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Abstract 

The Traveling Salesman Problem (TSP), a prominent combinatorial optimization 

issue, is the subject of this study's evaluation of the performance of new and old 

optimization techniques. This paper seeks to expand knowledge of optimization 

techniques and how they might be applied to solve TSP challenges. The goal of the 

research is to compare various algorithms' scalability, convergence, and computation 

times on benchmark instances of several sizes. To achieve this goal, this paper carried 

out extensive testing using the Artificial Bee Colony, Grey Wolf Optimization, and 

Salp Swarm Algorithm as new optimization algorithms and the Genetic Algorithm, 

Ant Colony Optimization, and Simulated Annealing as old optimization algorithms. 

In small, medium, and large-scale benchmark cases, these algorithms were examined. 

The findings of this investigation show that the new optimization techniques are more 

convergent and scalable than the old ones, especially for medium-scale scenarios. 

They perform better in terms of solution quality by applying objective function 

values. The new methods also exhibit improved scalability, successfully adjusting to 

medium-scale instances. However, there were no discernible changes between the 

smaller and larger instances. This study makes an impact by offering insightful 

information about how well optimization methods perform while solving the TSP. 

Each algorithm's strengths and downsides have been reported, and these details offer 

useful guidance for choosing an algorithm for a certain scenario. The results also 

show the practical ramifications of applying novel optimization techniques, 

especially in medium-scale instances. 

 

 
1. Introduction 

 

The study of optimization algorithms has grown 

significantly in relevance for their effective and 

economical solutions to challenging issues. The 

Traveling Salesman Problem (TSP) stands out among 

these issues because of its numerous real-world 

applications across multiple sectors [1]. The TSP is a 

prevalent issue in operations research and 

computational science that requires figuring out the 

quickest path a traveling salesperson can take to visit 

a certain list of cities, specifically once, and then head 
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back to the beginning point [2]. Even though its 

formulation appears easy, the TSP becomes more 

difficult as the number of cities increases 

exponentially, creating a combinatorial eruption of 

alternative solutions [3]. Optimization algorithms 

provide promising avenues for tackling the inherent 

complexity of the TSP. These algorithms utilize 

advanced search and optimization techniques to 

explore the solution space efficiently and find high-

quality solutions within a reasonable timeframe [3]. 

By intelligently navigating through the vast solution 

space, optimization algorithms can discover near-

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1380086
https://orcid.org/0000-0003-3382-5300
https://orcid.org/0000-0002-4488-478X
mailto:alamin.ict.iu@gmail.com


M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024 

217 
 

optimal or even optimal solutions, resulting in 

minimized travel distances, optimized resource 

allocation, and improved overall efficiency in real-

world scenarios [4]. 

The primary objective of this research is to 

comprehensively investigate and evaluate the 

performance of different optimization algorithms for 

solving the TSP. Specifically, we aim to compare the 

effectiveness of well-established algorithms such as 

Genetic Algorithms (GA), Ant Colony Optimization 

(ABC), and Simulated Annealing (SA) as old 

optimization algorithms and Artificial Bee Colony 

(ABC), Salp Swarm Algorithm (SSA), and Grey Wolf 

Optimization (GWO) as new optimization algorithms 

in finding optimal or near-optimal solutions to the 

TSP. By assessing their performance in terms of 

solution quality, convergence, and computational 

efficiency, we seek to provide valuable insights into 

the strengths and limitations of these algorithms in 

addressing the TSP's complexities.  

This study's contribution lies in its rigorous 

evaluation and comparison of multiple optimization 

algorithms for the TSP. While previous studies have 

individually examined the performance of these 

algorithms, this research takes a comprehensive 

approach by directly comparing their effectiveness 

side by side. This comparative analysis enables us to 

identify the algorithm(s) that exhibit superior 

performance characteristics for solving the TSP, 

offering valuable guidance for researchers and 

practitioners in selecting the most suitable algorithm 

for their specific problem instances. Through a 

thorough evaluation of their performance in terms of 

solution quality, convergence, and computational 

efficiency, this analysis strives to provide 

comprehensive insights into the strengths and 

limitations of each algorithm, thus facilitating 

informed decision-making for future research and 

practical applications. By shedding light on the 

capabilities and performance trade-offs of different 

optimization algorithms for the TSP, this study 

endeavors to advance the understanding and 

utilization of these algorithms in solving real-world 

optimization problems. 

The following is the format of the study's 

accomplishing sections: The literature on TSP is 

delved into in Section 2. Section 3 provides a 

summary of the approaches used to address the 

relevant TSP issues, with an emphasis on 

optimization algorithms and metaheuristic 

techniques. The experimental results and subsequent 

discussions are outlined in Section 4. Conclusions 

from the study's findings are in Section 5. 

 

2. Literature Review 

 

The TSP is a renowned stochastic optimization 

concern that seeks the fastest route to travel between 

a starting point and a number of cities. Numerous 

optimization techniques have been created over time 

to effectively solve the TSP. The usefulness and 

performance of several optimization algorithms for 

the TSP have been thoroughly evaluated through prior 

comparative studies. The available literature is 

reviewed in this section, and the conclusions of these 

comparative investigations are outlined. The study 

undertaken by Şahin [4] presents new relocation and 

city selection functions that are incorporated into the 

bees algorithm to improve its TSP solution efficiency. 

This work demonstrates the efficiency of the 

approach in optimizing TSP solutions by notably 

increasing solution reliability, especially in cases with 

higher city counts. Li et al. [5] proposed the TSP 

solution using a differential edge information-based 

ACO. Heterogeneous population automation, tour 

creation, and smooth search operators improve 

candidate solution quality in the algorithm. The 

algorithm outperformed state-of-the-art algorithms on 

TSPLIB benchmark examples for mid-scale and 

small-scale TSP instances. It surpassed the other 

methods, proving its efficacy. Middle-scale TSP 

situations need faster solving. Ajayi et al. [6] sought 

TSP optimization methods. ACO was compared to 

Dijkstra's method and particle swarm optimization. 

