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Abstract 
For vector bosons with spin-1, scattering state solutions have been attained by considering the Duffin-Kemmer-

Petiau equation with the Sun interaction field. Based on the obtained solution, relations for phase shift and scattering 

amplitude have been derived. Furthermore, the bound state energy eigenvalue relation has been derived by taking the 

scattering amplitude to infinity. The results obtained through the Mathematica software program are presented 

graphically and numerically. In addition, the effects of the variables in the interaction function on the obtained results 

are discussed. 
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Sun Potansiyel ile Etkileşen Vektör Bozonlarının Saçılma Durumu Çözümleri 
 

Öz 
Spini-1 olan vektör bozonlar için Sun potansiyeli varlığında Duffin-Kemmer-Petiau denklemi ele alınarak saçılma 

durumu çözümleri elde edilmiştir. Elde edilen çözümler kullanılarak faz kayması ve saçılma genliği için bağıntılar 

türetilmiştir. Ayrıca saçılma genliğini sonsuza götürerek bağlı durum enerji özdeğerleri denklemi elde edilmiştir. 

Mathematica yazılım programı aracılığıyla elde edilen sonuçlar grafiksel ve nümerik olarak verilmiştir. Bunlara ek 

olarak etkileşme fonksiyonunda yer alan değişkenlerin elde edilen sonuçlara olan etkileri tartışılmıştır. 

Anahtar Kelimeler: Saçılma durumları, bağlı durumlar, Duffin-Kemmer-Petiau denklemi, sun potansiyeli

INTRODUCTION  

The Duffin-Kemmer-Pettiau (DKP) equation 

defines scalar (spin 0) and vector (spin 1) bosons on 

the same basis and is a first-order relativistic 

equation (Kemmer, 1939; Duffin, 1938; Petiau, 

1936). This equation is of great importance of these 

various applications in nuclear physics, particle 

physics, quantum chromo dynamics (QCD) and 

cosmology. For instance, in QCD theory it can be 

used to investigated deuteron-nucleus elastic 

scattering (Kozack, Clark, Hama, Mishra, Mercer 

and Ray, 1989; Gribov, 1999). This equation is a 

Dirac-type equation (by replacing the algebra of the 

gamma matrices with beta matrices) and can be 

expressed by different matrices that follow different 

commutative rules and represented by five and ten 

component representations that work for spin-0 and 

spin-1 bosons, respectively. Under a vector 

potential, the scalar boson representation of the DKP 

equation has the same mathematical structure as the 

Klein–Gordon (KG) equation, and the vector boson 

representation has the same mathematical structure 

as the Proca equation. However, the DKP equation 

is more comprehensive than the KG and Proca 

equations due to its more complex structure (Nedjadi 

and Barrett, 1993; Nedjadi and Barrett, 1994; 

Nedjadi and Barrett, 1994) 

Scattering and bound state solutions to the wave 

equation are of great importance in quantum 

mechanics because the wave functions obtained 

from these solutions contain all the information 

needed to describe the entire quantum system. 

Therefore, there are many studies using different 

methods on physical potentials related to the 

relativistic and the non-relativistic particle equations 

(Taş and Havare, 2017; Taş, Aydoğdu, and Salti, 

2017; Taş and Havare, 2018; Taş, Aydoğdu and 

Saltı, 2018; Yanar, Taş, Saltı and Aydoğdu, 2020; 

Edet, Amadi, Okorie, Taş, Ikot and Rampho, 2020; 

Okorie, Taş, Ikot, Osobonye and Rampho, 2021). In 

recent years, many studies have been conducted to 
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consider different interaction types for various 

representation of the DKP equation (Taş, 2021; 

Hassanabadi, Forouhandeh, Rahimov, Zarrinkamar 

and Yazarloo, 2012; Hamzavi and  Ikhdair, 2013; 

Zarrinkamar, Rajabi, Yazarloo and Hassanabadi, 

2013; Bahar, 2013; Bahar, and Yasuk, 2013; Bahar 

and Yasuk, 2014; Onate, Ojonubah, Adeoti, Eweh 

and Ugboja, 2014; Ikot, Molaee, Maghsoodi, 

Zarrinkamar, Obong and Hassanabadi, 2015;  

Zarrinkamar, Panahi and Rezaei, 2016; Oluwadare 

and Oyewumi, 2017; Oluwadare and Oyewumi, 

2018). However, when the existing literature is 

examined, it is seen that most of the research is on 

the spin-0 representation of the DKP equation. This 

is mainly due to the mathematical resemblance of 

the DKP equation with the KG equation under a 

vector potential. Since the form of this equation for 

vector bosons has a more complex structure and is 

much more difficult to solve. For this reason, it has 

not been discussed extensively (Hassanabadi, 

Yazarloo, Zarrinkamar and Rajabi, 2011). The first 

goal of this study is to obtain the scattering state 

solutions of vector bosons interacting with the Sun 

potential field, which have been previously 

described in the literature and are successful in 

describing many diatomic structures, and to obtain 

the phase shift equation, scattering amplitude and 

bound state energy eigenvalues, respectively, 

through these solutions. Its other goal is to 

investigate the effect of the parameters in the 

interaction field on the physical quantities obtained. 

