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Abstract 
Accurate prediction of transport-related accidents is considered an important step in assessing the magnitude of 
the transport-related problems and accelerating decision-making to mitigate them. Therefore, such studies are 
of great importance for decision makers. In this study, it is aimed to accurately determine (estimate) the annual 
total number of railway accidents in Türkiye, considering the track length, train-km and Gross National Product 
(GNP) variables obtained from Türkiye Statistical Institute. In this context, firstly, four different computational 
models, three of which are optimization-based (one linear, the others nonlinear) and one based on Artificial 
Neural Network (ANN), are created. Subsequently, the goal was to minimize the Mean Square Error (MSE) 
between the observed and modeled data for each computational model developed. In the optimization-based 
models, the selection of the most suitable internal weighting coefficients was accomplished by utilizing the 
Differential Evolution Algorithm. Finally, within the scope of the study, all statistical results (mean square error, 
coefficient of determination) obtained for four different calculation models are compared with each other. 
Consequently, the analysis of the total number of railway accidents in Türkiye reveals that the quadratic model 
yields more realistic results compared to the other models.  
 
Keywords: railway accident, differential evolution algorithm, artificial neural networks, linear model, non-
linear model 

 

Türkiye’ deki Toplam Demiryolu Kaza Sayılarının Farklı  
Hesaplama Modelleri ile Analizi 

Öz 
Ulaştırma ile ilgili kazaların doğru tahmini, ulaştırma kaynaklı sorunların büyüklüğünü değerlendirmede ve 
hafifletmeye yönelik karar vermeyi hızlandırmada önemli bir adım olarak kabul edilmektedir. Bu nedenle, bu 
tür çalışmalar karar vericiler tarafından büyük bir önem teşkil etmektedir. Bu çalışmada, Türkiye İstatistik 
Kurumu’ ndan temin edilen demiryolu hat uzunluğu, tren-km ve Gayri Safi Milli Hasıla (GSMH) değişkenleri 
göz önünde bulundurularak Türkiye’ deki yıllık toplam demiryolu kaza sayısının doğru bir şekilde belirlenmesi 
(tahmin edilmesi) amaçlanmıştır. Bu bağlamda, öncelikli olarak, üçü optimizasyon tabanlı (birisi lineer, 
diğerleri non-lineer) birisi de yapay sinir ağı tabanlı olmak üzere dört farklı hesap modeli oluşturulmuştur. Daha 
sonra, oluşturulan hesaplama modellerinin her biri için, gözlemlenen ve modellenen veriler arasındaki Ortalama 
Karesel Hata (OKH) minimize edilmeye çalışılmıştır. Optimizasyon tabanlı modellerde, en uygun koşulu ifade 
eden dâhili ağırlık katsayıları Diferansiyel Gelişim Algoritması kullanılarak belirlenmiştir. Son olarak da, dört 
farklı hesaplama modeli için elde edilen tüm istatistiksel sonuçlar (ortalama karesel hata, belirleme katsayısı) 
birbirleriyle karşılaştırılmıştır. Sonuç olarak, Türkiye’ deki demiryolu kazalarının toplam sayısının analizinde, 
karesel model ile diğer modellere kıyasla daha gerçekçi sonuçlar elde edilebileceği görülmüştür. 
 
Anahtar Kelimeler: demiryolu kazası, diferansiyel gelişim algoritması, yapay sinir ağları, doğrusal model, 
doğrusal olmayan modeller 
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1. Introduction 

Railway systems can be considered as one of the safest means of transportation and play a vital 
role in the development of a country [1]. While the railway system generally ensures safer 
travel, accidents can still occur due to train derailments, fires, or collisions, posing threats to 
transportation safety and resulting in loss of life [2, 3]. Kyriakidis et al. reported accident-
causing factors as infrastructure, environment, human operators, and management [4]. San Kim 
and Yoon evaluated the reasons for railway accidents in two dimensions as “system” and 
“human,” in which the latter constituted 68.4% of the total accidents, while “system” accounted 
for 27.7% [5]. However, Gibson et al. reported that human factors accounted for 80% of the 
major railway accidents in London [6]. Therefore, Ghofrani et al. focused on establishing cost-
effective risk management strategies that required understanding the root causes of railway 
accidents over historical data analysis, drawing insights, formulating accident prevention 
strategies, and ultimately ensuring the safety of railway operations. [7]. 