The ACO algorithm excelled in route quality and total 

length, while Dijkstra's method excelled in minimum 

cost calculations. The research's application to other 

optimization problems, the need for further parameter 

exploration, and the lack of comparison with other 

state-of-the-art TSP algorithms were shortcomings. 

The algorithm's large-scale TSP scalability needs 

further study. Mondal and Srivastava [7] used 

evolutionary algorithms to solve a time-limited TSP 

with time limits for each city. The technique used 

cyclic crossover and specific mutation operations. 

The approach worked with benchmark instances in 

computations. The authors advised future research on 

multiple TSPs, probabilistic TSPs with fuzzy 

parameters, cost-limited TSPs, and bi-objective TSPs 

in a fuzzy environment, as well as travel time and 

asymmetric cases. 

Hasan [8] compared the Bat Algorithm (BA) 

and ABC for solving the TSP. ABC found the best 

tour faster than BA, but BA needed more parameters 

and a better control method. The conclusion suggests 

future research into combining both algorithms in a 

system. Khajehzadeh et al. [9] introduced an Adaptive 

Salp Swarm Algorithm (ASSA) for geotechnical 

structure optimization. A new leader and follower 
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position updating equations improved exploration and 

prevented premature convergence. ASSA 

outperformed other optimization methods in 

benchmark tests. ASSA optimized geotechnical 

constructions while satisfying geotechnical and 

structural limit states, yielding cost-effective designs 

with superior results than competing methods. Liu et 

al. [10] tackled complex optimization challenges 

involving multiple objectives and modes within the 

TSP. A test problem generator designed for problems 

involving multiple depots and multiple traveling 

salesmen simultaneously creates instances that 

exhibit known Pareto optimal solutions. This tool 

with three or more objectives, test problem generators 

for specific features, and crossover operators that 

investigate a wider solution space are future research 

possibilities. Khan et al. [11] provide Modified GWO 

to solve the multiple objectives and covering 

constraints for the salesman problem. K-bit exchange, 

K-opt, and non-dominated sorting-based GA are 

incorporated to improve search and solution quality. 

Their proposed algorithm outperforms other multi-

objective optimization algorithms on standard 

benchmark examples, proving its multi-objective-

based problem-solving efficiency. The suggested 

approach can only handle this covering problem with 

crisp data sets and needs adjustments to accommodate 

imprecise data sets. 

Panwar and Deep [12] stated the Discrete 

Salp Swarm Algorithm (DSSA) as an improved 

version of the SSA for solving the TSP. Swap, shift, 

and symmetry operators are used for global 

exploration and local exploitation, while the 2-opt 

technique improves local search. DSSA outperformed 

the GA, ABC, Spider Monkey, Jaya, Black Hole, and 

Symbiotic Organism Search on 45 TSP instances. The 

paper advises using DSSA to solve other discrete 

optimization problems like scheduling and routing 

issues. Khan and Maiti  [13] offer a modified ABC 

algorithm to solve the TSP in their research paper. 

Swap sequences and city sequence swap procedures 

create various solution-updating rules in the 

algorithm. The suggested method is tested on TSPLIB 

benchmark TSP problems, showing its accuracy, 

efficiency, and consistency compared to existing 

algorithms. With appropriate changes, ABC can 

handle discrete optimization problems, including 

TSP, according to the study. The existing literature 

includes computational evaluations on large-scale 

TSP scenarios, algorithm behavior analysis under 

varied issue forms or restrictions, and a defined 

benchmarking methodology for fair contrasts. These 

gaps suggest a full comparative study to solve these 

constraints and better understand TSP optimization 

algorithms' strengths and drawbacks. The literature 

review section summarizes TSP optimization 

techniques, evaluates comparative research, and 

highlights gaps that require a complete comparative 

investigation. A brief summary of the explored 

literature is listed in Table 1. 

 

3. Methodology 

 

This section covers the theoretical basis of TSP as 

well as how the performance of various optimization 

algorithms, including GA, ACO, SA, ABC, SSA, and 

GWO, was compared in this study. Figure 1 displays 

the methodological approach's structural flowchart. 

 

 

Figure 1. Structural flowchart of methodology. 

 

3.1. Traveling Salesman Problem (TSP)   

 
The TSP is a prominent optimization problem that 

includes finding the most efficient way for a 

salesperson to visit a series of cities and return to the 

beginning city [14]. The TSP reduces the salesman's 

route distance and cost [7]. This problem is formally 

described by creating choice variables to represent 

direct travel between cities and a distance or cost 

matrix to show distances between pairs of cities: a 

collection of n cities, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}, and a 

distance or cost matrix 𝐷, where 𝐷𝑖𝑗 is the distance 

between cities 𝑐𝑖 and 𝑐𝑗. Some TSP variables and 

parameters represent : 

End

Compare between old and new 
algorithms

Perform statistical analysis 

(T-test)

Run optimization algorithms on 
benchmark instances

Define experimental setup

Select benchmark instances

Define optimization algorithms

Start
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Table 1. A brief overview of the reviewed literature 

 

 Choice variables: If the salesman travels directly 

from city 𝑖 to city 𝑗, 𝑥𝑖𝑗 = 1, otherwise 𝑥𝑖𝑗 = 0. 

 Parameters: 𝐷𝑖𝑗  = Cost or distance between cities 

𝑖 and 𝑗. 

Mathematically optimize the TSP: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝑍 = 𝛴𝛴𝐷𝑖𝑗 ∗ 𝑥𝑖𝑗 (1) 

 Subject to:  

1) For each city 𝑖,  ∑𝑥𝑖𝑗 = 2, ensuring that 

each city is visited precisely once. 