This paper is planned as follows: first, the 

properties of the DKP equation will be given in the 

material method section. In the result and discussion 

section, scattering state solutions of the DKP 

equation in the (1+3) dimension will be obtained for 

vector bosons in the presence of the Sun potential. 

Phase shift and scattering amplitude relations will be 

derived by using scattering state solutions in the 

same section. Additionally, the singular points of the 

scattering amplitude will be discussed and through 

this feature, the bound state energy eigenvalues 

relation will be attained. Finally, in the conclusion 

section, phase shift and bound state energy 

eigenvalues for different quantum states will be 

calculated numerically and expressed in tables using 

the Mathematica software program. Besides, the 

influence of the variables in the interaction field on 

the physical quantities obtained will be presented 

graphically. 

MATERIAL AND METHODS 

The DKP equation for a 𝒰 interaction with 𝑚0 

field is given in the following form  (ℏ = 𝑐 = 1) 
(Kemmer, 1939; Duffin, 1938; Petiau, 1936).                                               

 (𝑖𝛽𝜇𝛿𝜇 −𝑚0 −𝒰)Ψ = 0                                     (1) 

 𝛽𝜇 are DKP matrices of 5 × 5 for spin-0 and 

10 × 10 for spin-1. These matirces satisfy the 

following commutation relation:                                      

𝛽𝜇𝛽𝜐𝛽𝜆 + 𝛽𝜆𝛽𝜐𝛽𝜇 = 𝑔𝜇𝜐𝛽𝜆 + 𝑔𝜆𝜐𝛽𝜇                (2) 

𝛽𝜇 matrices for spin-1 are given as                  

𝛽0 = (

0 0̅
0̅𝑇 0

0̅ 0̅
𝐼 0

0̅𝑇 𝐼
0̅𝑇 0

0 0
0 0

),      

 

 𝛽𝑖 =

(

 
 

0     0̅
0̅𝑇     0

  
𝑒𝑖 0̅
0 −𝑖𝑆𝑖

−𝑒𝑖
𝑇     0   

0̅𝑇 −𝑖𝑆𝑖

0     0
0     0

)

 
 

                        (3)                                  

 

Here 𝑆𝑖, I, and 0 are spin-1, identity and zero 

matrices, respectively. The matrices 0̅  and 𝑒𝑖 are 

defined as follows:      

𝑒1 = (1, 0, 0),    𝑒2 = (0, 1, 0),        
 𝑒3 = (0, 0, 1), 0̅ = (0, 0, 0)                     (4)  

           

The general form of the interaction potential in 

Eq. (1) is given as follows:                                  

𝒰 = 𝑆(𝑟) + 𝑃𝑆𝜇(𝑟) + 𝛽
𝜇𝑉𝜇(𝑟) + 𝛽

𝜇𝑃𝑉𝑃𝜇(𝑟)      (5)    

This expression takes the following form under 

rotational invariance and parity conservation for an 

elastic scattering                                
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𝒰 = 𝑆(𝑟) + 𝑃𝑆𝜇(𝑟) + 𝛽
0𝑉(𝑟) + 𝛽0𝑃𝑉𝑃(𝑟)         (6)            

Each term in this equation has Lorentz 

character. Under rotational invariance and parity 

conservation, the two Lorentz vectors 𝛽𝜇 and 𝑃𝛽𝜇 

can be written, so that the projection operator is  𝑃 =

(𝛽𝜇𝛽𝜇 − 2) = 𝑑𝑖𝑎𝑔(1,1,1,1,0,0,0,0,0,0). Thus, 

there are four admissible representation of interplay 

potential expressed as follows:                 

𝒰 = 𝑃𝑆(𝑟) + 𝛽0𝑃𝑉(𝑟)                                          (7)                                                                                                             

𝒰 = 𝑆(𝑟) + 𝛽0𝑉(𝑟)                                               (8)                                                                                          

                                                     

𝒰 = 𝑃𝑆(𝑟) + 𝛽0𝑉(𝑟)                                            (9)                                                                                    

                                                    

𝒰 = 𝑆(𝑟) + 𝛽0𝑃𝑉(𝑟)                                          (10)  

                                                                                    

These states are concerted for the study of 

different physical systems. For instance, Eq. (8) is 

connected with the investigation of deuteron-nucleus 

scattering (Kozack, Clark, Hama, Mishra, Mercer, 

and Ray, 1989). In this study, Eq. (7) will be used as 

the interaction potential. (Molaee, Ghominejad, 

Hassanabadi and Zarrinkamar, 2012; Bahar, and 

Yasuk, 2014). The DKP equation is written as 

follows in the presence of the interaction potential 

defined in Eq. (7):      

[𝑖𝛽𝜇𝛿𝜇 −𝑚0 − 𝛽
0𝑃𝑉(𝑟)]Ψ = 0                         (11)                                                  

