations

4: while iteration_counter < max_iterations do

5: Evaluate fitness for each wolf

6: Update the best wolf found so far

7: Determine alpha, beta, and delta wolves as the

best, second-best, and third-best solutions

8: For each wolf, do

9: Update the position of the wolf based on alpha,

beta, and delta.

10: End for

11: Increment iteration_counter

12: End while

13: Return the best wolf found (best_solution).

4. Experimental Analysis

This section examines many aspects through a variety

of experiments. This includes a close study of how to

choose benchmark instances, the specifics of the

experimental layout, how convergence works across

optimization strategies, and how well statistical

analysis works. Additionally, this segment provides a

complete discussion of the insights gained from the

results as well as a detailed explanation of the

outcomes.

To assess the performance of the optimization

algorithms, a selection of benchmark instances is

made from the TSPLIB library [25]. The chosen

instances encompass a range of problem sizes and

complexities, ensuring a diverse set of challenges for

the algorithms. The benchmark instances include

burma14, berlin52, and kroA100 as small-sized

instances, while ts225 and att532 represent medium-

sized instances. Additionally, rat783 and dsj1000 are

selected as large-sized instances. These carefully

chosen instances enable a comprehensive analysis of

the algorithms' performance across various problem

sizes and complexities.

3.1. Experimental Setup

Table 2 presents common and specific parameters for

several optimization algorithms, including GA, ACO,

SA, ABC, SSA, and GWO. The population size is set

to 100 for all algorithms with 1000 iterations. GA uses

a crossover rate of 0.8 and a mutation rate of 0.2. ACO

employs alpha and beta values of 1.0 and 5.0,

respectively. SA starts with an initial temperature of

1000 and a cooling rate of 0.95. ABC has a limit of 5

for employed bee trials. Performance metrics for

evaluation include the best optimal solution, average

solution, standard deviation, standard deviation (%),

and computation time. The algorithms are applied to

different sets of city coordinates, including burma14,

berlin52, kroA100, ts225, att532, rat783, and

dsj1000.

3.2. The Statistical Tests for Comparing

Performance

To evaluate the statistical significance of the obtained

results, appropriate statistical tests will be employed.

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

222

Table 2. The common and specific parameters of optimization algorithms used

Specifically, t-tests will be utilized to compare the

convergence and efficiency of the optimization

algorithms. The t-tests enable the determination of

whether there exist statistically significant differences

in the performance of the algorithms in terms of their

convergence to the optimal solution. The t-test is a

widely used statistical test that assesses the difference

between the means of two groups [26]. In this case,

the groups correspond to the different optimization

algorithms under investigation. The t-test calculates a

t-statistic, which measures the extent of the difference

between the means of the two groups relative to the

variability within each group (in this case, the

algorithms). A larger absolute t-statistic indicates a

greater difference between the means. The t-statistic

is calculated using the following equation (2):

𝑡 =
(𝑚𝑒𝑎𝑛1 − 𝑚𝑒𝑎𝑛2)

√(𝑠𝑡𝑑1
2 ∕ 𝑛1) + √(𝑠𝑡𝑑2

2 ∕ 𝑛2)
 (2)

Where 𝑚𝑒𝑎𝑛1 and 𝑚𝑒𝑎𝑛2 are the sample

means of the best optimal solution for the two

algorithms, 𝑠𝑡𝑑1 and 𝑠𝑡𝑑2 are the sample standard

deviations, and 𝑛1 and 𝑛2 are the sample sizes. The p-

value, which the t-test also presents, denotes the

likelihood of detecting the determined difference in

means under the presumption that there is no real

difference between the groups. A lower p-value

indicates greater statistical significance and stronger

evidence against the null hypothesis of no difference.

The significance level in this study is 0.05, which

denotes a 5% chance of detecting significant

differences as a result of random oscillation. We deny

the null assumption and endorse the alternative

hypothesis, determining that the algorithms differ

effectively if the computed p-value is smaller than the

significance level. This technique evaluates

optimization algorithms across benchmark instances.