2) ∑𝑥𝑖𝑗 = 2  for each city 𝑗 to leave each 

city precisely once. 

3) The salesman travels to and from each 

city by setting ∑𝑥𝑖𝑗 - ∑𝑥𝑖𝑗 = 0  

Solving the TSP involves finding choice variables 𝑥𝑖𝑗 

that minimize the total distance or cost 𝑍 while 

fulfilling constraints. As the number of cities rises, 

solving the TSP optimally becomes an extremely 

difficult issue [3]. 

 

3.2. Optimization Algorithms and Benchmark 

Instances  

 

In this study, a comprehensive comparison of 

optimization algorithms is conducted. A brief 

description is provided for each optimization 

algorithm, focusing on their underlying principles, 

search strategies, and important parameters that 

contribute to their performance. The algorithms 

considered in this research are GA, ACO, SA, ABC,  

 

SSA, and GWO, all recognized for their efficacy in 

solving optimization problems. 

I. Genetic Algorithm : Genetics-inspired GA 

optimizes. It addresses complicated problems like 

evolution [15]. GA analyzes potential solutions. 

Selection, crossover, and mutation generate new 

solutions. Repeat until a termination requirement is 

reached [7]. GA is utilized in many fields because it 

can handle complex search spaces and identify 

optimal or near-optimal answers. The stepwise GA 

algorithm to solve TSP is illustrated in Algorithm 1. 

II. Ant Colony Optimization algorithm: ACO 

optimizes like ants. Pheromone trails help it find 

optimal solutions [16]. Ants use probabilistic 

pheromones and heuristics to solve problems. The 

quality of solutions determines pheromone trail 

updates. ACO promotes exploration and delays 

convergence [5]. It solved optimization difficulties. 

Algorithm 2 illustrates the stepwise ACO approach to 

solve TSP. 

III. Simulated Annealing algorithm: 

Metallurgy's annealing process influenced SA's 

metaheuristic algorithm [17]. It starts with a solution 

and allows occasional "worse" steps based on a 

probability distribution to find better ones. Simulating 

cooling and adopting a worse answer reduces over 

time. SA helps avoid local optima and explore 

solution space [18]. Many optimization problems 

utilize it. Algorithm 3 depicts the stepwise SA 

algorithm to solve TSP. 

 

# Author, Year Used Algorithm Problem – Average Value Instance Size 

1 Khan and Maiti, 2019  

[13] 

Swap sequece based ABC berlin52 – 7543 small 

2 Şahin, 2022 [4] Improved bees algorithm kroA100 – 21466 small 

3 Ajayi et al., 2022 [6] Particle swarm optimization and 

ant colony optimization with 

Dijkastra’s algorithm 

No specific problem - 

4 Hasan, 2022 [8] Artificial bee colony and bat 

algorithm 

No specific problem - 

5 Khajehzadeh et al., 

2022 [9] 

Adaptive salp swarm 

optimization 

Real world problems - 

6 Panwar and Deep, 

2022 [12] 

Discrete salp swarm 

optimization 

tsp225 – 3940.23 medium 

7 Li et.al., 2023 [5] Heuristic smoothing differential 

ACO 

dsj1000 – 18897396.15 large 

8 Mondal and 

Srivastava, 2023 [7] 

cyclic crossover based GA kro124p – 36612.94 small 

9 Liu et al., 2023 [10] Evolutionary mutltimodal 

multiobjective algorithm 

TSPXEA problems - 

10 Khan et al., 2023 [11] Decomposition based GWO – - 
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Algorithm 1. GA algorithm to solve TSP 

1: Initialize population p using the 

initialize_population method. 

2: Calculate the fitness for each individual in p using 

the evaluate_fitness method. 

3: Set the iteration counter T = 0. 

4: Set max_iterations = 1000. 

5: while T < max_iterations do 

6: Select parents from the population p using the 

selection method. 

7: Perform crossover on the selected parents with a 

probability of 0.8 using the crossover method to 

generate offspring. 

8: Perform a mutation on the offspring with a 

probability of 0.2 using the mutation method. 

9: Calculate fitness for each offspring using the 

evaluate_fitness method. 

10: Replace the worst individuals in the population p 

with the best offspring. 

11: Update the best solution found so far. 

12: Increment iteration counter T = T + 1  

13: End while 

14:Return the best solution found (best_individual). 

 

Algorithm 2. ACO algorithm to solve TSP 

1: Initialize the pheromone matrix with 

initial_pheromone 

2: Set best_tour = none and best_distance = infinity. 

3: Start timer 

4: Repeat num_iterations times: 

5:     Generate tours using construct_tour method for 

num_ants. 

6:     For each tour: 

7:         Calculate tour distance 

8:         If distance is less than best_distance: 

9:             Update best_tour and best_distance 

10: Update pheromone matrix using the 

update_pheromone_matrix method. 

11: End repeat 

12: Stop timer 

13: Calculate computation_time as the difference 

between start_time and end_time. 

13: Return best_tour, best_distance, and 

computation_time. 

 

IV. Artificial Bee Colony algorithm: 

Honeybee browsing inspired ABC, a population-

based metaheuristic algorithm [19]. It simulates bee 

colony intelligence to find optimal solutions. The 

algorithm uses employed, bystanders, and scout bees. 

Onlooker bees choose solutions based on fitness, 

while employed bees move solutions across the 

search space. Scout bees randomly investigate new 

areas [20]. ABC solves complicated optimization 

issues quickly and easily. Algorithm 4 illustrates the 

stepwise ABC approach to solve TSP. 

V. Salp Swarm Algorithm (SSA): The SSA 

optimizes marine invertebrates, salps, and swarming. 

Buoyancy guides salps to better solutions when 

traversing the search space [21]. The SSA has found 

optimal solutions to several optimization issues [22]. 

The stepwise SSA algorithm to solve TSP is 

illustrated in Algorithm 5. 