Here Ψ is a ten-component spinor describing 

the dynamics of spin-1 particles. To get time-

independent solutions, the solution of Eq. (11) is 

suggested as follows: 

Ψ𝑛,𝑙
𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑒(−𝑖𝐸𝑛,𝑙 𝑡)𝜓𝑛,𝑙(𝑥, 𝑦, 𝑧)               (12)     

For spin-1 representation, ten-component wave 

function is written as: 

𝜓𝑛,𝑙
𝑇 (𝑥, 𝑦, 𝑧) = (φ𝑛,𝑙

(1), φ𝑛,𝑙
(2), φ𝑛,𝑙

(3), φ𝑛,𝑙
(4), φ𝑛,𝑙

(5),  

                    φ𝑛,𝑙
(6), φ𝑛,𝑙

(7), φ𝑛,𝑙
(8), φ𝑛,𝑙

(9), φ𝑛,𝑙
(10)
)
𝑇
     (13)  

            

Writing the wave functions expressed in 

Equation (14) as follows: 

φ𝑛,𝑙
(1) = 𝑖𝜙𝑛,𝑙  , �⃗� = (φ𝑛,𝑙

(2), φ𝑛,𝑙
(3), φ𝑛,𝑙

(4)),      

�⃗� = (φ𝑛,𝑙
(5), φ𝑛,𝑙

(6), φ𝑛,𝑙
(7)),   �⃗⃗⃗� (φ𝑛,𝑙

(8), φ𝑛,𝑙
(9), φ𝑛,𝑙

(10)) ,  (14) 

and by substituting these functions in Eq. (11) and 

performing the necessary intermediate operations, 

the following ten coupled equations are obtained.                                        

𝑖 (
𝜕 𝐹𝑛,𝑙

(2)

𝜕𝑥
−
𝜕 𝐹𝑛,𝑙

(1)

𝜕𝑦
) = 𝑚0𝐻𝑛,𝑙

(3)
,                                (15) 

 

𝑖 (
𝜕 𝐹𝑛,𝑙

(1)

𝜕𝑧
−
𝜕 𝐹𝑛,𝑙

(3)

𝜕𝑥
) = 𝑚0𝐻𝑛,𝑙

(2)
,                                (16) 

     

𝑖 (
𝜕 𝐹𝑛,𝑙

(3)

𝜕𝑦
−
𝜕 𝐹𝑛,𝑙

(2)

𝜕𝑧
) = 𝑚0𝐻𝑛,𝑙

(1)
,                                (17)     

                                                                           

(
𝜕 𝐺𝑛,𝑙

(3)

𝜕𝑧
+
𝜕 𝐺𝑛,𝑙

(2)

𝜕𝑦
+
𝜕 𝐺𝑛,𝑙

(1)

𝜕𝑥
) = 𝑚0𝜙𝑛,𝑙,                      (18)   

 

𝐸𝑛,𝑙𝐺𝑛,𝑙
(1)
+ 𝑖 (

𝜕 𝐻𝑛,𝑙
(3)

𝜕𝑧
−
𝜕 𝐻𝑛,𝑙

(2)

𝜕𝑦
) = 𝑚0𝐹𝑛,𝑙

(1)
,              (19)  

  

𝐸𝑛,𝑙𝐺𝑛,𝑙
(2)
+ 𝑖 (

𝜕 𝐻𝑛,𝑙
(1)

𝜕𝑧
−
𝜕 𝐻𝑛,𝑙

(3)

𝜕𝑥
) = 𝑚0𝐹𝑛,𝑙

(2)
,              (20) 

   

𝐸𝑛,𝑙𝐺𝑛,𝑙
(3)
+ 𝑖 (

𝜕 𝐻𝑛,𝑙
(2)

𝜕𝑥
−
𝜕 𝐻𝑛,𝑙

(1)

𝜕𝑦
) = 𝑚0𝐹𝑛,𝑙

(3)
,              (21)  

 

[𝐸𝑛,𝑙 − 𝑉(𝑟)]𝐹𝑛,𝑙
(1)
+
𝜕 𝜑

𝜕𝑥
= 𝑚0𝐺𝑛,𝑙

(1)
,                     (22)   

   

[𝐸𝑛,𝑙 − 𝑉(𝑟)]𝐹𝑛,𝑙
(2)
+
𝜕 𝜑

𝜕𝑦
= 𝑚0𝐺𝑛,𝑙

(2)
,                     (23) 

   

[𝐸𝑛,𝑙 − 𝑉(𝑟)]𝐹𝑛,𝑙
(3)
+
𝜕 𝜑

𝜕𝑧
= 𝑚0𝐺𝑛,𝑙

(3)
.                     (24)                                                                            

Combining the above ten equations, we get                            

𝑖∇⃗⃗⃗ × �⃗� = 𝑚0�⃗⃗⃗�                                                     (25)                                                                                                   

∇⃗⃗⃗. �⃗� = 𝑚0𝜙𝑛,𝑙,                                                     (26)                                                                                              
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𝐸𝑛,𝑙�⃗� + 𝑖∇⃗⃗⃗ × �⃗⃗⃗� = 𝑚0�⃗�,                                       (27)                                                                                                        