Numerous studies have concentrated on predicting railway accidents and identifying their 
causes. Traditional models, such as the Multinomial logit model, have often been employed to 
establish associations between exploratory variables and accident frequency. [8-10], ordered 
regression model [11], spatial regression model [12], linear regression model [12], negative 
binomial regression model [13]. Akalın explored the factors affecting the tram accident severity 
via Multinomial Logit Model (MNL) for the cities of Eskisehir (in Türkiye), Blackpool, 
London, Manchester, Nottingham and Sheffield (in England). The model results were almost 
the same for all cities; rail gauge width and dividedness of the roads were found to be significant 
parameters [10]. Iranitalab and Khattak investigated the factors affecting highway-rail grade 
crossing accidents; the location where the vehicular speeds high significantly impact the 
accident frequency [9]. However, Liu and Khattak stated that gate violation was the main reason 
for highway-rail grade crossing using the 10-year crash data for the USA [12]. Liu et al. 
proposed a linear regression model to predict freight train derailments in which the traffic 
volume and the weather conditions were found to be crucial parameters for the USA [13]. 

Recently, machine learning (ML) algorithms have been preferred for prediction purposes due 
to their significant strength over traditional ones, especially when the size of accident data is 
extensive. Hence ML algorithms can be used to determine the hidden relationship between the 
accident-causing factors and accident frequency [1, 9, 14-17]. Iranitalab and Khattak compared 
the strength of MNL, k-Nearest Neighbor (kNN), Support Vector Machine (SVM) and Random 
Forest (RF) for predicting railway accidents. The results indicated that RF produced more 
reliable estimation results than the others [15]. Bridgelall and Tolliver explored the factors 
associated with derailment accidents in the USA. Two years of crash data were used, including 
over 8000 records. Eleven ML techniques were utilized; the extreme gradient boosting method 
outperformed, producing 89% prediction accuracy. Excess speed and signalization parameters 
were found to be significant affecting the derailment accidents [18]. Similarly, Meng et al. used 
a historical dataset taken from Federal Railroad Administration (FRA) in USA. They 
investigated the prediction power of Artificial Neural Network (ANN), XGBoost, GBDT, 
Stacking and AdaBoost methods for predicting railway accidents [1].  
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In contrast to Bridgelall and Tolliver, the authors identified the significant factors specific to 
each accident type, and they found that the AdaBoost-Bagging method yielded lower prediction 
errors across all cases. Li et al., on the other hand, employed SVM for crash severity analysis 
and examined the superior performance of SVM in comparison to the ordered probit model. 
Data regarding crashes were gathered from 326 locations in the state of Florida, USA. The 
results of the sensitivity analysis revealed that SVM exhibited lower prediction errors when 
compared to the ordered probit model. [19]. Wujie et al. used the Bayesian method to predict 
railway accidents using 8440 samples from 2017 to 2018 in China. The results showed that the 
seasons, location, and human factors were found to be significant parameters predicting 
accidents [17]. 

Different from the studies mentioned above, a comprehensive study was conducted by Evans 
[20], investigating fatal train accidents and trends in Europe during 1990-2019. The author 
considered collisions and derailment accidents and associated them with train kilometers (train-
km). Fatal train accident rates were evaluated per year and per train-km as well. Instead of more 
complicated ML models, the curve fitting process was employed to examine the trend between 
fatal train accidents and train-km. The descriptive evaluation results indicated that signal passed 
at danger and overspeeding were the most influential parameters affecting fatal railway 
accidents. 