 

Algorithm 3. SA algorithm to solve TSP 

1: Initialize Simulated Annealing with cities, 

initial_temperature, cooling_rate, num_iterations 

2: Initialize the distances matrix by calculating the 

distances between cities. 

3: Define the calculate_tour_distance function to 

calculate the total distance of a tour. 

4: Define the  generate_neighbor function to generate a 

neighbor tour by swapping two cities. 

5: Define the acceptance_probability function to 

calculate the acceptance probability based on 

current_distance,    new_distance, and temperature. 

6: Initialize current_tour with a random tour. 

7: Initialize best_tour and current_distance as 

current_tour and its distance. 

8: Initialize best_distance as current_distance and 

temperature as initial_temperature. 

9: Start the timer T. 

10: Repeat num_iterations times: 

11: Generate a new tour, new_tour, as a neighbor of 

current_tour. 

12: Calculate the distance of new_tour, new_distance 

13:     If acceptance_probability (current_distance, 

new_distance, temperature) is greater than a random 

number: 

14:          Update current_tour and current_distance as 

new_tour and new_distance 

15:     If current_distance is less than best_distance: 

16: Update best_tour and best_distance as current_tour 

and current_distance. 

17: Decrease temperature by multiplying with 

cooling_rate. 

18: End the timer. 

19: Calculate computation_time as the difference 

between start_time and end_time. 

20: Return best_tour, best_distance, and 

computation_time. 

 

Algorithm 4. ABC algorithm to solve TSP 

1: Initialize population p 

2: Set iteration counter T = 0. 

3: Set max_iterations = 1000 

4: while T < max_iterations do 

5:    Calculate fitness for each individual in p using  fi 

6:    Perform an employed bees phase to generate a new 

population. 

            list new_population 

            select and swamp two positions (i and j) from 

the bee's solution. 

7:    Perform the onlooker bee phase to select the 

population based on fitness 

             list selected_population 
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            Calculate the selection probabilities based on 

the fitness values. 

8:    Perform the scout bee phase to replace poor 

solutions. 

            Find the index of the bee with the best fitness 

(min distance) 

             Find the best fitness value 

             list new_population 

9:    Update the best solution found so far. 

           Find the index of the bee with the best fitness 

(min distance) 

           Update the best solution and best distance if the 

current best fitness is better 

10:   Increment iteration counter T = T + 1 

11: End while 

12: Return the best solution found. 

 

VI. Grey Wolf Optimization algorithm: Grey 

wolves inspired GWO's metaheuristic algorithm. It 

simulates wolf leadership and cooperative hunting to 

find the best solutions. Alpha, beta, delta, and omega 

wolves signify hierarchy in the algorithm [23]. 

Wolves position themselves according to the alpha 

and hunting distance. Exploration and exploitation 

help GWO uncover optimal solutions [24]. It solved 

optimization difficulties. Algorithm 6 depicts the 

stepwise GWO algorithm to solve TSP. 

 

Algorithm 5. SSA algorithm to solve TSP 

1: Initialize salps population 

2: Calculate the distance for each salp in the population 

using the given cities. 

3: Set best_salp as None 

4: Set the iteration counter to 0. 

5: Set max_iterations = 1000. 

6: while iteration_counter < max_iterations do 

7:    For each salp in the population, do 

8:        If best_salp is None or the distance of the 

current salp is smaller than the distance of best_salp, 

then 

9:            set best_salp as the current salp 

10:       Create a new salp by updating the position of 

the current salp based on the best_salp. 

11:   Update the population with the new salps. 

12:   Increment the iteration counter by 1. 

13: End while 

14: Return best_salp(best_solution) 

 

Algorithm 6. GWO algorithm to solve TSP 

1: Initialize wolves 

2: Set the iteration counter.  

3: Set the maximum number of iterations 

4: while iteration_counter < max_iterations do 

5:    Evaluate fitness for each wolf 

6:    Update the best wolf found so far 

7:    Determine alpha, beta, and delta wolves as the 

best, second-best, and third-best solutions 

8:    For each wolf, do 

9:       Update the position of the wolf based on alpha, 

beta, and delta. 

10:   End for 

11:   Increment iteration_counter 

12: End while 

13: Return the best wolf found (best_solution). 

 

4. Experimental Analysis 

 

This section examines many aspects through a variety 

of experiments. This includes a close study of how to 

choose benchmark instances, the specifics of the 

experimental layout, how convergence works across 

optimization strategies, and how well statistical 

analysis works. Additionally, this segment provides a 

complete discussion of the insights gained from the 

results as well as a detailed explanation of the 

outcomes. 

To assess the performance of the optimization 

algorithms, a selection of benchmark instances is 

made from the TSPLIB library [25]. The chosen 

instances encompass a range of problem sizes and 

complexities, ensuring a diverse set of challenges for 

the algorithms. The benchmark instances include 

burma14, berlin52, and kroA100 as small-sized 

instances, while ts225 and att532 represent medium-

sized instances. Additionally, rat783 and dsj1000 are 

selected as large-sized instances. These carefully 

chosen instances enable a comprehensive analysis of 

the algorithms' performance across various problem 

sizes and complexities. 

 

3.1. Experimental Setup 

 

Table 2 presents common and specific parameters for 

several optimization algorithms, including GA, ACO, 

SA, ABC, SSA, and GWO. The population size is set 

to 100 for all algorithms with 1000 iterations. GA uses 

a crossover rate of 0.8 and a mutation rate of 0.2. ACO 

employs alpha and beta values of 1.0 and 5.0, 

respectively. SA starts with an initial temperature of 

1000 and a cooling rate of 0.95. ABC has a limit of 5 

for employed bee trials. Performance metrics for 

evaluation include the best optimal solution, average 

solution, standard deviation, standard deviation (%), 

and computation time. The algorithms are applied to 

different sets of city coordinates, including burma14, 

berlin52, kroA100, ts225, att532, rat783, and 

dsj1000. 