The statistical tests reveal considerable differences in

the convergence and effectiveness of the algorithms,

revealing their relative performance and applicability

for problem instances of varied sizes and

complexities.

3.3. Results Assessments

In this paper, all of the suggested algorithms were

coded in Python in the Anaconda environment using

Matplotlib, Seaborn, SciPy, and the Pandas library,

and several estimates were made. Table 3 presents a

comprehensive comparison of three new

metaheuristic algorithms— ABC, SSA, and GWO —

on various instances of the TSP of different sizes.

Table 3 includes seven TSP instances ranging from 14

to 1000 nodes, and for each instance, it provides the

best optimal solution (best opt.), average solution

(avg), standard deviation (std), standard deviation

percentage (std%), and time taken by each algorithm

to solve the TSP instance.

From Table 3, we can observe that for smaller

TSP instances such as burma14 and berlin52, all three

algorithms perform relatively well, with ABC and

SSA providing the best solutions. The average

solution metric reveals the algorithms' overall

performance in finding solutions, with ABC

consistently delivering low average solutions across

all instances. The standard deviation metric highlights

the stability of the algorithms' solutions, with ABC

and GWO exhibiting low standard deviations.

Table 4 presents a detailed performance

comparison of the GA, ACO, and SA algorithms on

various instances of the TSP categorized into small,

Parameter Algorithm & Value

GA ACO SA ABC SSA GWO

Population Size 100

No. of Iterations 1000

Crossover Rate 0.8

Mutation Rate 0.2

Alpha 1.0

Beta 5.0

Evaporation Rate 0.5

Initial Temperature 1000

Cooling Rate 0.95

Limit 5

City Coordinates burma14, berlin52, kroA100, ts225 and att532, rat783 and dsj1000

Performance Metrics best optimal solution, average solution, standard deviation, standard deviation (%), and

computation time

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

223

medium, and large-scale instances. For small-scale

instances, such as burma14, berlin52, and kroA100,

the algorithms demonstrate similar trends. GA

achieves the best optimal solutions of 42, 24,515, and

153,460, respectively. ACO and SA also perform

well, with ACO achieving optimal solutions of 31,

7,677, and 22,946 and SA achieving optimal solutions

of 30, 12,490, and 74,583 for the respective instances.

The average solutions for these instances follow a

similar pattern, with GA, ACO, and SA showing

competitive performance. In the medium-scale

instances, ts225 and att532, ACO outperforms the

other algorithms. It achieves the best optimal

solutions of 133,285 and 99,268, respectively,

whereas GA and SA achieve optimal solutions of

1,478,608 and 1,035,202 for ts225 and 1,538,293 and

1,034,340 for att532. The average solutions also show

ACO as the top performer. For large-scale instances,

rat783 and dsj1000, GA demonstrates its strength by

achieving the best optimal solutions of 170,626 and

534,398,427, respectively. ACO and SA lag behind in

these instances, with ACO achieving optimal

solutions of 10,431 and 22,404,181, and SA achieving

optimal solutions of 130,100 and 417,124,012.

In Table 4, we can see that the Std(%) values

Table 3. Performance comparison of new metaheuristic algorithms on tsp instances of diverse sizes

Algorithm Performance

metrics

Problem instance

burma14 berlin52 kroA100 ts225 att532 rat783 dsj1000

 ABC

best opt. 66 31671 181460 1649553 1663663 184334 567420224

avg 57 29331 170553 1585724 1612119 178992 555245806

std 6 1447 8172 48380 30457 2845 7572149

std (%) 11.83 4.93 4.79 3.05 1.88 1.58 1.35

time (s) 4 14 29 63 163 239 317

SSA

best opt. 13 12879 95966 1116522 1087426 139897 475808151

avg 57 29380 169162 1587326 1613307 179095 554705324

std 7 1617 9358 43940 34175 2994 8011712

std (%) 12.72 5.5 5.53 2.76 2.11 1.67 1.44

time (s) 3 16 29 67 177 277 358

GWO

best opt. 21 16410 116098 1245252 1252724 152429 474605615

avg 21 16485 116455 1247805 1255686 152592 475494467

std 1 824 3402 25904 25024 1446 6689991

std (%) 7.53 4.99 2.92 2.07 1.99 0.94 1.40

time (s) 7 28 46 105 279 396 511

for all three algorithms are relatively low, ranging

from 0.12% to 10.06%. This suggests that the

algorithms are relatively robust and can provide

consistent solutions across different TSP instances.