Accurate accident prediction models provide transportation planners and engineers with ideas 
for determining new policies, plans and strategies about safety and taking the necessary 
measures. However, accurate prediction of accidents is considered an important step in 
assessing the magnitude of the problems and accelerating decision-making towards mitigation. 
Therefore, in this study, it is aimed to determine in advance the dimensions that the problems 
related to railway safety in Türkiye can reach. Existing literature demonstrates that railway 
accident prediction and the underlying causes have been extensively explored through 
traditional and machine learning-based methods, primarily focusing on specific accident types. 
However, only a limited number of studies have investigated the macro-level factors 
contributing to accidents. Total track length, train-km, and gross national product per capita are 
also very crucial parameters affecting the railway accidents which were not handled together in 
the existing literature. Based on these facts, the current work proposes a novel model to predict 
railway accidents by considering these parameters nationwide. As a case study, the accident 
data and other parameters were taken from Turkish Standard Institute for the years of 2004-
2021. For this aim, the Differential Evolution (DE) algorithm as a population-based method is 
applied to solve the corresponding optimization model. This method does not demand any 
gradient information of the objective function of optimization problem. This task makes this 
method proper alternative for solving complex engineering problems on which defining a 
continuous objective function is difficult or impractical. To verify and assess the acquired 
explicit formulations, an extra model applying Artificial Neural Network (ANN) is, also, 
developed. The results are announced and interpreted using comparative tables and diagrams. 
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The rest of this work is arranged as follows. In the next section, the DE method is described in 
detail. The proposed model and methodology is described in Section 3. The developed models 
and their specification are given and compared in Section 4. In Section 5, a brief conclusion is 
given for this work. 

2. Differential Evolution Algorithm 

Differential Evolution (DE), one of the population-based meta-heuristic optimization 
algorithms, was introduced by R. M. Storn and K. Price in 1995. DE can give effective results 
especially in optimization problems that have continuous variables [21]. Since DE is simple, 
fast, and easy, it has been used to solve many engineering problems for nearly 30 years [22]. 
The operation steps of DE algorithm are presented in Figure 1 [23]. 

 
Figure 1. The operation steps of DE algorithm 

As seen in Figure 1, firstly, initial population for the algorithm is created. Then, the initial 
population is improved by applying mutation, crossover, and selection operators, respectively, 
until the stopping criterion is met (throughout the iterations). Thus, the optimal or near optimal 
solution of the problem can be obtained. The procedure of DE is composed of eight parts. These 
parts can be explained as follows: 

Determination of the control parameters: In DE, population size (p) can be fixed or variable. 
Population size must be greater than or equal to 4. A value between 0 and 2 is recommended 
for the mutation-scaling factor (F) in the literature. Besides, crossover rate (CR) changes 
between 0.5 and 1, in generally [24]. The maximum number of generations (Gmax) is determined 
by the users and can be changed according to the difficulty of the problem. 

Creation of the initial population: In DE, the initial population consists of solution vectors (in 
the number of p). Each of these solution vectors is called “chromosome”. In addition, each 
solution vector consists of “genes”, that is, “decision variables”.  
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After the initial population is created, mutation, crossover and selection operators are applied 
Gmax times. The best solution in the last generation is the solution to the problem. 

Mutation: This operator improves the performance of the algorithm and strengthens the 
algorithm. With the mutation operator, random changes are made on the genes of the current 
chromosome. Thus, appropriate increases in current vectors can be achieved at the right times 
[25, 26]. For mutation, three different chromosomes are selected apart from the current 
chromosome. In mutation process, firstly, the selected second chromosome is taken out from 
the selected first chromosome. In the second step, obtained difference chromosome is 
multiplied by the mutation-scaling factor. In the third step, the scaled difference chromosome 
is summed up with the selected third chromosome. Finally, a new solution vector to be used for 
crossover is obtained. 