 

3.2. The Statistical Tests for Comparing 

Performance 

 
To evaluate the statistical significance of the obtained 

results, appropriate statistical tests will be employed. 
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Table 2. The common and specific parameters of optimization algorithms used                     

 

Specifically, t-tests will be utilized to compare the 

convergence and efficiency of the optimization 

algorithms. The t-tests enable the determination of 

whether there exist statistically significant differences 

in the performance of the algorithms in terms of their 

convergence to the optimal solution. The t-test is a 

widely used statistical test that assesses the difference 

between the means of two groups [26]. In this case, 

the groups correspond to the different optimization 

algorithms under investigation. The t-test calculates a 

t-statistic, which measures the extent of the difference 

between the means of the two groups relative to the 

variability within each group (in this case, the 

algorithms). A larger absolute t-statistic indicates a 

greater difference between the means. The t-statistic 

is calculated using the following equation (2): 

 

𝑡 =
(𝑚𝑒𝑎𝑛1 − 𝑚𝑒𝑎𝑛2)

√(𝑠𝑡𝑑1
2 ∕ 𝑛1) + √(𝑠𝑡𝑑2

2 ∕ 𝑛2)
 (2) 

 

Where 𝑚𝑒𝑎𝑛1 and 𝑚𝑒𝑎𝑛2 are the sample 

means of the best optimal solution for the two 

algorithms, 𝑠𝑡𝑑1 and 𝑠𝑡𝑑2  are the sample standard 

deviations, and 𝑛1 and 𝑛2 are the sample sizes. The p-

value, which the t-test also presents, denotes the 

likelihood of detecting the determined difference in 

means under the presumption that there is no real 

difference between the groups. A lower p-value 

indicates greater statistical significance and stronger 

evidence against the null hypothesis of no difference. 

The significance level in this study is 0.05, which 

denotes a 5% chance of detecting significant 

differences as a result of random oscillation. We deny 

the null assumption and endorse the alternative  

 

 

 

 

hypothesis, determining that the algorithms differ 

effectively if the computed p-value is smaller than the 

significance level. This technique evaluates 

optimization algorithms across benchmark instances. 

The statistical tests reveal considerable differences in  

the convergence and effectiveness of the algorithms, 

revealing their relative performance and applicability 

for problem instances of varied sizes and 

complexities. 

 

3.3. Results Assessments 

 

In this paper, all of the suggested algorithms were 

coded in Python in the Anaconda environment using 

Matplotlib, Seaborn, SciPy, and the Pandas library, 

and several estimates were made. Table 3 presents a 

comprehensive comparison of three new 

metaheuristic algorithms— ABC, SSA, and GWO —

on various instances of the TSP of different sizes. 

Table 3 includes seven TSP instances ranging from 14 

to 1000 nodes, and for each instance, it provides the 

best optimal solution (best opt.), average solution 

(avg), standard deviation (std), standard deviation 

percentage (std%), and time taken by each algorithm 

to solve the TSP instance. 

From Table 3, we can observe that for smaller 

TSP instances such as burma14 and berlin52, all three 

algorithms perform relatively well, with ABC and 

SSA providing the best solutions. The average 

solution metric reveals the algorithms' overall 

performance in finding solutions, with ABC 

consistently delivering low average solutions across 

all instances. The standard deviation metric highlights 

the stability of the algorithms' solutions, with ABC 

and GWO exhibiting low standard deviations. 

Table 4 presents a detailed performance 

comparison of the GA, ACO, and SA algorithms on 

various instances of the TSP categorized into small, 

Parameter Algorithm & Value 

GA ACO SA ABC SSA GWO 

Population Size 100 

No. of Iterations 1000 

Crossover Rate 0.8      

Mutation Rate 0.2      

Alpha  1.0     

Beta  5.0     

Evaporation Rate  0.5     

Initial Temperature   1000    

Cooling Rate   0.95    

Limit    5   

City Coordinates burma14, berlin52, kroA100, ts225 and att532, rat783 and dsj1000 

Performance Metrics best optimal solution, average solution, standard deviation, standard deviation (%), and 

computation time 
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medium, and large-scale instances. For small-scale 

instances, such as burma14, berlin52, and kroA100, 

the algorithms demonstrate similar trends. GA 

achieves the best optimal solutions of 42, 24,515, and 

153,460, respectively. ACO and SA also perform 

well, with ACO achieving optimal solutions of 31, 

7,677, and 22,946 and SA achieving optimal solutions 

of 30, 12,490, and 74,583 for the respective instances. 

The average solutions for these instances follow a 

similar pattern, with GA, ACO, and SA showing 

competitive performance.  In the medium-scale 

instances, ts225 and att532, ACO outperforms the 

other algorithms. It achieves the best optimal 

solutions of 133,285 and 99,268, respectively, 

whereas GA and SA achieve optimal solutions of 

1,478,608 and 1,035,202 for ts225 and 1,538,293 and 

1,034,340 for att532. The average solutions also show 

ACO as the top performer. For large-scale instances, 

rat783 and dsj1000, GA demonstrates its strength by 

achieving the best optimal solutions of 170,626 and 

534,398,427, respectively. ACO and SA lag behind in 

these instances, with ACO achieving optimal 

solutions of 10,431 and 22,404,181, and SA achieving 

optimal solutions of 130,100 and 417,124,012. 