                                           

[𝐸𝑛,𝑙 − 𝑉(𝑟)]�⃗� + ∇⃗⃗⃗𝜙𝑛,𝑙 = 𝑚0�⃗�,                          (28) 

    

and thus, using the above equations, we arrive at the 

following expression    

{𝐸𝑛,𝑙[𝐸𝑛,𝑙 − 𝑉(𝑟)] − 𝑚0
2}�⃗� 

  −∇⃗⃗⃗ × (∇⃗⃗⃗ × �⃗�) + ∇⃗⃗⃗(∇⃗⃗⃗. �⃗�) = 0                     (29) 

       

If the following identity for the term ∇⃗⃗⃗ ×

(∇⃗⃗⃗ × �⃗�)  is used in this expression as 

∇⃗⃗⃗ × (∇⃗⃗⃗ × �⃗�) = ∇⃗⃗⃗(∇⃗⃗⃗. �⃗�) − ∇2�⃗� = 

∇⃗⃗⃗(∇⃗⃗⃗. �⃗�) − (
𝜕2

𝜕𝑟2
+
2

𝑟

𝜕

𝜕𝑟
−
𝐿2

𝑟2
 ) �⃗�                     (30)  

 

we get the following differential equation                                    

{
𝑑2

𝑑𝑟2
+
2

𝑟

𝑑

𝑑𝑟
+ 𝐸𝑛,𝑙

2 −𝐸𝑛,𝑙𝑉(𝑟) − 𝑚0
2 −

𝑙(𝑙+1)

𝑟2
} �⃗� = 0                    

(31)       

This equation formally has the same structure 

as the Proca equation (Castro and De Castro, 2014). 

In order to remove the first derivative in this 

expression, the wave functions recommended as 

�⃗� = 𝑟−1R⃗⃗⃗ 

 

(

 
 
𝜑𝑛,𝑙
(2)

𝜑𝑛,𝑙
(3)

𝜑𝑛,𝑙
(4)

)

 
 
= 𝑟−1

(

 
 
R𝑛,𝑙
(2)

R𝑛,𝑙
(3)

R𝑛,𝑙
(4)

)

 
 

      

       

 (R𝑛,𝑙
(2)
= R𝑛,𝑙

(3)
= R𝑛,𝑙

(4)
= R𝑛,𝑙)                               (32)   

       

and if Eq. (31) is rearranged, we gain 

{
𝑑2

𝑑𝑟2
+ 𝐸𝑛,𝑙

2 −𝐸𝑛,𝑙𝑉(𝑟) − 𝑚0
2 −

𝑙(𝑙+1)

𝑟2
}R𝑛,𝑙(𝑟) = 0  

(33) 

RESULTS AND DISCUSSION  

The Sun interaction field describing 

diatomic molecules is defined as follows (Sun, 

1999): 

𝑉𝑆𝑢𝑛(𝑟) =
𝐷𝑒𝑒

−2(
𝛼
𝑟𝑒
)𝑟
(𝑒𝛼−𝜆)2

(1−𝜆𝑒
−(
𝛼
𝑟𝑒
)𝑟
)

2 −
2𝐷𝑒𝑒

−(
𝛼
𝑟𝑒
)𝑟
(𝑒𝛼−𝜆)

1−𝜆𝑒
−(
𝛼
𝑟𝑒
)𝑟

    (34)                                  

where 𝐷𝑒 indicates the dissociation energy, 𝑟𝑒 
indicates the equilibrium bond length, 𝛼 and 𝜆 are 

two dimensionless variables. This function can be 

reduced to the Tietz function with appropriate 

selection of parameters (Jia, Wang, He and Sun, 

2000; Liang, Tang and Jia, 2013). It will be 

sufficient to use Eq. (33) to find the scattering state 

solutions of spin-1 vector bosons interacting with 

this field function.  

By substituting Eq. (34) into Eq. (33), the 

following expression is obtained 

{
𝑑2

𝑑𝑟2
+ 𝐸𝑛,𝑙

2 −𝐸𝑛,𝑙 (
𝐷𝑒𝑒

−2(
𝛼
𝑟𝑒
)𝑟
(𝑒𝛼−𝜆)2

(1−𝜆𝑒
−(
𝛼
𝑟𝑒
)𝑟
)

2 −

2𝐷𝑒𝑒
−(
𝛼
𝑟𝑒
)𝑟
(𝑒𝛼−𝜆)

1−𝜆𝑒
−(
𝛼
𝑟𝑒
)𝑟

)−𝑚0
2 −

𝑙(𝑙+1)

𝑟2
}R𝑛,𝑙 = 0    (34) 

For the term 1 𝑟2⁄  in this expression, a Pekeris-

Type approach is applied as (Pekeris, 1934) 

                 

    
1

𝑟2
≈

1

𝑟𝑒
2(𝔇0 +

𝔇1𝑒
−(
𝛼
𝑟𝑒
)𝑟

1−𝜆𝑒
−(
𝛼
𝑟𝑒
)𝑟
+

𝔇2𝑒
−2(

𝛼
𝑟𝑒
)𝑟

(1−𝜆𝑒
−(
𝛼
𝑟𝑒
)𝑟
)