Crossover: The purpose of crossover is to provide the solution of the problem by creating new 
solution vectors. At this stage, a trial vector for the generation G+1 is created by using current 
solution vector for the generation G. For the trial chromosome, each gene is selected from a 
new solution vector that is formed by the mutation in the ratio of CR. In addition, these genes 
are taken from the current solution vector in the ratio (1-CR). 

Evaluation: In this part of the DE, the fitness value for the new solution vector is determined. 
At this stage, all variables belonging to the trial chromosome are placed in the relevant places 
in the optimization problem. Then, the objective function value is calculated. 

Selection: In the selection part, the fitness value of the trial chromosome is compared with the 
fitness value of the current chromosome. In case of the fitness of the current chromosome is 
better, current chromosome continues in the population for at least one more generation. 
Otherwise, trial chromosome is passed on to the next generation as the new member of the 
population [27]. 

Stopping the algorithm: In DE, stopping the algorithm can be achieved in two different ways. 
When the number of iterations (G) reaches the maximum number of iterations (Gmax), the 
algorithm can be terminated. Also, when the difference between the best and worst fitness value 
is quite low (10-5, 10-6 etc.), the algorithm can be terminated. 

Finalization of the problem: After the algorithm is terminated, the vector that has best fitness is 
called as final solution vector. The numerical values for the genes in the final solution vector 
indicate the optimum values of the variables for the current optimization problem.  
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3. Methodology 

As it is known, the total track length and the train-km are important parameters for evaluating 
railway operations. In addition, gross national product (GNP) per capita is one of the most 
important development indicators for countries [28]. GNP is the total value of all the goods and 
services produced by a country in a year including income from foreign investments, divided 
by the number of populations. As the gross national product per capita increases, the welfare 
level of countries also increases. Thus, higher quality and safer engineering investments 
(highways and railways, bridges, public transport facilities and etc.) can be made by decision-
makers/governments. This helps to reduce transportation-related accidents [29]. When the 
literature is investigated carefully, it is seen that the GNP per capita is used for accident 
modelling in many studies [30, 31]. According to this, it can be said that total track length, train-
km and gross national product per capita have negative or positive effects on railway accidents. 
Therefore, in this study, the total number of railway accidents in Türkiye has been tried to be 
modeled considering these parameters. Data containing the indicators for the years of 2004-
2021 are obtained from the Turkish Statistical Institute (TÜİK) website and presented in Table 
1 [32]. 

Table 1. Data used for modeling of the total number of railway accidents in Türkiye 

Years 
Total Track 
Length (km) 

(103) 

Train-km 
(106) 

Gross National 
Product Per 
Capita ($) 

(103) 

Total Number 
of Railway 
Accidents 

(102) 

2004 10.968 45.873 6.102 5.55 
2005 10.973 45.395 7.456 5.22 
2006 10.984 44.206 8.102 4.55 
2007 10.991 43.102 9.792 3.94 
2008 11.005 42.760 10.941 3.86 
2009 11.405 41.788 9.103 2.99 
2010 11.940 39.025 10.743 1.94 
2011 12.000 44.559 11.421 1.77 
2012 12.008 40.635 11.796 1.47 
2013 12.097 33.755 12.615 0.89 
2014 12.485 47.585 12.158 0.93 
2015 12.532 46.761 11.006 1.01 
2016 12.532 48.015 10.895 1.20 
2017 12.608 49.190 10.590 0.53 
2018 12.740 53.864 9.453 0.71 
2019 12.803 57.705 9.127 0.83 
2020 12.803 45.518 8.538 0.66 
2021 13.022 44.181 9.587 0.73 

* Train-km: Unit measure of transport service representing the movement of a train over one kilometer 
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Three different forms of mathematical models, of which one of these is linear and the others 
are non-linear (exponential and quadratic), were used to model the total number of accidents. 
These mathematical forms can be represented as follows: 

• Linear form: 
 

• Exponential form:  
 

• Quadratic form: 
 

Where ,  and  are the total number of railway accidents (modeled) in the forms of linear, 

exponential, and quadratic, respectively.  is the total annual track length (km), is the 

annual train-km and  is the annual gross national product per capita ($). , , , …,  
are the corresponding weighting coefficients. 