In Table 4, we can see that the Std(%) values

 

Table 3. Performance comparison of new metaheuristic algorithms on tsp instances of diverse sizes 

Algorithm Performance 

metrics 

Problem instance 

burma14 berlin52 kroA100 ts225 att532 rat783 dsj1000 

 

 

    ABC 

best opt.  66 31671 181460 1649553 1663663 184334 567420224 

avg 57 29331 170553 1585724 1612119 178992 555245806 

std 6 1447 8172 48380 30457 2845 7572149 

std (%) 11.83 4.93 4.79 3.05 1.88 1.58 1.35 

time (s) 4 14 29 63 163 239 317 

 

 

SSA 

best opt. 13 12879 95966 1116522 1087426 139897 475808151 

avg 57 29380 169162 1587326 1613307 179095 554705324 

std 7 1617 9358 43940 34175 2994 8011712 

std (%) 12.72 5.5 5.53 2.76 2.11 1.67 1.44 

time (s) 3 16 29 67 177 277 358 

 

 

GWO 

best opt.  21 16410 116098 1245252 1252724 152429 474605615 

avg 21 16485 116455 1247805 1255686 152592 475494467 

std 1 824 3402 25904 25024 1446 6689991 

std (%) 7.53 4.99 2.92 2.07 1.99 0.94 1.40 

time (s) 7 28 46 105 279 396 511 

for all three algorithms are relatively low, ranging 

from 0.12% to 10.06%. This suggests that the 

algorithms are relatively robust and can provide 

consistent solutions across different TSP instances.  

 

In Table 5, the t-test analysis revealed that there were 

no statistically significant differences between the 

performance of different optimization algorithms 

when considering all instances. However, in small    

 
Table 4. Performance comparison of old metaheuristic algorithms on TSP instances of diverse sizes 

Algorithm Performance 

metrics 

Problem instance 

burma14 berlin52 kroA100 ts225 att532 rat783 dsj1000 

 

 

GA 

best opt.  42 24515 153460 1478608 1538293 170626 534398427 

average 57 29366 169691 1595693 1613034 179461 556043666 

std 5 1618 7476 44677 33547 2986 7717300 

std (%) 10.06 5.51 4.41 2.79 2.07 1.66 1.38 

time (s) 3 10 22 76 330 688 1200 

 

 

ACO 

best opt. 31 7677 22946 133285 99268 10431 22404181 

average 38 10838 32636 187488 139957 14227 30817615 

std 3 854 2219 11950 4937 395 947631 

std (%) 9.56 7.88 6.79 6.37 3.52 2.77 3.07 

time (s) 68 449 1476 4966 18075 27890 43420 

 

 

SA 

best opt.  30 12490 74583 904130 1035202 130100 417124012 

average 47 22784 190729 299669 983336 72635 557653234 

std 5 749 2183 12473 6616 526 701515 

std (%) 12.56 3.28 1.14 4.16 0.67 0.72 0.12 

time (s) 0.02 0.05 0.11 0.18 0.36 0.63 0.66 



M. A. A. Hossaın, Z. Yılmaz Acar / BEU Fen Bilimleri Dergisi 13 (1), 216-231, 2024 

224 
 

and large instances, no significant differences were 

observed either. On medium instances, the GA 

algorithm showed significantly better performance 

compared to the ACO, SA, ABC, SSA, and GWO 

algorithms, indicating its effectiveness in solving 

medium-sized TSP problems. 

 
Table 5. T-test analysis between all old and new algorithms on different sizes ınstances for the best opt. solution 

Instances Algorithm 1 Algorithm 2 P-value Significance T-statistic 

 

 

Small-scale 

instances 

(burma14, 

berlin52, 

kroA100) 

GA ACO 0.364547     -** 1.022030 

GA SA 0.597260 - 0.573092 

ACO SA 0.477207 - -0.783348 

ABC SSA 0.613100 - 0.547580 

ABC GWO 0.707362 - 0.403291 

SSA GWO 0.875125 - -0.167471 

GA ABC 0.880887 - -0.159660 

GA SSA 0.703137 - 0.409523 

GA GWO 0.812443 - 0.253410 

ACO ABC 0.340987 - -1.079814 

ACO SSA 0.445224 - -0.845939 

ACO GWO 0.409399 - -0.920508 

SA ABC 0.525536 - -0.694607 

SA SSA 0.857553 - -0.191376 

SA GWO 0.742382 - -0.352314 

 

 

 

Medium-scale 

instances 

(ts225&att532) 

GA ACO   0.000608*     s** 40.530090 

GA SA 0.017399 s 7.482005 

ACO SA 0.006236 s -12.604129 

ABC SSA 0.000849 s 34.303569 

ABC GWO 0.000383 s 51.060030 

SSA GWO 0.010278 s -9.787848 

GA ABC 0.040269 s -4.831471 

GA SSA 0.006605 s 12.243384 

GA GWO 0.013171 s 8.627054 

ACO ABC 0.000143 s -83.651662 

ACO SSA 0.000515 s -44.040645 

ACO GWO 0.000236 s -65.046094 

SA ABC 0.009082 s -10.421690 

SA SSA 0.187524 - -1.970884 

SA GWO 0.051037 - -4.255207 

 

 

 

Large-scale 

instances (rat783 

& dsj1000) 

GA ACO 0.439222 - 0.957841 

GA SA 0.878502 - 0.173106 

ACO SA 0.444202 - -0.945509 

ABC SSA 0.912785 - 0.123813 

ABC GWO 0.911569 - 0.125553 

SSA GWO 0.998748 - 0.001771 

GA ABC 0.970035 - -0.042397 

GA SSA 0.942148 - 0.081953 

GA GWO 0.940911 - 0.083711 

ACO ABC 0.438202 - -0.960386 

ACO SSA 0.441407 - -0.952411 

ACO GWO 0.441436 - -0.952339 

SA ABC 0.850683 - -0.213561 

SA SSA 0.934531 - -0.092787 

SA GWO 0.935760 - -0.091037 
         ** The "Significance" column indicates the significance level (s for significant, - for not significant) of the difference between the algorithms.  

           * Significant p-values are bolded. 