In Table 5, the t-test analysis revealed that there were

no statistically significant differences between the

performance of different optimization algorithms

when considering all instances. However, in small

Table 4. Performance comparison of old metaheuristic algorithms on TSP instances of diverse sizes

Algorithm Performance

metrics

Problem instance

burma14 berlin52 kroA100 ts225 att532 rat783 dsj1000

GA

best opt. 42 24515 153460 1478608 1538293 170626 534398427

average 57 29366 169691 1595693 1613034 179461 556043666

std 5 1618 7476 44677 33547 2986 7717300

std (%) 10.06 5.51 4.41 2.79 2.07 1.66 1.38

time (s) 3 10 22 76 330 688 1200

ACO

best opt. 31 7677 22946 133285 99268 10431 22404181

average 38 10838 32636 187488 139957 14227 30817615

std 3 854 2219 11950 4937 395 947631

std (%) 9.56 7.88 6.79 6.37 3.52 2.77 3.07

time (s) 68 449 1476 4966 18075 27890 43420

SA

best opt. 30 12490 74583 904130 1035202 130100 417124012

average 47 22784 190729 299669 983336 72635 557653234

std 5 749 2183 12473 6616 526 701515

std (%) 12.56 3.28 1.14 4.16 0.67 0.72 0.12

time (s) 0.02 0.05 0.11 0.18 0.36 0.63 0.66

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

224

and large instances, no significant differences were

observed either. On medium instances, the GA

algorithm showed significantly better performance

compared to the ACO, SA, ABC, SSA, and GWO

algorithms, indicating its effectiveness in solving

medium-sized TSP problems.

Table 5. T-test analysis between all old and new algorithms on different sizes ınstances for the best opt. solution

Instances Algorithm 1 Algorithm 2 P-value Significance T-statistic

Small-scale

instances

(burma14,

berlin52,

kroA100)

GA ACO 0.364547 -** 1.022030

GA SA 0.597260 - 0.573092

ACO SA 0.477207 - -0.783348

ABC SSA 0.613100 - 0.547580

ABC GWO 0.707362 - 0.403291

SSA GWO 0.875125 - -0.167471

GA ABC 0.880887 - -0.159660

GA SSA 0.703137 - 0.409523

GA GWO 0.812443 - 0.253410

ACO ABC 0.340987 - -1.079814

ACO SSA 0.445224 - -0.845939

ACO GWO 0.409399 - -0.920508

SA ABC 0.525536 - -0.694607

SA SSA 0.857553 - -0.191376

SA GWO 0.742382 - -0.352314

Medium-scale

instances

(ts225&att532)

GA ACO 0.000608* s** 40.530090

GA SA 0.017399 s 7.482005

ACO SA 0.006236 s -12.604129

ABC SSA 0.000849 s 34.303569

ABC GWO 0.000383 s 51.060030

SSA GWO 0.010278 s -9.787848

GA ABC 0.040269 s -4.831471

GA SSA 0.006605 s 12.243384

GA GWO 0.013171 s 8.627054

ACO ABC 0.000143 s -83.651662

ACO SSA 0.000515 s -44.040645

ACO GWO 0.000236 s -65.046094

SA ABC 0.009082 s -10.421690

SA SSA 0.187524 - -1.970884

SA GWO 0.051037 - -4.255207

Large-scale

instances (rat783

& dsj1000)

GA ACO 0.439222 - 0.957841

GA SA 0.878502 - 0.173106

ACO SA 0.444202 - -0.945509

ABC SSA 0.912785 - 0.123813

ABC GWO 0.911569 - 0.125553

SSA GWO 0.998748 - 0.001771

GA ABC 0.970035 - -0.042397

GA SSA 0.942148 - 0.081953

GA GWO 0.940911 - 0.083711

ACO ABC 0.438202 - -0.960386

ACO SSA 0.441407 - -0.952411

ACO GWO 0.441436 - -0.952339

SA ABC 0.850683 - -0.213561

SA SSA 0.934531 - -0.092787

SA GWO 0.935760 - -0.091037
 ** The "Significance" column indicates the significance level (s for significant, - for not significant) of the difference between the algorithms.

