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Abstract 

 

In this study we first show that  satisfies two important homological properties, namely 

Rees short exact sequence an d short five lemma. In addition, by defining inversive 

semigroup varieties of  we prove that strictly inverse semigroup  is isomorphic to the 

spined product of (C)-inversive semigroup and the idempotent semigroup of . Moreover, 

we give some consequences of the results to make a detailed classification over . It has 

been recently defined a new semigroup    based on Rees matrix and completely 0-simple 

semigroups. Further, it has been also proved finiteness conditions and the existence of 

some fundamental properties over . 

 

Keywords: Rees matrix semigroup, spined product, completely 0-simple Semigroup.  

 

 

N yarıgrubu üzerinde bazı yeni özellikler 
 

 

Öz 

Bu çalışmada ilk olarak ' nin iki önemli homolojik özelliği, yani Rees kısa tam dizisi ve 

kısa beşli lemmayı sağladığı gösterilmiştir. Ek olarak, 'nin ters yarı grup çeşitlerini 

tanımlayarak, kesin olarak ters yarıgrup  'nın (C)-ters yarıgrup ve 'nın idempotent 

yarıgrubunun (spined) döndürülmüş çarpımına izomorfik olduğu kanıtlanmıştır. Ayrıca, 

 üzerinden ayrıntılı bir sınıflandırma yapmak için bazı sonuçlar verilmiştir. Son 

zamanlarda Rees matrisine ve tam 0-basit yarı gruplara dayalı yeni bir yarı grup olan  

tanımlanmıştır. Dahası   üzerinde bazı temel özelliklerin ve sonluluk koşullarının varlığı 

da kanıtlanmıştır. 

 

 

Anahtar kelimeler: Rees matris yarıgrup, döndürülmüş çarpımlar, tam basit sıfır 

yarıgrup. 
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1. Introduction and Preliminaries 

 

Since their introduction into the mathematical literature in the early 1900s, semigroups 

have become one of the most-studied classes of algebra with many mathematician 

devoted to their understanding. Such important objects of study have naturally given rise 

to a number of different methods for their investigation. So, very important semigroup 

classes is emerged. 

 

In [11], we created a new semigroup class and denoted it by . When a new semigroup 

appears, it is necessary to investigate the properties of this semigroup. For example, in 

[13] and [14] the authors considered a new product and gave some properties on a special 

product of semigroups (and monoids) [1]. In this paper we more deeply investigate the 

place   in the literature as a continuation of the work [11].  

 

It is a well known fact that, in group theory, a group extension is a general means of 

describing a group in terms of a particular normal subgroup and quotient group. If B and 

A are two groups, then G is an extension of B by A if there is a short exact sequence  

1 →  𝐴 →  𝐺 →  𝐵 →  1. 

 

Group extensions arise in the context of the extension problem, where the groups B and 

A are known and the properties of G are to be determined. If there is a short exact sequence 

for the semigroup , this sequence gives an idea about the, just like in the G group. 

Therefore, it is a question of wondering whether a short exact sequence can be created 

for the semigroup . In order to set the scene for what follows, it is necessary to give a 

definition short exact sequence of semigroup or monoid. Chen and Shum [3] introduced 

Rees short exact sequence of acts over monoids. In [6],  the authors investigated 

conditions under which flatness properties of right acts 𝐴 and 𝐶 in the Rees short exact 

sequence  0 →  𝐴 →  𝐵 →  𝐶 →  0 can be transferred to B. It is clear that short exact 

sequence which is called Rees short exact sequence over monoid reveals many features. 

So it makes sense to try to define the Rees short exact sequence for  and that is what we 

will do in Section 2.1. (see Theorem 2.1.) in below.  

 

Spined products of semigroups were first defined and studied by Kimura [7]. After that, 

spined products have been considered many time as predominantly those a band and a 

semilattice of semigroups with respect to their common semilattice homomorphic image 

[2]. In this paper we show that  is isomorphic to spined product of Rees matrix 

semigroup and completely 0-simple semigroup (see Theorem 2.2.) 