 

From Table 6,  the t-test results of the average 

performance metric for medium-scale instances 

indicate statistically significant differences in the 

performance of certain optimization algorithms. On 

the contrary, the t-test findings for Table 7 show that 

there were no significant differences in the 
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computation time performance of the majority of 

algorithm pairs. Table 8 presents the results of a 

statistical analysis comparing the performance of two 

algorithm groups, "old" and "new," based on different 

metrics. The P-values indicate the statistical 

significance of the differences observed, while the T-

statistic represents the magnitude of the differences.

 
Table 6. T-test results of all algorithms on medium-scale instances for average solution 

Instances Algorithm 1 Algorithm 2 P-value Significance T-statistic 

 

 

 

 

 

 

Medium-scale 

instances 

(ts225&att532) 

GA ACO 0.000308 s 56.947378 

GA SA 0.106373 - 2.815849 

ACO SA 0.297916 - -1.394332 

ABC SSA 0.946 - -0.075331 

ABC GWO 0.001570 s 25.206599 

SSA GWO 0.001513 s 25.677421 

GA ABC 0.763239 - 0.344630 

GA SSA 0.819775 - 0.259 

GA GWO 0.000729 s 37.024449 

ACO ABC 0.000359 s -52.795613 

ACO SSA 0.000355 s -53.041839 

ACO GWO 0.000490 s -45.164984 

SA ABC 0.107474 - -2.798749 

SA SSA 0.107205 - -2.802892 

SA GWO 0.216172 - -1.785087 

 

Table 7. T-test results of all algorithms on all and large-scale instances for average solution 

Instances Algorithm 1 Algorithm 2 P-value Significance T-statistic 

 

 

 

 

All instances 

GA ACO 0.055936 - -2.115957 

GA SA 0.078385 - 1.924068 

ACO SA 0.050874 - 2.169134 

ABC SSA 0.846396 - -0.197952 

ABC GWO 0.399972 - -0.872663 

SSA GWO 0.505295 - -0.686749 

GA ABC 0.254208 - 1.197562 

GA SSA 0.289645 - 1.107834 

GA GWO 0.482505 - 0.724739 

ACO ABC 0.052600 - 2.150456 

ACO SSA 0.052810 - 2.148232 

ACO GWO 0.053769 - 2.138136 

SA ABC 0.026046 s -2.537748 

SA SSA 0.028856 s -2.481920 

SA GWO 0.023898 s -2.584516 

 

 

 

 

 

Large-scale 

instances (rat783 

& dsj1000) 

GA ACO 0.046622 s -4.467759 

GA SA 0.066393 - 3.684980 

ACO SA 0.044302 s 4.591675 

ABC SSA 0.555104 - -0.702535 

ABC GWO 0.127446 - -2.525964 

SSA GWO 0.192832 - -1.933704 

GA ABC 0.123737 - 2.571889 

GA SSA 0.136871 - 2.417203 

GA GWO 0.202491 - 1.869440 

ACO ABC 0.044954 s 4.555899 

ACO SSA 0.045048 s 4.550807 

ACO GWO 0.045375 s 4.533231 

SA ABC 0.019205 s -7.111666 

SA SSA 0.015948 s -7.823580 

SA GWO 0.015742 s -7.875739 
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Table 8. T-test results for old and new two groups on all sizes instances for best opt., avg, std (%) and time 

Metric Instances Algo. group1 Algo. group2 P-value Significance T-statistic 

 

Best opt. 

solution 

All old new 0.609777 - -0.514437 

Small-scale old new 0.531586 - -0.639439 

medium-scale old new 0.120642 - -1.696514 

Large-scale old new 0.563546 - -0.597362 

 

Avg 

All old new 0.702805 - -0.384281 

Small-scale old new 0.812272 - -0.241451 

medium-scale old new 0.041796 s -2.333548 

Large-scale old new 0.667024 - -0.443244 

 

Std(%) 

All old new 0.498638 - 0.682849 

Small-scale old new 0.626244 - 0.496570 

medium-scale old new 0.270391 - 1.166723 

Large-scale old new 0.650603 - 0.466863 

 

Time(s) 

All old new 0.072534 - 1.844435 

Small-scale old new 0.226801 - 1.256978 

medium-scale old new 0.229646 - 1.279392 

Large-scale old new 1.541858 - 0.154134 

  
3.4. Discussions 

 

This part initiates a look into consulting the tables and 

figures that illustrate algorithmic contrasts in the TSP 

solution. It next explores the differences in 

algorithmic efficiency that are found among various 

subgroups of instances. The effects of these 

divergences are analyzed in order to shed light on the 

applicability of algorithms with regard to TSP issue 

sizes and complications.  

 According to Table 3, as the size of the TSP 

instances increases, GWO tends to outperform ABC 

and SSA in terms of finding the best optimal solution, 

which is depicted in the box plot in Figure 2 for three 

different sizes of instances. Larger cases show this 

tendency due to GWO's boosted exploration and 

exploitation in complicated and broad search 

environments. GWO's techniques may help it explore 

wider solution landscapes and find superior optimal 

solutions in larger TSP cases than ABC and SSA. 

GWO's adaptability and robustness in scaling up to 

increasingly complicated problem sizes in the TSP 

domain may explain its efficiency in handling larger 

instances. This suggests that GWO is more effective 

at handling larger TSP instances.   

The standard deviation percentage metric 

normalizes the standard deviation relative to the best 

optimal solution, indicating how close the solutions 

are to the best. ABC and GWO consistently achieve 

low standard deviations because, with their specific 

exploration and exploitation tactics, they can 

converge on optimal solutions and preserve solution 

consistency across TSP examples. Additionally, the 

time taken by each algorithm to solve the TSP 

instances increases as the size of the instances 

increases. GWO is the fastest algorithm, followed by 

ABC and SSA. This indicates that GWO is efficient 

in terms of computation time, making it a favorable 

choice for solving larger TSP instances. All of these 

convergences are illustrated in Figure 3 via the line 

plot approach and in Figure 4 via the box plot 

approach. 