 * Significant p-values are bolded.

From Table 6, the t-test results of the average

performance metric for medium-scale instances

indicate statistically significant differences in the

performance of certain optimization algorithms. On

the contrary, the t-test findings for Table 7 show that

there were no significant differences in the

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

225

computation time performance of the majority of

algorithm pairs. Table 8 presents the results of a

statistical analysis comparing the performance of two

algorithm groups, "old" and "new," based on different

metrics. The P-values indicate the statistical

significance of the differences observed, while the T-

statistic represents the magnitude of the differences.

Table 6. T-test results of all algorithms on medium-scale instances for average solution

Instances Algorithm 1 Algorithm 2 P-value Significance T-statistic

Medium-scale

instances

(ts225&att532)

GA ACO 0.000308 s 56.947378

GA SA 0.106373 - 2.815849

ACO SA 0.297916 - -1.394332

ABC SSA 0.946 - -0.075331

ABC GWO 0.001570 s 25.206599

SSA GWO 0.001513 s 25.677421

GA ABC 0.763239 - 0.344630

GA SSA 0.819775 - 0.259

GA GWO 0.000729 s 37.024449

ACO ABC 0.000359 s -52.795613

ACO SSA 0.000355 s -53.041839

ACO GWO 0.000490 s -45.164984

SA ABC 0.107474 - -2.798749

SA SSA 0.107205 - -2.802892

SA GWO 0.216172 - -1.785087

Table 7. T-test results of all algorithms on all and large-scale instances for average solution

Instances Algorithm 1 Algorithm 2 P-value Significance T-statistic

All instances

GA ACO 0.055936 - -2.115957

GA SA 0.078385 - 1.924068

ACO SA 0.050874 - 2.169134

ABC SSA 0.846396 - -0.197952

ABC GWO 0.399972 - -0.872663

SSA GWO 0.505295 - -0.686749

GA ABC 0.254208 - 1.197562

GA SSA 0.289645 - 1.107834

GA GWO 0.482505 - 0.724739

ACO ABC 0.052600 - 2.150456

ACO SSA 0.052810 - 2.148232

ACO GWO 0.053769 - 2.138136

SA ABC 0.026046 s -2.537748

SA SSA 0.028856 s -2.481920

SA GWO 0.023898 s -2.584516

Large-scale

instances (rat783

& dsj1000)

GA ACO 0.046622 s -4.467759

GA SA 0.066393 - 3.684980

ACO SA 0.044302 s 4.591675

ABC SSA 0.555104 - -0.702535

ABC GWO 0.127446 - -2.525964

SSA GWO 0.192832 - -1.933704

GA ABC 0.123737 - 2.571889

GA SSA 0.136871 - 2.417203

GA GWO 0.202491 - 1.869440

ACO ABC 0.044954 s 4.555899

ACO SSA 0.045048 s 4.550807

ACO GWO 0.045375 s 4.533231

SA ABC 0.019205 s -7.111666

SA SSA 0.015948 s -7.823580

SA GWO 0.015742 s -7.875739

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

226

Table 8. T-test results for old and new two groups on all sizes instances for best opt., avg, std (%) and time

Metric Instances Algo. group1 Algo. group2 P-value Significance T-statistic

Best opt.