As seen in Table 1, the variables (total track length, train-km and gross national product per 
capita and the total number of railway accidents) have different orders of magnitudes. 
Therefore, the parameters are normalized in the modelling stage as shown in Equation 1-4 [33]. 
In these equations, min and max represent minimum and maximum values of variables from 
2004 to 2021, respectively. It should be noted that in Equation 4,  represents the observed 
total number of railway accidents. 

         (1) 

         (2) 

   (3) 

          (4) 

The accurate modelling of the total number of railway accidents can be achieved by determining 
of most appropriate (optimum) weighting coefficients. This means that the difference between 
the observed and modelled total number of railway accidents must be minimized. Therefore, an 
algorithm is applied to curve fitting problem to determine optimum weighting coefficients for 
the considered mathematical forms. 
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 In all mathematical forms, the algorithm firstly selects the weighting coefficients in randomly. 
Then, it is run to determine optimum weighting coefficients throughout the predetermined 
number of iterations. In this study, the DE algorithm was used for this purpose. 

Since the curve fitting problems can be defined as minimizing the errors between observed and 
modeled (predicted) values, Mean Squared Error (MSE) was used as the objective function in 
optimization process. MSE is the average squared difference between the observed and 
predicted values. It can be considered as a risk function (cost function) for optimization 
problems [33, 34]. Therefore, MSE can be minimized to determine optimum weighting 
coefficients. Objective function for three mathematical forms (linear, exponential, and 
quadratic) is given in Equation 5. 

 

          (5) 

After minimizing the MSE, obtained results should be evaluated statistically. One of the most 
used measures for a statistical evaluation is the coefficient of determination ( ) value. 
provides a measure of how well observed results are represented by the model, taking into 
account the proportion of total variation of results explained by the model [35]. This value 
normally ranges from 0 to 1. As it gets closer to 1, the reliability of the model increases. of 
1 indicates that the results obtained with the model are exactly the same as the observed results. 
In short, if  equals to 1, it can be said that the model data fits perfectly with the observation 
data. In statistics, can be seen as more informative than Mean Square Error (MSE), Root 
Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute 
Error (MAE). Therefore, values for the mathematical forms considered in this study are 
calculated as shown in Equation 6-8. 

          (6) 

     (7) 

     (8) 

In Equation 6-8, n is the number of total data.  represents the observed value for observation 

i.  shows the value ( ,  and ) obtained with the model for observation i.  is the mean 

of observed data. While 	indicates the sum of squared estimate of errors,  expresses 
the total sum of squares. 
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4. Analyzes and Results 

In this section, firstly, three distinct explicit mathematical model based on the direct 
optimization approach is given. Then, an alternative ANN-based black-box model is addressed, 
and results are compared. 

4.1. Explicated Mathematical Model 

In this part of the study, the total number of railway accidents in Türkiye has been tried to be 
modeled by considering three types of mathematical forms. For this purpose, in the first step, 
three different scripts for all mathematical forms were written in MATLAB. In these scripts, 
MSE for observed and model data was minimized using the Differential Evolution Algorithm. 
Control parameters of the algorithm were selected considering the previous studies in the 
literature and were presented in Table 2 [22, 36, 37]. 

Table 2. Selected values for the control parameters of the DE 
Control  

Parameters 
 Selected  

Value 
Population size (p) 50 
Mutation-scaling Factor (F) 0.8 
Crossover rate (CR) 0.8 
Maximum number of generations (Gmax) 10000 

In the second step, each script was run ten times. The corresponding weighting coefficients, 
MSE and  values were obtained for each run. In the third step, the best, worst and mean 
values of MSE and the best and worst values of  were determined for the mathematical forms 
discussed. The obtained results were summarized in Table 3. 