2)     (36)            

If this equation is expanded to the Taylor series, 

the 𝔇0, 𝔇1 and 𝔇2  coefficients in the expression 

are calculated as follows:                        

 𝔇0 = 1 +
1

𝛼2
(3 − 3𝛼 − 6𝜆𝑒−𝛼 +

3𝜆2𝑒−2𝛼 + 2𝜆𝛼𝑒−𝛼 + 𝜆2𝛼𝑒−2𝛼) 

𝔇1 =
2

𝛼2
(9𝜆 − 3𝜆𝛼 − 3𝑒−𝛼 + 2𝛼𝑒−𝛼 − 9𝜆2𝑒−𝛼

+ 3𝜆3𝑒−2𝛼 + 𝜆3𝛼𝑒−2𝛼) 
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𝔇2 =
1

𝛼2
(18𝜆2 − 12𝜆𝑒𝛼 + 3𝑒2𝛼 + 2𝜆𝛼𝑒𝛼 − 𝛼𝑒2𝛼

− 12𝜆3𝑒−𝛼 + 3𝜆4𝑒−2𝛼 − 2𝜆3𝛼𝑒−𝛼

+ 𝜆4𝛼𝑒−2𝛼) 

(37) 

The suitability of this approach can be seen in 

Figure 2. By substituting Eq. (36) into Eq. (35) and 

defining a new variable in the form η = 1 −

(1 − 𝜆 𝑒
−(

𝛼

𝑟𝑒
)𝑟
)
−1

, the following expression is 

obtained 

 

𝜂(1 − 𝜂)
𝑑2𝑅𝑛𝑙(𝜂)

𝑑𝜂2
+ (1 − 2𝜂)

𝑑𝑅𝑛𝑙(𝜂)

𝑑𝜂
+

1

𝜂(1−𝜂)
[−𝛾1 + 𝛾2𝜂 − 𝛾3𝜂

2]𝑅𝑛𝑙(𝜂) = 0      (38)              

where 

𝛾1 =
(𝑚0

2 − 𝐸𝑛,𝑙
2 )𝑟𝑒

2

𝛼2
 

+
[(𝑒𝛼 − 𝜆)2 + 2(𝑒𝛼 − 𝜆)𝐷𝑒𝜆]𝐸𝑛,𝑙𝑟𝑒

2

𝛼2𝜆2
 

+
𝑙(𝑙 + 1)(𝔇0𝜆

2 −𝔇1𝜆 +𝔇2)

𝛼2𝜆2
 , 

𝛾2 =
2[(𝑒𝛼 − 𝜆)2 + (𝑒𝛼 − 𝜆)𝐷𝑒𝜆]𝐸𝑛,𝑙𝑟𝑒

2

𝛼2𝜆2
 

+
𝑙(𝑙 + 1)(2𝔇2 −𝔇1𝜆)

𝛼2𝜆2
  , 

𝛾3 =
(𝑒𝛼−𝜆)2𝐷𝑒𝐸𝑛,𝑙𝑟𝑒

2

𝛼2𝜆2
+
𝑙(𝑙+1)𝔇2

𝛼2𝜆2
,                           (39) 

In order to remove the singularity at the points 

𝜂 = 0 and 𝜂 = 1 in Eq. (39), the wave function is 

proposed again as 𝑅𝑛𝑙(𝜂) = 𝜂
𝛽(1 − 𝜂)−

𝑖𝑘 𝑟𝑒
𝛼 ℱ𝑛𝑙(𝜂)  

and when the necessary operations are carried out, 

we reach 

𝜂(1 − 𝜂)
𝑑2ℱ𝑛𝑙
𝑑𝜂2

 

+[𝜚3 − (𝜚1 + 𝜚2 + 1)]
𝑑ℱ𝑛𝑙

𝑑𝜂
− 𝜚1. 𝜚2ℱ𝑛𝑙 = 0     (40)    

Where 

𝛽 = √𝛾1 , 𝑘 =
𝛼

𝑟𝑒
√𝛾2 − 𝛾3 − 𝛾1 , 

  𝜎 = ±
1

2
√1 + 4𝛾3 ,   𝜚1 = 𝛽 −

𝑖𝑘𝑟𝑒

𝛼
+ 𝜎 +

1

2
, 

    𝜚2 = 𝛽 −
𝑖𝑘𝑟𝑒

𝛼
− 𝜎 +

1

2
 ,     𝜚3 = 1 + 2𝛽           (41)   

Using the property of the Gauss Hypergeometric 

equation (Flügge, 1999), the solution for Eq. (40) 

becomes: 

ℱ𝑛𝑙(𝜂) = 𝐴1 𝐹2 1(𝜚1, 𝜚2, 𝜚3, 𝜂) 

+𝐴2𝜂
1−𝜚3 𝐹2 1(𝜚1 − 𝜚3 + 1, 𝜚2 − 𝜚3 + 1,2 − 𝜚3, 𝜂) .  