solution

All old new 0.609777 - -0.514437

Small-scale old new 0.531586 - -0.639439

medium-scale old new 0.120642 - -1.696514

Large-scale old new 0.563546 - -0.597362

Avg

All old new 0.702805 - -0.384281

Small-scale old new 0.812272 - -0.241451

medium-scale old new 0.041796 s -2.333548

Large-scale old new 0.667024 - -0.443244

Std(%)

All old new 0.498638 - 0.682849

Small-scale old new 0.626244 - 0.496570

medium-scale old new 0.270391 - 1.166723

Large-scale old new 0.650603 - 0.466863

Time(s)

All old new 0.072534 - 1.844435

Small-scale old new 0.226801 - 1.256978

medium-scale old new 0.229646 - 1.279392

Large-scale old new 1.541858 - 0.154134

3.4. Discussions

This part initiates a look into consulting the tables and

figures that illustrate algorithmic contrasts in the TSP

solution. It next explores the differences in

algorithmic efficiency that are found among various

subgroups of instances. The effects of these

divergences are analyzed in order to shed light on the

applicability of algorithms with regard to TSP issue

sizes and complications.

 According to Table 3, as the size of the TSP

instances increases, GWO tends to outperform ABC

and SSA in terms of finding the best optimal solution,

which is depicted in the box plot in Figure 2 for three

different sizes of instances. Larger cases show this

tendency due to GWO's boosted exploration and

exploitation in complicated and broad search

environments. GWO's techniques may help it explore

wider solution landscapes and find superior optimal

solutions in larger TSP cases than ABC and SSA.

GWO's adaptability and robustness in scaling up to

increasingly complicated problem sizes in the TSP

domain may explain its efficiency in handling larger

instances. This suggests that GWO is more effective

at handling larger TSP instances.

The standard deviation percentage metric

normalizes the standard deviation relative to the best

optimal solution, indicating how close the solutions

are to the best. ABC and GWO consistently achieve

low standard deviations because, with their specific

exploration and exploitation tactics, they can

converge on optimal solutions and preserve solution

consistency across TSP examples. Additionally, the

time taken by each algorithm to solve the TSP

instances increases as the size of the instances

increases. GWO is the fastest algorithm, followed by

ABC and SSA. This indicates that GWO is efficient

in terms of computation time, making it a favorable

choice for solving larger TSP instances. All of these

convergences are illustrated in Figure 3 via the line

plot approach and in Figure 4 via the box plot

approach.

 As shown in Figure 5 and Figure 6, ACO

excels over GA and SA in various TSP scenarios due

to its effective optimization approaches and

adaptability. In small-scale instances, ACO surpasses

GA and SA with competitive optimal solutions with

lower values. ACO outperforms GA and SA in

optimal and average medium-scale solutions like

ts225 and att532. GA outperforms ACO and SA in

optimal solutions in large-scale examples like rat783

and dsj1000, while ACO remains competitive with

extended computation times, demonstrating its TSP

endurance. ACO's strength to balance exploration and

exploitation in slightly complicated solution domains

makes it better than GA and SA in medium-scale

cases. ACO's pheromone-based exploration and local

search techniques usually handle medium-scale

situations with diligent optimization. In these TSP

situations, ACO gets to high-quality solutions faster

than GA and SA because it quickly looks at a lot of

different solutions and takes advantage of potential

areas.

Overall, the comparison highlights the

varying performance of the algorithms based on the

problem instance size. GA shows promise for small

and large-scale instances, while ACO consistently

performs well across different scales. SA

demonstrates effectiveness for small-scale instances

but struggles to scale effectively for larger problems.

Researchers should consider these performance

differences and choose the appropriate algorithm

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

227

based on the problem size and optimization

requirements. All of these convergences of small,

medium, and large-scale instances are illustrated in

Figure 6 via the line plot approach as well as in Figure

7 via the box plot approach

a) berlin52 b) att532 c) dsj1000

Figure 2. Box plot convergence of new algorithms on three different sizes instances for best opt. Solution.

a) berlin52 b) att532 c) dsj1000

Figure 3. Line plot convergence of new algorithms on three different sizes instances for all performance metrics.

a) berlin52 b) att532 c) dsj1000

Figure 4. Box plot convergence of new algorithms on three different sizes instances for all performance metrics.