 

In [6] the authors presented short five lemma over monoid and also defined some detailed 

information on it. In this paper, we will create a commutative diagram by combining 

properties of short five lemma and spined product of   (see Corollory 2.3.) 

 

The classification of types of semigroup has normally arisen only as an incidental problem 

since the difficulty of the classification problem in general. So any classification of 

semigroups naturally important. In [11] it has been proved that the semigroup  is 

completely inverse and regular. As a continuation of this classification in [11] we will 

continue to make some new classifications in here. We will prove that  is strictly 

inversive semigroup (in Theorem 2.4 and also it is a (C)-inversive semigroup (in Theorem 

2.5). Furthermore we will state some corollaries as a result of these classifications (see 

Corollaries 2.6., 2.7.  and 2.8.) 
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Throughout this paper all notations and terminologies are taken from [11]. For other 

undefined terminologies and definitions, the reader is referred to [4-5]. 

 

Now,  we will recall some fundamental concepts and definitions which will be needed in 

this paper. First, let us recall the definition of the semigroup  given recently in [11]. We 

consider the following mapping  

 

𝛾: (𝑀𝑅 × 𝑀𝐶) ⋆ (𝑀𝑅 × 𝑀𝐶)   →    (𝑀𝑅 ×  𝑀𝐶) 

 

that has the binary operation ⋆ as 

 

 [𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓)] ⋆  [(𝑘, 𝑙, 𝑚), (𝑥, 𝑦, 𝑧)] = 

((𝑎, 𝑏𝑝{𝑐𝑘}𝑙, 𝑚), 0)                               𝑖𝑓    𝑝{𝑐𝑘} ≠  0 𝑎𝑛𝑑 𝑝{𝑓𝑥}
′  = 0  

  (0, (𝑑, 𝑒𝑝{𝑓𝑥}
′ 𝑦, 𝑧))                            𝑖𝑓    𝑝{𝑐𝑘} = 0 𝑎𝑛𝑑 𝑝{𝑓𝑥}

′ ≠  0 

((𝑎, 𝑏𝑝{𝑐𝑘}𝑙, 𝑚), (𝑑, 𝑒𝑝{𝑓𝑥}
{′

} 𝑦, 𝑧)   𝑖𝑓    𝑝{𝑐𝑘} ≠  0 𝑎𝑛𝑑 𝑝{𝑓𝑥}
′ ≠  0 

                       (0𝑅 , 0𝐶)                                              𝑖𝑓  𝑝{𝑐𝑘} = 0 𝑎𝑛𝑑 𝑝{𝑓𝑥}
′  = 0,                (1)       

 

where (𝑎, 𝑏, 𝑐), (𝑘, 𝑙, 𝑚) in element 𝑀𝑅, (𝑑, 𝑒, 𝑓), (𝑥, 𝑦, 𝑧) in element 𝑀𝐶. In here 

completely 0-simple semigroup M0[G{0};  I, J;  P′]  defined by the set I ×  G{0} × J and 

Rees matrix semigroup M0[S{0};  I, J;  P] defined by the set I ×  S{0} × J are denoted by 

the notations 𝑀𝑅 and 𝑀𝐶, respectively.  

 

Then the set 𝑀𝑅 ×  𝑀𝐶 defines the semigroup 𝑀0[𝑆{0}, 𝐺0;  𝑀𝑅 , 𝑀𝐶;  𝑃, 𝑃′] using the 

operation given in (1). For simplicity, we denote this new semigroup by . More detailed 

information can be found in  [11]. It is obvious that a detailed chechking implies this 

binary operation does not turns out to be componentwise multiplication. 

 

In (1) again for simplicity, we will use the shortcuts (𝑟, 0) for the first line, (0, 𝑐) for the 

second line, (𝑟, 𝑐) for the third line and (0,0) for the last line, respectively. Therefore 

each of 𝑟, 𝑐 and 0 contains a triple in itself. For example (0,0) means 

[(𝑎, 0𝑆, 𝑏), (𝑐, 0𝐺 , 𝑑)].  
 