(42) 

Thus, we get: 

𝑅𝑛𝑙(𝜂) = 𝐴1𝜂
𝛽(1 − 𝜂)−

𝑖𝑘𝑟𝑒
𝛼  

× 𝐹2 1(𝜚1, 𝜚2, 𝜚3, 𝜂) + 𝐴2𝜂
−𝛽(1 − 𝜂)−

𝑖𝑘𝑟𝑒
𝛼  

      × 𝐹2 1(𝜚1 − 𝜚3 + 1, 𝜚2 − 𝜚3 + 1,2 − 𝜚3, 𝜂)   (43)                              

To gain a regular solution of the Eq. (43) and 

derive the relations that give the necessary physical 

quantities describing the scattering states, we have to 

consider the behavior of wave functions at their 

boundary points (Flügge, 1999): 

i) If 𝑟 → 0, the 𝑅𝑛𝑙(𝜂) must be get finite value. With 

the applying first condition, we conclude that the 

normalization coefficient 𝐴2 = 0, so the wave 

functions is found as:  

𝑅𝑛𝑙(𝜂) = 𝐴1𝜂
𝛽(1 − 𝜂)−

𝑖𝑘𝑟𝑒
𝛼 𝐹2 1(𝜚1, 𝜚2, 𝜚3, 𝜂)     44)  

 ii) If 𝑟 → ∞, the attitude of the 𝑅𝑛𝑙(𝜂) at infinity 

smust be as follows (Landau and Lifshitz, 1977) 

𝑅𝑛𝑙(∞) → 2 𝑠𝑖𝑛( 𝑘𝑟 −
1

2
𝑙𝜋 + 𝜙)                         (45)  

where 𝜙 is the phase shift.  Under this condition, Eq. 

(44) takes the following form 
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𝑅𝑛𝑙(𝑟 → ∞) → 

𝐴1 (−
1

𝜆
)
−
𝑖𝑘𝑟𝑒
𝛼
𝑒𝑖𝑘𝑟 𝐹2 1(𝜚1, 𝜚2, 𝜚3, 1 −

1

1−𝜆 𝑒
−(
𝛼
𝑟𝑒
)𝑟
)             

(46)  

We can write the recurrence relation given for the 

Hypergeometric function in this equation (Flügge, 

1999) and taking 𝐹2 1(𝜚1, 𝜚2, 𝜚3, 0) = 1 for  𝑟 → ∞, 

we get 

𝐹2 1(𝜚1, 𝜚2, 𝜉𝜚3, 1)
𝑟→∞
→    

𝛤(𝜚3) {

𝛤(𝜚3−𝜚2−𝜚1)

𝛤(𝜚3−𝜚1)𝛤(𝜚3−𝜚2)

+(−
1

𝜆
)

2𝑖𝑘𝑟𝑒
𝛼
𝑒−2𝑖𝑘𝑟

𝛤(𝜚1+𝜚2−𝜚3)

𝛤(𝜚1)𝛤(𝜚2)

}            (47) 

When the following relations are used 

𝜚1 + 𝜚2 − 𝜚3 = −
2𝑖𝑘𝑟𝑒

𝛼
= (𝜚3 − 𝜚2 − 𝜚1)

∗, 

𝜚3 − 𝜚1 = 𝛽 +
𝑖𝑘𝑟𝑒

𝛼
− 𝜎 +

1

2
= (𝜚2)

∗, 

𝜚3 − 𝜚2 = 𝛽 +
𝑖𝑘𝑟𝑒

𝛼
+ 𝜎 +

1

2
= (𝜚1)

∗                   (48)   

and required calculations are taken, we find       

𝐹2 1(𝜚1, 𝜚2, 𝜚3, 1)
𝑟→∞
→   

 𝛤(𝜚3) (−
1

𝜆
)

𝑖𝑘𝑟𝑒
𝛼

{
 
 

 
 𝛤(𝜚3−𝜚2−𝜚1)(−

1

𝜆
)
−
𝑖𝑘𝑟𝑒
𝛼

𝛤(𝜚3−𝜚1)𝛤(𝜚3−𝜚2)

+𝑒−2𝑖𝑘𝑟 [
𝛤(𝜚3−𝜚2−𝜚1)(−

1

𝜆
)
−
𝑖𝑘𝑟𝑒
𝛼

𝛤(𝜚3−𝜚1)𝛤(𝜚3−𝜚2)
]

∗

}
 
 

 
 

.    