Table 6 reveals that GA and GWO outperform other

algorithms in medium-sized optimization problems

like TSP due to their convergence, exploration, and

exploitation capabilities. GA, known for its

population-based search and crossover-mutation

mechanisms, is effective in exploring diverse solution

spaces but less efficient in convergence. GWO,

inspired by grey wolves' hunting behaviors, utilizes

promising search space areas more efficiently,

improving convergence and solution quality for

medium-scale instances. The t-test results for Table 7

provide some interesting findings for two groups of

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

228

instances. GA, SA, and ABC exhibit identical

outcomes in the "All instances" segment, with

insignificant variations in the average solution values.

On the other hand, ACO performs differently from

GA, SA, and ABC, showing substantive variations.

Interestingly, ACO and SA show significant

variances when contrasted with several algorithms in

the "Large-scale instances," indicating varying

effectiveness in handling larger-scale TSP situations.

In both segments, ABC, SSA, and GWO show

stability with each other as well as with other

algorithms.

In the most significant evaluations from

Table 8 for the metric "best opt. solution," there is no

significant difference between the old and new

algorithm groups across all instances, including

small-scale, medium-scale, and large-scale cases. In

terms of average performance (Avg), there is no

significant difference between the old and new

algorithm groups for all instances and small-scale

instances. However, for medium-scale instances, the

new algorithm group shows a statistically significant

improvement with a lower T-statistic value.

Regarding the metric "Std(%)", which represents the

standard deviation, there is no significant difference

between the old and new algorithm groups for all

instances and small-scale instances. However, for

medium-scale instances, the new algorithm group

exhibits a statistically significant improvement with a

higher T-statistic value.

Lastly, in terms of the "Time(s)" metric,

which measures the execution time, there is no

significant difference between the old and new

algorithm groups for all instances and small-scale

instances. However, for medium-scale instances, the

new algorithm group shows a statistically significant

improvement with a higher T-statistic value. Overall,

the results suggest that the new algorithm group

shows promising improvements in terms of average

performance, standard deviation, and execution time

for medium-scale instances, and there is no

significant difference between the two groups for

large-scale instances. while no significant differences

are observed in other instances. The overall

convergence graph of all algorithms on att532 as a

medium-scale instance is shown in Figure 8.

a) berlin52 b) att532 c) dsj1000

Figure 5. Box plot convergence of old algorithms on three different sizes instances for best opt. Solution.

a) berlin52 b) att532 c) dsj1000

Figure 6. Plot convergence of old algorithms on three different sizes instances for all performance metrics.

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

229

a) berlin52 b) att532 c) dsj1000

Figure 7. Box plot convergence of old algorithms on three different sizes instances for all performance metrics

Figure 8. Overall convergence of all algorithms on att532 instances for all performance metric.

5. Conclusion

The study compared TSP optimization techniques and

found significant improvements in convergence and

scalability for medium-scale instances using new

algorithms (ABC, SSA, and GWO). However, small

and large-scale incidents did not differ significantly.

The new algorithms also showed significant

computational time enhancements for medium-scale

instances. These findings can help researchers and

practitioners choose TSP optimization techniques, but

the study's limitations include a restricted collection

of benchmark instances and the use of a few

optimization strategies.

Future TSP optimization research should

include more benchmark examples of small, medium,

and large-scale scenarios, including real-world

examples. There's an opportunity to refine and

customize optimization algorithms for small and

large-scale instances to improve efficiency and

address the performance gap identified in this study.

Looking into hybrid techniques that take the best parts

of several algorithms and combine them may help

find better solutions that take less time to compute.

This is especially true for large-scale scalability.

Contributions of the authors

M.A.A.H. conducted the core research, devised the

experimental setup, wrote the paper, and was vital in

analyzing the findings and formulating the

conclusions. Z.Y.A. contributed to the literature

review, edited the paper, and provided theoretical

guidance.

Conflict of Interest Statement

There is no conflict of interest between the authors.