Definition 1.1. [10] A semigroup is called an externally commutative semigroup if it 

satisfies the identity 𝑎𝑥𝑏 = 𝑏𝑥𝑎. 

 

Lemma 1.2. (,⋆) is commutative semigroup  if  the following conditions are satisfied: 

 (i)   The index sets 𝐼 and 𝐽 contains an unique element. 

 (ii)   𝑆 is externally commutative semigroup. 

 (iii)  𝐺  is commutative group. 

 

Proof: Suppose that  is commute, i.e. for every 𝑥′, 𝑦′ ∈   𝑥′ ⋆  𝑦′ = 𝑦′ ⋆  𝑥′. 

According to [11, Remark 2.1.] it is well known that third line of operarion ⋆  defines the 

general situation. For this reason, we consider the form (𝑟, 𝑐) which is the most common 

form among the others and clearly including other cases in (1). Therefore we have 
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[(𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓)] ⋆  [(𝑥, 𝑦, 𝑧), (𝑘, 𝑙, 𝑚)]  =   [(𝑥, 𝑦, 𝑧), (𝑘, 𝑙, 𝑚)]  ⋆ [(𝑎, 𝑏, 𝑐), (𝑑, 𝑒, 𝑓)]  

[(𝑎, 𝑏𝑝{𝑐𝑥}𝑦, 𝑧), (𝑑, 𝑒𝑝′
{𝑓𝑘}𝑙, 𝑚)] =   [(𝑥, 𝑦𝑝{𝑧𝑎}𝑏, 𝑐), (𝑘, 𝑙𝑝′ {𝑚𝑑}𝑒, 𝑓)] 

  

If the index sets 𝐼 and 𝐽 contains an unique element, i.e 𝐼 =  { 𝑖}  and 𝐽 =  { 𝑗} , then we 

have 𝑎 = 𝑑 = 𝑥 = 𝑘 = 𝑖 and 𝑧 = 𝑚 = 𝑐 = 𝑓 = 𝑗. In case the equality [(𝑎, 𝑏𝑝{𝑐𝑥}𝑦, 𝑧),

(𝑑, 𝑒𝑝′
{𝑓𝑘}𝑙, 𝑚)]   =   [(𝑥, 𝑦𝑝{𝑧𝑎}𝑏, 𝑐), (𝑘, 𝑙𝑝′ {𝑚𝑑}𝑒, 𝑓)] implies that 

[(𝑖, 𝑏𝑝{𝑗𝑖}𝑦, 𝑗), (𝑖, 𝑒𝑝′
{𝑗𝑖}𝑙, 𝑗)]   =   [(𝑖, 𝑦𝑝{𝑗𝑖}𝑏, 𝑗), (𝑖, 𝑙𝑝′{𝑗𝑖}𝑒, 𝑗)]. It remains to show that 

𝑏𝑝{𝑗𝑖}𝑦 = 𝑦𝑝{𝑗𝑖}𝑏 and 𝑒𝑝′{𝑗𝑖} 𝑙 = 𝑙𝑝′{𝑗𝑖}𝑒. If 𝑆 is externally commutative semigroup, then 

we have 𝑏𝑝{𝑗𝑖}𝑦 = 𝑦𝑝{𝑗𝑖}𝑏. Similarly, if  𝐺 is commutative group,  𝑒𝑝′{𝑗𝑖}𝑙 = 𝑙𝑝′{𝑗𝑖}𝑒 is 

satisfies. Hence the result. 

 

The following definitions will be used in the classification of . 

 

Definition 1.3. [12] A semigroup 𝑆 is called strictly inversive if the set of idempotents of  

𝑆 is a subband of 𝑆. 

 

Definition 1.4. [4,5] A semigroup 𝑆  is called inversive if it is satisfies one of the 

following conditions. 

i. 𝑆 has an idempotent and the set of idempotents of 𝑆 is a subband of 𝑆. 

ii. For any element 𝑥 of 𝑆, there exist an element 𝑥{∗} such that $ 

𝑥𝑥{∗} = 𝑥{∗}𝑥 and 𝑥𝑥{∗}𝑥 = 𝑥. 