Table 3. MSE and  values for all mathematical forms 

 MSE  
Best Worst Mean Best Worst 

Linear Form 0.0029 0.0029 0.0029 0.9774 0.9774 
Exponential Form 0.0015 0.0015 0.0015 0.9891 0.9891 
Quadratic Form 9.5558E-04 0.0014 0.0012 0.9929 0.9892 

As seen in Table 3, the best and worst MSE values for the linear form were obtained as 0.0029. 
The best and worst  value was also determined as 0.9774. For the exponential form, the 
MSE value decreased by almost half, and  values for both the best and the worst run was 
determined as 0.9891. For the quadratic form, the best and the worst values of MSE was 
obtained as approximately 0.0009556 and 0.0014, respectively. Since the quadratic form has 
many weighting coefficients (ten weighting coefficients), different possible solutions were 
obtained for each run. The differences between best and worst MSEs resulted from this 
situation. Similarly, the best and the worst values of  for quadratic form were obtained as 
0.9929 and 0.9892, respectively. When the Table 3 were examined in detail, it can be said that 
quadratic form gives better results (lowest MSE and highest ) than the other (linear and 

2R
2R

2R
R2

2R
2R

2R

2R
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exponential) forms. In the next step, weighting coefficients that provides minimum MSE and 
maximum of  for all mathematical forms were determined. The corresponding weighting 
coefficients that give the best results were shown in Table 4. 

Table 4. The corresponding weighting coefficients that provide best models for all 
mathematical forms 

Linear  
Form 

Exponential  
Form 

Quadratic  
Form 

𝑤! = -0.79794 
𝑤" =	0.06773 
𝑤# = -0.37379 
𝑤$ =	0.91172 

𝑤! = 0.92032 
𝑤" = -0.80241 
𝑤# = 0.59827 
𝑤$ = 0.08690 

𝑤% = 2.37429E-07 
𝑤& = -0.28772 
𝑤' = 0.50852 

𝑤! = -0.09949 
𝑤" = 0.11767 
𝑤# = -0.65294 
𝑤$ = -2.29909 
𝑤% = -0.10646 
𝑤& = 0.88518 
𝑤' = 0.37296 
𝑤( = 1.02775 
𝑤) = 0.09317 
𝑤!* = 0.66184 

After the best corresponding weighting coefficients were determined, modeled total railway 
accident numbers were calculated by using normalized total railway accident numbers of data 
from 2004 to 2021. Comparison of observed and model data (the total number of railway 
accidents) for all considered mathematical forms is presented graphically in Figure 2. 

  

 
Figure 2. Comparison of observed and modeled data for considered mathematical forms 
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As can be seen in Figure 2, the differences between observed and modeled data for the linear 
form are quite large. For the exponential form, the differences are noticeably reduced compared 
to the linear form. Lowest differences between the observed and modeled data are seen in the 
quadratic form. This confirms the obtained results presented in Table 3. In the next step, it is 
aimed to compare the power of all mathematical forms. For this purpose, observed and modeled 
data are compared (total number of railway accidents) considering the 1:1 line. In a powerful 
model, the points representing observed and modeled values must be above the 1:1 line. This 
implies that  is equal to 1. Figure 3 shows the scatterplot of modelled versus observed values 
for linear, exponential, and quadratic forms. 