 As shown in Figure 5 and Figure 6, ACO 

excels over GA and SA in various TSP scenarios due 

to its effective optimization approaches and 

adaptability. In small-scale instances, ACO surpasses 

GA and SA with competitive optimal solutions with 

lower values. ACO outperforms GA and SA in 

optimal and average medium-scale solutions like 

ts225 and att532. GA outperforms ACO and SA in 

optimal solutions in large-scale examples like rat783 

and dsj1000, while ACO remains competitive with 

extended computation times, demonstrating its TSP 

endurance. ACO's strength to balance exploration and 

exploitation in slightly complicated solution domains 

makes it better than GA and SA in medium-scale 

cases. ACO's pheromone-based exploration and local 

search techniques usually handle medium-scale 

situations with diligent optimization. In these TSP 

situations, ACO gets to high-quality solutions faster 

than GA and SA because it quickly looks at a lot of 

different solutions and takes advantage of potential 

areas. 

Overall, the comparison highlights the 

varying performance of the algorithms based on the 

problem instance size. GA shows promise for small 

and large-scale instances, while ACO consistently 

performs well across different scales. SA 

demonstrates effectiveness for small-scale instances 

but struggles to scale effectively for larger problems. 

Researchers should consider these performance 

differences and choose the appropriate algorithm 
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based on the problem size and optimization 

requirements. All of these convergences of small, 

medium, and large-scale instances are illustrated in 

Figure 6 via the line plot approach as well as in Figure 

7 via the box plot approach

 

   

a) berlin52 b) att532 c) dsj1000 

Figure 2. Box plot convergence of new algorithms on three different sizes instances for best opt. Solution. 

 

   

a) berlin52 b) att532 c) dsj1000 

Figure 3. Line plot convergence of new algorithms on three different sizes instances for all performance metrics.  

 

   

a) berlin52 b) att532 c) dsj1000 

Figure 4. Box plot convergence of new algorithms on three different sizes instances for all performance metrics. 
 

Table 6 reveals that GA and GWO outperform other 

algorithms in medium-sized optimization problems 

like TSP due to their convergence, exploration, and 

exploitation capabilities. GA, known for its 

population-based search and crossover-mutation 

mechanisms, is effective in exploring diverse solution 

spaces but less efficient in convergence. GWO, 

inspired by grey wolves' hunting behaviors, utilizes 

promising search space areas more efficiently, 

improving convergence and solution quality for 

medium-scale instances. The t-test results for Table 7 

provide some interesting findings for two groups of 
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instances. GA, SA, and ABC exhibit identical 

outcomes in the "All instances" segment, with 

insignificant variations in the average solution values. 

On the other hand, ACO performs differently from 

GA, SA, and ABC, showing substantive variations. 

Interestingly, ACO and SA show significant 

variances when contrasted with several algorithms in 

the "Large-scale instances," indicating varying 

effectiveness in handling larger-scale TSP situations. 

In both segments, ABC, SSA, and GWO show 

stability with each other as well as with other 

algorithms.  

In the most significant evaluations from 

Table 8 for the metric "best opt. solution," there is no 

significant difference between the old and new 

algorithm groups across all instances, including 

small-scale, medium-scale, and large-scale cases. In 

terms of average performance (Avg), there is no 

significant difference between the old and new 

algorithm groups for all instances and small-scale 

instances. However, for medium-scale instances, the 

new algorithm group shows a statistically significant 

improvement with a lower T-statistic value. 

Regarding the metric "Std(%)", which represents the 

standard deviation, there is no significant difference 

between the old and new algorithm groups for all 

instances and small-scale instances. However, for 

medium-scale instances, the new algorithm group 

exhibits a statistically significant improvement with a 

higher T-statistic value. 

Lastly, in terms of the "Time(s)" metric, 

which measures the execution time, there is no 

significant difference between the old and new 

algorithm groups for all instances and small-scale 

instances. However, for medium-scale instances, the 

new algorithm group shows a statistically significant 

improvement with a higher T-statistic value. Overall, 

the results suggest that the new algorithm group 

shows promising improvements in terms of average 

performance, standard deviation, and execution time 

for medium-scale instances, and there is no 

significant difference between the two groups for 

large-scale instances. while no significant differences 

are observed in other instances. The overall 

convergence graph of all algorithms on att532 as a 

medium-scale instance is shown in Figure 8. 

 

   
a) berlin52 b) att532 c) dsj1000 

 

Figure 5. Box plot convergence of old algorithms on three different sizes instances for best opt. Solution. 

 

   

a) berlin52 b) att532 c) dsj1000 

Figure 6. Plot convergence of old algorithms on three different sizes instances for all performance metrics. 
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a) berlin52 b) att532 c) dsj1000 

Figure 7. Box plot convergence of old algorithms on three different sizes instances for all performance metrics 

 

Figure 8. Overall convergence of all algorithms on att532 instances for all performance metric.

  

5. Conclusion 

 

The study compared TSP optimization techniques and 

found significant improvements in convergence and 

scalability for medium-scale instances using new 

algorithms (ABC, SSA, and GWO). However, small 

and large-scale incidents did not differ significantly. 

The new algorithms also showed significant 

computational time enhancements for medium-scale 

instances. These findings can help researchers and 

practitioners choose TSP optimization techniques, but 

the study's limitations include a restricted collection 

of benchmark instances and the use of a few 

optimization strategies. 

Future TSP optimization research should 

include more benchmark examples of small, medium, 

and large-scale scenarios, including real-world 

examples. There's an opportunity to refine and 

customize optimization algorithms for small and 

large-scale instances to improve efficiency and 

address the performance gap identified in this study. 

Looking into hybrid techniques that take the best parts 

of several algorithms and combine them may help 

find better solutions that take less time to compute. 

This is especially true for large-scale scalability. 
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