(49) 

By using relations below 

𝛤(𝜚3 − 𝜚2 − 𝜚1)

𝛤(𝜚3 − 𝜚1)𝛤(𝜚3 − 𝜚2)

= |
𝛤(𝜚3 − 𝜚2 − 𝜚1)

𝛤(𝜚3 − 𝜚1)𝛤(𝜚3 − 𝜚2)
| 𝑒𝑖𝜗1 , 

 (−
1

𝜆
)
−
𝑖𝑘𝑟𝑒
𝛼
= |(−

1

𝜆
)
−
𝑖𝑘𝑟𝑒
𝛼
| 𝑒𝑖𝜗2 ,                          (50) 

and inserting these expressions in Eq.(49), we have 

𝐹2 1(𝜚1, 𝜚2, 𝜚3, 1)
𝑟→∞
→   2𝛤(𝜚3) (−

1

𝜆
)

𝑖𝑘𝑟𝑒
𝛼

𝑒−𝑖𝑘𝑟 

× |
𝛤(𝜚3−𝜚2−𝜚1)(−

1

𝜆
)
−
𝑖𝑘𝑟𝑒
𝛼

𝛤(𝜚3−𝜚1)𝛤(𝜚3−𝜚2)
| 𝑠𝑖𝑛( 𝑘𝑟 + 𝜗1 + 𝜗2 +

𝜋

2
)   

(51)   

The replacement of the Eq.(51) into the Eq.(46) 

yields 

 𝑅𝑛𝑙(𝑟)
𝑟→∞
→   2𝐴1𝛤(𝜚3) |

𝛤(𝜚3−𝜚2−𝜚1)(−
1

𝜆
)
−
𝑖𝑘𝑟𝑒
𝛼

𝛤(𝜚3−𝜚1)𝛤(𝜚3−𝜚2)
| 

                 × 𝑠𝑖𝑛( 𝑘𝑟 + 𝜗1 + 𝜗2 +
𝜋

2
)                   (52) 

Matching the Eq. (52) with the Eq. (45), we get: 

𝐴1 =
1

𝛤(𝜚3)
|
𝛤(𝜚3−𝜚1)𝛤(𝜚3−𝜚2)(−

1

𝜆
)

𝑖𝑘𝑟𝑒
𝛼

𝛤(𝜚3−𝜚2−𝜚1)
|                    (53) 

𝜙 =
1

2
(𝑙 + 1)𝜋 + 𝑎𝑟𝑔 𝛤 (𝜚3 − 𝜚2 − 𝜚1) −

𝑎𝑟𝑔 𝛤 (𝜚3 − 𝜚1) − 𝑎𝑟𝑔𝛤 (𝜚3 − 𝜚2) +

𝑎𝑟𝑔 (−
1

𝜆
)
−
𝑖𝑘𝑟𝑒
𝛼

                                                     (54)     

If the scattering amplitude goes to infinity (𝐴1 →
∞), continuum states occur and thus we can obtain 

bound state energy eigenvalues. By using the 

following property of Gamma functions as 

𝛤(𝜒) =
𝛤(𝜒+1)

𝜒
=
𝛤(𝜒+2)

𝜒(𝜒+1)
  

=
𝛤(𝜒+3)

𝜒(𝜒+1)(𝜒+2)
= ...  𝜒 = 0, -1, -2, -3, ...               (55) 
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One can easily obtain the singular pole points Eq.  

(53) as  𝜚3 − 𝜚1 = 𝑛 or 𝜚3 − 𝜚2 = 𝑛.  Hence, the 

condition becomes 

𝛽 −
𝑖𝑘𝑟𝑒

𝛼
− 𝜎 +

1

2
= −𝑛                                        (56) 

By using these equation and definition given in 

Eq.(39) and Eq. (41), the energy eigenvalues is 

found as follows: 

 

𝐸𝑛,𝑙
2 −𝑚0

2 −
𝐸𝑛,𝑙(𝑒

𝛼−𝜆)(𝑒𝛼−𝜆+2)𝐷𝑒

𝜆2
−

(𝐶0𝜆
2−𝐶1𝜆+𝐶2)𝑙(𝑙+1)

𝜆2𝑟𝑒
2 +

𝛼2

4𝑟𝑒
2 [1 + 2𝑛 +

√
𝛼2𝜆2+4𝑙(𝑙+1)𝐶2+4𝐸𝑛,𝑙(𝑒

𝛼−𝜆)2𝐷𝑒𝑟𝑒
2

𝛼2𝜆2
 

−2√
𝑙(𝑙+1)𝜆2𝐶0+((𝐸𝑛,𝑙

2 −𝑚0
2)𝜆2−2𝐸𝑛,𝑙(𝑒

𝛼−𝜆)(𝜆−1)𝐷𝑒)𝑟𝑒
2

𝛼2𝜆2
]

2

=

0 

(57)

CONCLUSION 

The DKP equation with Sun interaction field 

model is discussed for the first time in this study. 

Scattering state solutions of vector bosons were 

obtained. The suitability of the approach used for 

centrifugal term is given in Figure 1. By using the 

wave function, the phase shift equation and 

scattering amplitude relation were derived. In 

addition, by using scattering amplitude relation, the 

relation giving the bound state energy eigenvalues 

was directly obtained. Phase shift and energy 

eigenvalues were calculated numerically through the 

Mathematica software program.  

 

 

Figure 1. Graphical representation of the 

approximation applied to the centrifugal term for α=2,  

r_e=1 fm and λ=0.1. 