 

  

 
Figure 3. The scatterplot of modelled versus observed values for considered  

mathematical forms 

Figure 3 illustrates that the distribution of blue points for the quadratic form appears more 
uniform compared to the linear and exponential forms. In the quadratic form, the majority of 
blue points are concentrated near the red (1:1) line. This observation highlights the effectiveness 
and strength of the quadratic form. 
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4.2. The Model Based on the Artificial Neural Network 

To evaluate the quality of the models generated in the previous section (e.g., the linear, 
quadratic, and exponential formulations), an additional model utilizing Artificial Neural 
Networks (ANN) is developed in this section for comparative analysis. Artificial Neural 
Networks (ANNs) are computational procedures designed to emulate the capabilities of the 
human brain, including the ability to learn, derive new information, and create or discover new 
knowledge without human intervention. An ANN is trained using a dataset to learn patterns and 
relationships between the input and output variables. During training, the weights and biases of 
the neurons are adjusted to minimize the error between the predicted and actual outputs. Once 
trained, the ANN can be used to make predictions on new data [38]. Artificial neural networks 
emerged because of mathematical modelling of the human brain learning process. It mimics the 
structure of biological neural networks in the brain and their ability to learn, remember and 
generalize [39]. In all ANN-based models, a mathematical structure is considered, which of 
course can be displayed graphically and has a series of parameters and adjustment screws. This 
general structure is adjusted and optimized by a training algorithm so that it can show proper 
behavior. 

One of the privileged neural systems is the Multi-Layer Perceptron (MLP) model, which 
simulates the transmission function of the human brain. In this type of neural network, the 
behavior of the human brain and signal propagation have been considered, and hence, they are 
called feedforward networks. Based on this information, In the current section, an alternative 
implicit model based on the Artificial Neural Network (ANN) approach is developed. The 
inputs (Total Track Length, Train-km, Gross National Product Per Capita) and output (Total 
Number of Railway Accidents) of this model are the same as those used in the previous section. 
As depicted in Figure 4, the ANN-based model comprises a single hidden layer consisting of 
ten perceptrons. After conducting several tests on different configurations of the ANN model, 
the presented architecture was selected as it provides the minimum level of complexity (i.e., the 
minimum number of layers) required for effective performance. 

 
Figure 4. Architecture of ANN-based model 

In the created ANN model, while 70% of the data was used for training, 15% of the data was 
used for validation. The remaining data (15%) was also applied for testing. The correlation 
coefficients (R) for the training, validation, testing, and entire model can be found in Figure 5. 
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Figure 5. The correlation coefficient (R) for training, validation, test, and entire model 

Table 5. The results for ANN-based approximation model and observed values 

Years 
Total Track 
Length (km) 

(103) 

Train-
km 

(106) 

Gross National 
Product Per 
Capita ($) 

(103) 

Total Number of 
Railway Accidents 

(102) 
Observed  

values 
Model  
values 

2004 10.968 45.873 6.102 5.55 5.72 
2005 10.973 45.395 7.456 5.22 5.22 
2006 10.984 44.206 8.102 4.55 4.55 
2007 10.991 43.102 9.792 3.94 4.09 
2008 11.005 42.760 10.941 3.86 3.86 
2009 11.405 41.788 9.103 2.99 2.99 
2010 11.940 39.025 10.743 1.94 1.94 
2011 12.000 44.559 11.421 1.77 2.15 
2012 12.008 40.635 11.796 1.47 1.47 
2013 12.097 33.755 12.615 0.89 0.89 
2014 12.485 47.585 12.158 0.93 0.93 
2015 12.532 46.761 11.006 1.01 1.36 
2016 12.532 48.015 10.895 1.20 1.20 
2017 12.608 49.190 10.590 0.53 0.83 
2018 12.740 53.864 9.453 0.71 0.71 
2019 12.803 57.705 9.127 0.83 0.83 
2020 12.803 45.518 8.538 0.66 1.19 
2021 13.022 44.181 9.587 0.73 0.73 

* Train-km: Unit measure of transport service representing the movement of a train over one kilometer 
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Based on the given results, R value is acquired as 0.9961 for the model, it shows the proper 
performance of the attained model. To compare the performance of the model more precisely, 
the observed and attained approximate values are given in Table 5. It should be noted that the 
root-mean-square (RMS) of the total system is achieved as RMS=0.83. In the next section, the 
attained results from all formulation are statistically compared. 