 

Definition 1.5. [12] Let 𝑆 be an inversive semigroup. If it satisfies 𝑥𝑦 = 𝑦𝑥, then 𝑆 is 

said to be (𝐶) −inversive semigroup.  

 

For a sequence of semigroup homomorphisms ⋯ → 𝐿𝑆  →𝑓  𝑀𝑆  →𝑔  𝑁𝑆 →  ⋯ , we said 

that it is 𝑀𝑆  exact if 𝑀𝑆   provided 𝑘𝑒𝑟𝑔 = 𝜅𝐼𝑚𝑓, where 𝜅𝐼𝑚𝑓 = (𝐼𝑚𝑓 ×  𝐼𝑚𝑓) ∪  Δ{𝑀𝑆} 

such that Δ{𝑀𝑆}is the identity congruence on 𝑀𝑆. If 𝐿𝑆, 𝑀𝑆 and 𝑁𝑆 are exact in the sequence 

0 →   𝐿𝑆  →   𝑀𝑆  →   𝑁𝑆  →   0, then this sequence is called Rees short exact sequence.  

 

Lemma 1.6. [6] 

 Let the following diagram be commutative with Rees short exact rows. 

  

 
    Figure 1: Commutative diagram 

 

 Then 

i. If  𝛼  and 𝛾 are monomorhism, then 𝛽 is monomorphism. 

ii. If 𝛼  and 𝛾  are epimorphism, then 𝛽  is epimorphism. 

iii. If 𝛼  and 𝛾  are isomorphism, then 𝛽 is isomorphism. 
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If 𝑃 and 𝑄 are two semigroups having a common homomorphic image 𝑌, then the spined 

product of 𝑃 and 𝑄 with respect to 𝑌 is 𝑆 = {(𝑎, 𝑏) ∈  𝑃 ×  𝑄 |  𝜑(𝑎) = 𝜓(𝑏)}, where 

𝜑: 𝑃 →   𝑌 and 𝜓: 𝑄 →  𝑌 are homomorphisms onto 𝑌 [1]. Let us notate the spined 

product by ×𝑆.  

 

The structure of this paper is designed to obtain new properties of the semigroup structure 

𝑁. It is divided into several sections, each of which serves a specific purpose and 

contributes to the overall understanding of our findings. Firstly we will prove that 𝑁 is a 

Rees short exact sequence in Section 2.1 (Theorem 2.1.) After  we will show that 

semigroup 𝑁 is the spined product of MR and 𝑀𝐶 in Section 2.2 (Theorem 2.2.). 

Combining the results obtained in Section 2.1 and 2.2, we will found an important result 

(in Corollary 2.3.). In Section 2.3, we will prove  that 𝑁𝐶  ×𝑆  𝐸(𝑁) ≅  𝑁′  (in Corollary 

2.6.) In fact, to obtain Corollary 2.6., we proved Lemma 1.2. and Theorem 2.5., we stated 

and proved necessary and sufficient conditions 𝑁 is strictly inversive semigroup (in 

Theorem 2.4.). Combining some results in this paper and [11, Theorem 2.7.] we state 

some further results in Corollaries 2.7.and 2.8. 

 

 

2. Results 

 

In this section we give our main results with different subsections.  is commutative 

semigroup, unless otherwise stated. 

 

 

2.1.  satisfies short exact sequence 𝟎 →   𝑴𝑹  →     →   𝑴𝑪  →   𝟎  

 

Theorem 2.1.  0 →𝛼  𝑀𝑅  →𝑓    →𝑔  𝑀𝐶   →𝛽 0  is a Rees short exact sequence. 