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

230

References

[1] H. Cheng, H. Zheng, Y. Cong, W. Jiang, and S. Pu, “Select and Optimize : Learning to Solve Large-

Scale Traveling Salesman Problem,” in Proceedings of The 26th International Conference on Artificial

Intelligence and Statistics, 2022, vol. 206, pp. 1219–1231.

[2] Y. Wu, T. Weise, and R. Chiong, “Local Search for the Traveling Salesman Problem: A Comparative

Study,” in Proceedings of 2015 IEEE 14th International Conference on Cognitive Informatics and

Cognitive Computing, ICCI*CC 2015, 2015, pp. 213–220. doi: 10.1109/ICCI-CC.2015.7259388.

[3] M. DİRİK, “Optimization: A comparison of recent meta-heuristic optimization algorithms using

benchmark function,” J. Math. Sci. Model., vol. 5, no. 3, pp. 113–124, 2022, doi:

10.33187/jmsm.1115792.

[4] M. ŞAHİN, “Improvement of the Bees Algorithm for Solving the Traveling Salesman Problems,”

Bilişim Teknol. Derg., vol. 15, no. 1, pp. 65–74, 2022, doi: 10.17671/gazibtd.991866.

[5] W. Li, C. Wang, Y. Huang, and Y. ming Cheung, “Heuristic smoothing ant colony optimization with

differential information for the traveling salesman problem,” Appl. Soft Comput., vol. 133, p. 109943,

2023, doi: 10.1016/j.asoc.2022.109943.

[6] B. A. Ajayi, M. A. Magaji, S. Musa, R. F. Olanrewaju, and A. A. Salihu, “A Comparative Analysis of

Optimization Heuristics Algorithms as Optimal Solution for Travelling Salesman Problem,” in

Proceedings of the 5th International Conference on Information Technology for Education and

Development (ITED) 2022, 2022, pp. 3–10. doi: 10.1109/ITED56637.2022.10051627.

[7] M. Mondal and D. Srivastava, “A Genetic Algorithm-Based Approach to Solve a New Time-Limited

Travelling Salesman Problem,” Int. J. Distrib. Syst. Technol., vol. 14, no. 2, pp. 1–14, 2023, doi:

10.4018/IJDST.317377.

[8] L. S. Hasan, “Artificial Bee Colony Algorithm and Bat Algorithm for Solving Travel Salesman

Problem,” Webology, vol. 19, no. 1, pp. 4185–4193, 2022, doi: 10.14704/web/v19i1/web19276.

[9] M. Khajehzadeh, A. Iraji, A. Majdi, S. Keawsawasvong, and M. L. Nehdi, “Adaptive Salp Swarm

Algorithm for Optimization of Geotechnical Structures,” Appl. Sci., vol. 12, no. 13, 2022, doi:

10.3390/app12136749.

[10] Y. Liu, L. Xu, Y. Han, X. Zeng, G. G. Yen, and H. Ishibuchi, “Evolutionary Multimodal Multiobjective

Optimization for Traveling Salesman Problems,” IEEE Trans. Evol. Comput., pp. 1–1, 2023, doi:

10.1109/tevc.2023.3239546.

[11] I. Khan, K. Basuli, and M. K. Maiti, “Multi-objective covering salesman problem: a decomposition

approach using grey wolf optimization,” Knowl. Inf. Syst., vol. 65, no. 1, pp. 281–339, 2023, doi:

10.1007/s10115-022-01752-y.

[12] K. Panwar and K. Deep, “Discrete Salp Swarm Algorithm for Euclidean Travelling Salesman Problem,”

Appl. Intell., 2022, doi: 10.1007/s10489-022-03976-5.

[13] I. Khan and M. K. Maiti, “A swap sequence based Artificial Bee Colony algorithm for Traveling

Salesman Problem,” Swarm Evol. Comput., vol. 44, no. November 2016, pp. 428–438, 2019, doi:

10.1016/j.swevo.2018.05.006.