4.3. Comparing to Results 

In this section, firstly, the normalized values for the models are remapped to their original state. 
Then, as shown in Table 6, MSE, RMSE and  values for each model are calculated and 
compared. 

Table 6. Real MSE, RMSE and  values for each model 

 Linear  
Model 

Exponential  
Model 

Quadratic  
Model 

ANN based 
Model 

MSE 725.72 371.00 242.89 382.89 
RMSE 26.94 19.26 15.58 19.57 
𝑅! 0.974 0.987 0.991 0.986 

According to Table 8, the linear model stands in the last place among all other. The Exponential 
and ANN-based models, providing very close outcomes, stand in the next places. The Quadratic 
model with the lowest MSE and RMSE (242.89 and 15.58) and highest  (0.991) values is 
ranked in the first place among all others. In addition, it should be noted that the number of 
iterations for linear, exponential, and quadratic models is 4250, 5450 and 5950, respectively. 
Based on the addressed results, the Quadratic model, as an explicit formulation, can be used for 
assessing/evaluating the total number of accidents in the railway system in Türkiye. 

5. Conclusions 

In the current study, applying the data presented by the Turkish Statistical Institution, four 
different models were developed to model the total number of accidents in the railway systems 
in Türkiye. In the modelling, track length, train-km and Gross National Product are considered 
as independent variables. While three of the developed models include linear and non-linear 
mathematical forms, the other is based on Artificial Neural Network. For this reason, the 
analyses made within the scope of this study were carried out in two stages. 

In the initial stage, three distinct mathematical models were developed, one of which is linear 
while the other two are non-linear (exponential and quadratic). These models were developed 
to capture the relationship between dependent and independent variables. Due to the varying 
orders of magnitude among the variables used in the modeling process, a normalization process 
was employed to bring all variables within a consistent search domain. Afterwards, the most 
appropriate weighting coefficients for each model were determined by minimizing the mean 
square errors between the observed data and the model data. In the optimization process, a 
metaheuristic method, so-called Differential Evolution (DE), is employed. After spotting the 
most suitable models, the outputs are remapped to their original state. Then, MSE and  

2R

2R

2R

2R
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values for each mathematical form were calculated. MSE values for the linear, exponential, and 
quadratic forms were obtained as 725.72, 371.00 and 242.89, respectively. Besides  values 
for linear, exponential and quadratic forms were obtained as 0.974, 0.987 and 0.991, 
respectively. According to obtained statistical results, it can be said that the quadratic form is 
the most powerful model within these three models. 

In the second stage, a multilayer ANN-based model was created, and the same independent 
variables were used for modelling. After denormalization of the outputs, the MSE and  
values were calculated. For the ANN-based model, these values were obtained as 382.89 and 
0.986, respectively. 

It should be noted that, in this study, since there are 18 data from 2004 to 2021 on TÜİK website, 
only these data were used in the development of the models. The more realistic results can be 
achieved by increasing the amount of data. In the light of obtained numerical results, it is seen 
that ANN-based model gives almost similar results with exponential model. Besides, compared 
to the other models (linear, exponential, and ANN-based models), it is concluded that quadratic 
model can provide the most realistic outcomes. The limitations of the current works can be 
outlined as follows.  

The study focuses on modeling the number of railway accidents in Türkiye using three 
independent variables: total track length, train-km, and GNP per capita. The authors suggest 
that incorporating more independent variables can lead to more realistic outcomes. The study 
utilizes 18 data points from 2004 to 2021, acknowledging the need for additional data to 
enhance realism. However, reliable values for variables prior to 2004 are unavailable. The study 
includes a linear model and two non-linear models, highlighting the potential for different non-
linear models to improve realism. Employing powerful computational approaches like deep 
learning and reinforcement learning, along with increased data, can help achieve highly realistic 
results. In the future, it is planned to modelling of total number of railway accidents in Türkiye, 
considering above-mentioned situations. 
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