 

Proof: Firstly, it is must be shown that 𝑀𝑅 , and 𝑀𝐶 are exact. Let us consider the 

mappings 

 

                     𝛼 ∶                0    →   𝑀𝑅   
         [(𝑖, 0𝑆, 𝑗), (𝑖, 0𝐺 , 𝑗)] ↦    𝑛 ⋆  [(𝑖, 0𝑆, 𝑗), (𝑖, 0𝐺 , 𝑗)] ,  

 
        𝑓 ∶                  𝑀𝑅 →    
                [(𝑖, 𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)] ↦   𝑛 ⋆  [(𝑖, 𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)] ,  
  

where  𝑛 ∈ . It is clear that 𝛼 is well defined. It is easily seen that 𝑛 ⋆
 [(𝑖, 𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)] ∈   . If  [(𝑖, 𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)] = [𝑖, 𝑠′, 𝑗), (𝑖, 0𝐺 , 𝑗)] then  𝑛 ⋆
 [(𝑖, 𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)] =  𝑛 ⋆  [(𝑖, 𝑠′, 𝑗), (𝑖, 0𝐺 , 𝑗)]. In this case 𝑓 is also well defined. Clearly 

these mappings are all homomorphisms. The task is now to find kernels and images of 

these homomorphism. In fact 

𝑘𝑒𝑟𝑓 = {[(𝑖, 𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)], [(𝑖, 𝑠′, 𝑗), (𝑖, 0𝐺 , 𝑗)]} 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 

                 𝜅𝐼𝑚𝛼= {[(𝑖, 0𝑆 , 𝑗), (𝑖, 0𝐺 , 𝑗)], [(𝑖, 0𝑆, 𝑗), (𝑖, 0𝐺 , 𝑗)]} ∪    Δ{𝑀𝑅} 

                   =  {[(𝑖, 0𝑆, 𝑗), (𝑖, 0𝐺  , 𝑗)], [(𝑖, 0𝑆 , 𝑗), (𝑖, 0𝐺 , 𝑗)]}
∪ {[(𝑖, 𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)], [(𝑖, 𝑠′, 𝑗), (𝑖, 0𝐺 , 𝑗)]} =  𝑘𝑒𝑟𝑓 
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which implies that 𝑀𝑅 is exact since 𝑘𝑒𝑟𝑓 = 𝜅𝐼𝑚𝛼. On the other hand, for the mappings 

  

        𝑔 ∶    →   𝑀𝐶    
 [(𝑖, 𝑠, 𝑗), (𝑖, 𝑔, 𝑗)] ↦    𝑛 ⋆   [(𝑖, 0𝑆, 𝑗), (𝑖, 𝑔, 𝑗)] ,  
 

                  𝛽 ∶  𝑀𝐶 →    0  
            [(𝑖, 0𝑆, 𝑗), (𝑖, 𝑔, 𝑗)] ↦    𝑛 ⋆   [(𝑖, 0𝑆 , 𝑗), (𝑖, 0𝐺 , 𝑗)] ,  
 

where  𝑛 ∈  .  In the same manner we can see that 𝑔 and 𝛽 are well defined. We can 

consider a similar process as in the following. 

      𝜅𝐼𝑚𝛼 = (𝐼𝑚𝑓 ×  𝐼𝑚𝑓) ∪ Δ   

               = [(𝑖, 𝑥𝑝{𝑗𝑖}𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)], [(𝑖, 𝑥𝑝{𝑗𝑖}𝑠, 𝑗), (𝑖, 0𝐺 , 𝑗)]} ∪  Δ   

(here 𝑥𝑝{𝑗𝑖}𝑠   is an element in the semigroup 𝑆 , i.e, 𝑝{𝑗𝑖}𝑠 = 𝑏 ∈  𝑆) 

         = {[(𝑖, 𝑏, 𝑗), (𝑖, 0𝐺 , 𝑗)], [(𝑖, 𝑏, 𝑗), (𝑖, 0𝐺 , 𝑗)]} ∪  {[(𝑖, 𝑠, 𝑗), (𝑖, 𝑔, 𝑗)], [(𝑖, 𝑠′, 𝑗), (𝑖, 𝑔′, 𝑗)]} 

        = {[(𝑖, 𝑆, 𝑗), (𝑖, 𝐺, 𝑗)], [(𝑖, 𝑆, 𝑗), (𝑖, 𝐺, 𝑗)]} = 𝑘𝑒𝑟 𝑓 

and so  is exact since 𝑘𝑒𝑟𝑔 = 𝜅𝐼𝑚𝑓. Similary, we have 𝑘𝑒𝑟 𝛽 =  𝜅𝐼𝑚𝑔 so  𝑀𝐶 is exact. 