 

 

These results are presented in Table 1. and 

Table 2.  As seen in Table 1, if the angular 

momentum eigenvalues increase, phase shift values 

increase. Also, the same situation applies if the alpha 

parameter increases. It can be easily seen in Table 2 

that the energy eigenvalues increase if the n and l 

values increase. 
Table 1. Calculated phase shift values for 𝐷𝑒 =

2 𝑓𝑚−1,  𝛼 = 2,  𝑟𝑒 = 0.8 𝑓𝑚
−1,  𝑚 = 1 𝑓𝑚−1 , 𝜆 =

0.5 𝐸 = 3.651 𝑓𝑚−1 and ℏ = 𝑐 = 1 

 

𝑙 𝜙(𝛼 = 1.6) 𝜙(𝛼 = 2) 𝜙(𝛼 = 2.4) 

1 1.03030 1.82089 8.63096 

2 2.62303 3.41576 10.2273 

3 4.22675 5.02269 11.8364 

4 5.84148 6.64172 13.4584 

5 7.46728 8.27289 15.0932 

6 9.10419 16.1994 16.741 

7 10.7523 17.8551 18.4017 

8 12.4116 18.3186 22.3612 

9 16.326 20.0368 25.8844 

10 21.586 28.8247 34.9442 
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Table 2. Calculated energy eigenvalues for 𝐷𝑒 =

2 𝑓𝑚−1,  𝛼 = 2,  𝑟𝑒 = 0.8 𝑓𝑚
−1,  𝑚 = 1 𝑓𝑚−1 ,  𝜆 =

0.5 and ℏ = 𝑐 = 1 

 

𝑛 𝑙 𝐸𝑛𝑙  (fm
−1) 𝑛 𝑙 𝐸𝑛𝑙  (fm

−1) 

1 0 0.129231 5 0 1.91933 

2 0 0.377758 5 1 2.03664 

2 1 0.487010 5 2 2.26547 

3 0 0.754972 5 3 2.59785 

3 1 0.867171 5 4 3.02697 

3 2 1.079500 6 0 3.54854 

4 0 1.26622 6 1 2.84562 

4 1 1.38089 6 2 3.08231 

4 2 1.60201 6 3 3.42908 

4 3 1.91954 6 4 3.88014 

 

The effects of the parameters in the interaction 

field on the energy values are shown in Figure 2 and 

Figure 3. If the drawings in Figure 2 are examined 

carefully, Energy values increase for values of the 𝜶 

parameter in the range 𝟏 < 𝜶 < 𝟏. 𝟐𝟐, and decrease 

for values in the range 𝟐. 𝟐𝟐 < 𝜶. This situation 

becomes more evident as large n and l values 

increase. In addition, for values of the alpha 

parameter in the range 𝜶 < 𝟏, the energy values for 

all quantum states approach each other and go to 

zero. In the other drawings, it is seen that if the 𝒓𝒆 
values increase, the energy values decrease. While 

the difference between the energy values 

corresponding to different quantum states is large at 

small values of the 𝒓𝒆  parameter, for 𝒓𝒆 > 𝟏 𝐟𝐦
−𝟏 

the difference decreases and the energy values 

approach zero. Looking at the drawings in Figure 3, 

it is very easy to say that the 𝑫𝒆  parameter behaves 

like the 𝒓𝒆  parameter, but the opposite is true for the 

𝝀 parameter. If the lambda parameter increases, the 

energy values increase and the energy values for 

different quantum states diverge. For 𝝀 < 𝟎. 𝟐, it is 

seen that the energy values decrease and go to zero 

for each quantum state. 

 

 

 

 

 

 

 

 

Figure 2. Variation of bound state energy eigenvalues 

according to 𝛼 parameter for 𝐷𝑒 = 2 𝑓𝑚
−1,  𝑟𝑒 =

0.8 𝑓𝑚−1,  𝑚 = 1 𝑓𝑚−1,  𝜆 = 0.5 , and  𝒓𝒆 parameter for 

𝐷𝑒 = 2 𝑓𝑚
−1,  𝛼 = 2,  𝑚 = 1 𝑓𝑚−1 ,  𝜆 = 0.5. 

 

 

 

 

 

 

 



  
Int. J. Pure Appl. Sci. 9(2);333-343 (2023) 

 

  

Research article/Araştırma makalesi 

DOI: 10.29132/ijpas.1369826 
 

 

341 

 
 

 

 

 

 

 

 

 

 

 

Figure 3. Variation of bound state energy eigenvalues 

according to 𝐷𝑒  parameter for 𝜆 = 0.5, 𝛼 = 2,  𝑟𝑒 =
0.8 𝑓𝑚−1,  𝑚 = 1 𝑓𝑚−1 and 𝜆 parameter for 𝐷𝑒 =
2 𝑓𝑚−1,  𝛼 = 2,  𝑟𝑒 = 0.8 𝑓𝑚

−1,  𝑚 = 1 𝑓𝑚−1. 

This study will be benefical for researchers  

working in this field as the Sun potential has 

successfully described many diatomic structures and 

there has been no previous study for vector bosons 

in the presence of this model. 
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