[14] S. Sobti and P. Singla, “Solving Travelling Salesman Problem Using Artificial Bee Colony Based

Approach,” Int. J. Eng. Res. Technol., vol. 2, no. 6, pp. 186–189, 2013, [Online]. Available:

http://www.ijert.org/browse/volume-2-2013/june-2013-edition?download=3722:solving-travelling-

salesman-problem-using-artificial-bee-colony-based-approach&start=20

[15] S. Sharma and V. Jain, “A Novel Approach for Solving TSP Problem Using Genetic Algorithm

Problem,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1116, no. 1, p. 012194, 2021, doi: 10.1088/1757-

899x/1116/1/012194.

[16] W. Li, L. Xia, Y. Huang, and S. Mahmoodi, “An ant colony optimization algorithm with adaptive greedy

strategy to optimize path problems,” J. Ambient Intell. Humaniz. Comput., vol. 13, no. 3, pp. 1557–

1571, 2022, doi: 10.1007/s12652-021-03120-0.

[17] E. Chandomi-Castellanos et al., “Modified Simulated Annealing Hybrid Algorithm to Solve the

Traveling Salesman Problem,” in 2022 8th International Conference on Control, Decision and

Information Technologies, CoDIT 2022, 2022, pp. 1536–1541. doi:

10.1109/CoDIT55151.2022.9804145.

[18] T. Tlili and S. Krichen, “A simulated annealing-based recommender system for solving the tourist trip

M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024

231

design problem,” Expert Syst. Appl., vol. 186, no. October 2020, p. 115723, 2021, doi:

10.1016/j.eswa.2021.115723.

[19] T. Ye, H. Wang, W. Wang, T. Zeng, L. Zhang, and Z. Huang, “Artificial bee colony algorithm with an

adaptive search manner and dimension perturbation,” Neural Comput. Appl., vol. 34, no. 19, pp. 16239–

16253, 2022, doi: 10.1007/s00521-022-06981-4.

[20] A. Ebrahimnejad, M. Enayattabr, H. Motameni, and H. Garg, “Modified artificial bee colony algorithm

for solving mixed interval-valued fuzzy shortest path problem,” Complex Intell. Syst., vol. 7, no. 3, pp.

1527–1545, 2021, doi: 10.1007/s40747-021-00278-0.

[21] P. Chen, M. Liu, and S. Zhou, “Discrete Salp Swarm Algorithm for symmetric traveling salesman

problem,” Math. Biosci. Eng., vol. 20, no. 5, pp. 8856–8874, 2023, doi: 10.3934/mbe.2023389.

[22] S. Kassaymeh, S. Abdullah, M. A. Al-Betar, M. Alweshah, M. Al-Laham, and Z. Othman, “Self-

adaptive salp swarm algorithm for optimization problems,” Soft Comput., vol. 26, no. 18, pp. 9349–

9368, 2022, doi: 10.1007/s00500-022-07280-9.

[23] F. Boualem, S.M., Meftah, B., Debbat, “Solving Travelling Salesman Problem Using a Modified Grey

Wolf Optimizer,” in International Conference on Artificial Intelligence in Renewable Energetic

Systems, 2022, pp. 708–716. doi: https://doi.org/10.1007/978-3-030-92038-8_71.

[24] H. Liu, B. Lei, W. Wang, G. Zhong, and H. Chai, “An improved grey wolf optimization for solving

TSP,” in International Conference on Computer Science and Communication Technology (ICCSCT

2022), 2022, no. December 2022, p. 29. doi: 10.1117/12.2661782.

[25] R. G. Revision, “TSPLIB 95 — TSPLIB 95 0.7.1 documentation,” Sphinx, 2018.

https://tsplib95.readthedocs.io/en/stable/pages/readme.html (accessed Feb. 24, 2023).

[26] N. Sultana, J. Chan, T. Sarwar, and A. K. Qin, “Learning to Optimise General TSP Instances,” Int. J.

Mach. Learn. Cybern. Vol., vol. 13, pp. 2213–2228, 2022, doi: https://doi.org/10.1007/s13042-022-

01516-8.