Therefore 0 →  𝑀𝑅 →    →  𝑀𝐶 →  0  is a Rees short exact sequence. 

 

2.2   is spined product 𝑴𝑹 and 𝑴𝑪 

 

Firstly we show that   is spined product of 𝑀𝑅 and 𝑀𝐶 in this subsection.  

 

Theorem 2.2.  Let S be a rectangular band. Then  is the spined product of 𝑀𝑅 and 𝑀𝐶. 

 

Proof:  Let us consider the mappings  

  

          𝜑 ∶  𝑀𝑅 →                                                            𝜓 ∶  𝑀𝐶 →     
(𝑟, 0) ↦   (𝑟, 𝑐) ⋆  (𝑟1,0)                                      (0, 𝑐) ↦   (𝑟, 𝑐) ⋆  (0, 𝑐_1)  

  

First of all we have to prove that these mappings are well defined. There is no doubt that 
(𝑟, 𝑐) ⋆  (𝑟1, 0)  and (𝑟, 𝑐) ⋆  (0, 𝑐1) in elements of . If (𝑟, 0) = (𝑟′, 0), then 𝜑 (𝑟, 0) =
(𝑟, 𝑐) ⋆  (𝑟1, 0) = (𝑟′, 𝑐) ⋆  (𝑟1, 0) = 𝜑 (𝑟′, 0). One can prove, in a similar way to the 

proof of well defined of 𝜑, that if (0, 𝑐) = (0, 𝑐′), then 𝜓  (0, 𝑐) = (𝑟, 𝑐) ⋆  (0, 𝑐1) =
(𝑟, 𝑐′) ⋆  (0, 𝑐1) = 𝜓  (0, 𝑐′). So 𝜑 and 𝜓 are well defined. 

  

Since 𝑆 is a rectangular band, 

  

   (𝑟, 0) ⋆  (𝑟1,0) =  [(𝑖, 𝑏, 𝑗), (𝑖, 0𝐺 , 𝑗)] ⋆  [(𝑖, 𝑏′, 𝑗), (𝑖, 0𝐺 , 𝑗)]  

                = [(𝑖, 𝑏𝑝{𝑗𝑖}𝑏′, 𝑗), (𝑖, 0𝐺 , 𝑗)] 

𝜑[(𝑟, 0) ⋆  (𝑟1, 0)] = [(𝑖, 𝑠, 𝑗), (𝑖, 𝑔, 𝑗)] ⋆  [(𝑖, 𝑏𝑝{𝑗𝑖}𝑏′, 𝑗), (𝑖, 0𝐺 , 𝑗)] 

                          =  [(𝑖, 𝑠𝑝{𝑗𝑖}𝑏′𝑝{𝑗𝑖}𝑏′, 𝑗), (𝑖, 0𝐺 , 𝑗)]                   (2) 

𝜑(𝑟, 0) ⋆ 𝜑(𝑟1, 0) = [(𝑖, 𝑠𝑝{𝑗𝑖}𝑏, 𝑗), (𝑖, 0𝐺 , 𝑗)] ⋆  [(𝑖, 𝑠𝑝{𝑗𝑖}𝑏′, 𝑗), (𝑖, 0𝐺 , 𝑗)]  

                                =   [(𝑖, 𝑠𝑝{𝑗𝑖}𝑏𝑝{𝑗𝑖}𝑠𝑝{𝑗𝑖}𝑏′, 𝑗), (𝑖, 0𝐺 , 𝑗 )]          (3) 

 

The expressions (2) and (3) are equal and so 𝜑 is a homomorphism. Similarly 𝜓 is also a 

homomorphism. 

Therefore we obtain 𝑀𝑅  ×𝑆 𝑀𝐶 =    since 𝜑(𝑟, 0) = 𝜓(0, 𝑐) =  .  
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Corollary 2.3. The following diagram is commute. 

 
Figure 2. Commutative diagram for  

     

Proof: We proved that  is the spined product of 𝑀𝑅 and 𝑀𝐶 in Theorem 2.2. Conditions 

for creating a commutative diagram are given in Lemma 1.6. By using Theorem 2.2. and 

Lemma 1.6. we deduce immediately the truthfulness of the corollary. 

 

2.3   𝑪 ×𝑺  𝑬 ≅    ′  
 

In this part, the properties (𝐶) −inversive semigroup and strictly inversive semigroup 

over  will be denoted by   𝐶 and   ′ respectively. 

It is well-known that inversive semigroups are very important classes in semigroup 

algebra. In fact, different varieties of inversive semigroups have been used frequently in 

studies. For example, every regular semigroup is an 𝐸 −inversive semigroup which is a 

variant of the inversive semigroup and this is very crucial for the classification of 

semigroups [9]. We may also refer, for example, [8,12]. 

 

In this subsection, we focus on some varieties of inversive semigroups. In addition, by 

applying the spined product obtained in Section 2.2. We present some important 

semigroup classifications from inversive varieties of . 

 

Theorem 2.4.  If 𝑆 is a rectangular band, then   is strictly inversive semigroup. 

 

Proof: Let us assume that 𝑆 is rectangular band. In [11, Lemma 2.3.], the elements form 

of E(𝑁) which is [(𝑖, 𝑏, 𝑗), (𝑖, 𝑑, 𝑗)] such that 𝑝{𝑗𝑖}
′  = 𝑑{−1} and 𝑆 is a rectangular band. 

By Definition 1.4., it is known that the set of idempotent element should be a subband of 

𝑁. Since every element of E(𝑁)is idempotent and 𝑆 is a rectangular band, 𝑁 is strictly 

inversive semigroup as stated in Definition 1.4. 

 

Theorem 2.5. If 𝑁 is commutative, then 𝑁 is (𝐶) −inversive semigroup. 

 

Proof: As it mentioned in the proof of Theorem 2.4., the form of 𝐸(𝑁) is depicted in [11, 

Lemma 2.3]. We said that for the semigroup  𝑁 to be commutative, the index sets must 

have one element Lemma 1.2. According to this fact, the elements of the idempotent set 

𝐸(𝑁) will be the formed as [(𝑖, 𝑏, 𝑗), (𝑖, 𝑑, 𝑗)] such that 𝑆 is a rectangular band and 𝑝{𝑗𝑖}
′ =

𝑑{−1}. It is clear that 𝐸(𝑁)is a subband of 𝑁. Thus, by considering also Definition 1.4. we 

get that 𝑁 is (𝐶) −inversive semigroup while 𝑁 is commutative.  

 

In [12],  an important theorem (structure theorem) states that a semigroup is isomorphic 

to the spined product of a (𝐶) −inversive semigroup and a band if and only if it is strictly 

inversive. By using this result and Theorems 2.4., 2.5. we have the following corollary 

which is easily verified. 
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Corollary 2.6. Let 𝑆 be a commutative regular semigroup and 𝐺 be a commutative group. 

Then 𝑁 is isomorphic to the spined product of 𝑁𝐶  and 𝐸(𝑁). 

 

Furthermore, by using [11, Theorem 2.7.] Lemma 2.2. and Theorem 2.5., we have the 

following consequence as a result. 

 

Corollary 2.7. If 𝑁 is completely inverse semigroup, then 𝑁 is (𝐶) −inversive 

semigroup. 

 

According to [11, Theorem 2.7.] we also have the following important corollary. 

 

Corollary 2.8. 𝑁 strictly inverse if and only if it is completely inverse semigroup. 
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