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 The Erzincan (Cimin) grape, which is an endemic product, plays a significant role in the 
economy of both the region it is cultivated in and the overall country. Therefore, it is crucial to 
closely monitor and promote this product. The objective of this study was to analyze the 
spatial distribution of vineyards by utilizing advanced machine learning and deep learning 
algorithms to classify high-resolution satellite images. A deep learning model based on a 3D 
Convolutional Neural Network (CNN) was developed for vineyard classification. The proposed 
model was compared with traditional machine learning algorithms, specifically Support 
Vector Machine (SVM), Random Forest (RF), and Rotation Forest (ROTF). The accuracy of the 
classifications was assessed through error matrices, kappa analysis, and McNemar tests. The 
best overall classification accuracies and kappa values were achieved by the 3D CNN and RF 
methods, with scores of 86.47% (0.8308) and 70.53% (0.6279) respectively. Notably, when 
Gabor texture features were incorporated, the accuracy of the RF method increased to 75.94% 
(0.6364). Nevertheless, the 3D CNN classifier outperformed all others, yielding the highest 
classification accuracy with an 11% advantage (86.47%). The statistical analysis using 
McNemar's test confirmed that the χ2 values for all classification outcomes exceeded 3.84 at 
the 95% confidence interval, indicating a significant enhancement in classification accuracy 
provided by the 3D CNN classifier. Additionally, the 3D CNN method demonstrated successful 
classification performance, as evidenced by the minimum-maximum F1-score (0.79-0.97), 
specificity (0.95-0.99), and accuracy (0.91-0.99) values. 
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1. Introduction  
 

Most grape varieties are known to be derived from 
vitis vinifera, the ancient grape often mentioned in the 
Bible. It was originated in the southern parts of the 
region between the Caspian and the Black Sea and has 
been carried all over the world by civilized people [1]. 
Today this perennial species is cultivated worldwide, 
including subtropical regions, since it is tolerant of most 
climates and soil types, and easy to grow. Grapes can be 
cultivated in the temperate climate zone, generally 
between 30° and 50° latitudes in both hemispheres. 
Depending on the latitude, it can be grown up to 1600-

1800 m altitudes [2,3]. According to the Food and 
Agriculture Organization of the United Nations (FAO), the 
grape was cultivated on 7.7 million hectares of land 
worldwide in 2019 and Spain had a 22.7-percent share 
followed by France, China, Italy, and Türkiye. In 2019, the 
global export of fresh grapes reached a total of 10 million 
tons, with Türkiye accounting for 1.7 million tons. South 
Africa and Spain ranked second and third in fresh grape 
exports, with 1.3 million tons and 1.2 million tons 
respectively, following Türkiye. In the same year, global 
raisin export was 3 million tons and 73 percent (2,1 
million tons) was exported by Türkiye alone, followed by 
the USA and Iran. Fresh grape yield increased by 2.7 
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percent in 2020 compared to the previous year, reaching 
4.2 million tons [4]. According to the statistics of the 
Erzincan Directorate of Provincial Agriculture and 
Forestry [5], 5402 tons of fresh grapes were produced in 
2021 from the 949.5-hectare vineyard in the province of 
Erzincan, located in north-eastern Anatolia.  

   In Erzincan, the "Cimin grape" dominates the grape 
varieties grown, with its cultivation mainly concentrated 
in the Üzümlü district, named after its reputation for 
abundant grape production.  After the application of 
Üzümlü Municipality, the Erzincan Cimin grape was 
patented by the Turkish Patent Institute in 2001. Since 
the Cimin grape is the most important endemic 
agricultural product for Erzincan's economy, 
conservation, monitoring, and dissemination of this 
variety is increasingly becoming vital for the region. This 
can be accomplished with modern agricultural practices 
powered by remote sensing and geographic information 
systems, which have become increasingly popular in 
recent years. 

Due to increasing radiometric, spatial, spectral, and 
temporal resolutions, remote sensing data is used by 
different disciplines in many different applications 
including land cover/use mapping, urban and 
environmental change analysis, object extraction, crop 
monitoring, disease detection, yield estimation, etc. 
Furthermore, extracting information classes and 
determining their spatial distributions in a scene using 
different multispectral image classification algorithms 
provide valuable information for various applications 
needing geo-spatial data. 

Multispectral image classification has been used in 
monitoring tropical forests, which are an important and 
rich source in terms of biological diversity [6], in 
determining the spatial distribution of vineyards [7-9], in 
monitoring coastal changes [10], in monitoring urban 
development [11], in agriculture [12], designing 
rangeland information systems [13],  in object extraction 
[14], in land cover classification [15-20], burning area 
mapping [21], and in classification of different product 
types [22]. 

The process of labelling pixels according to their 
intensity values to transform them into meaningful land 
cover data is also called image classification or 
information extraction [23].  Image classification is the 
process of categorizing pixels in an image using logical 
decision rules in the spatial domain or statistical decision 
rules in the spectral domain. The spectral values of the 
remotely sensed data are used to classify images in the 
spectral domain. The geometric size, form, texture, and 
pattern of pixels or objects are at the foreground of 
spatial domain decision criteria [23]. Various machine 
learning-based methods such as random forest, artificial 
neural networks, and support vector machines have been 
used in recent years to obtain reliable and most accurate 
information from satellite images efficiently by image 
classification. There are many studies in which the RF 
classifier stands out in terms of classification accuracy 
when it comes to the use of machine learning methods in 
agriculture [24-29]. In the realm of precision agriculture 
applications, deep learning algorithms, which are a 
subset of machine learning techniques, have gained 

significant popularity in recent years due to their ability 
to provide more precise and reliable detection of 
agricultural products on images [30]. Grinblat et al. were 
able to detect plant species with high accuracy by using 
deep learning algorithms to identify plants from their 
vascular structures [31]. Deep learning algorithms were 
used by Ferentinos et al. to distinguish diseased plants 
[32]. Among 25 different plant species, they detected 
diseased ones with 99.53 percent accuracy. Chlingaryan 
et al. identified plant species by classifying images with 
99.58 percent accuracy using deep learning algorithms 
[33], and thus made a crop yield estimation [34]. Zhao et 
al. used deep learning models to produce crop type 
mapping with sufficient accuracy [35]. Zhong et al. also 
used RF, SVM, and 1-D Convolutional Neural Network 
Model (Conv1D) to classify agricultural products and 
highlighted that the Conv1D yielded satisfactory results 
[36]. 

The objective of this study was to identify the 
cultivation areas of Cimin, an indigenous fruit cultivated 
in the Üzümlü region, utilizing a deep learning method 
based on CNN and commonly used machine learning 
algorithms. The findings demonstrate that by leveraging 
a pre-trained CNN, vineyards throughout the region can 
be automatically detected without requiring additional 
supervised learning. This ability stands as a significant 
advantage of deep learning architectures over traditional 
machine learning methods. 
 
2. Study area and data set 
 

In the Üzümlü Town, where the Erzincan grape is 
cultivated, a pilot study area measuring 25 hectares was 
designated (Figure 1). This study area is situated at 
coordinates 39° 41´ 00" East and 39° 43´ 00" N, within 
the Upper Euphrates section of Eastern Anatolia, in the 
province of Erzincan. Around 80% of the administrative 
boundary of the Üzümlü district is located in the Esence 
Mountains region to the north of the Erzincan basin, 
while the remaining 20% lies within the Erzincan plain. 
With an area of 410 km2, Üzümlü is the second smallest 
district of Erzincan [37]. 

For this study, the satellite image used was the 
Worldview-2 (WV-2) image, which covered a significant 
portion of Cimin vineyards in the Üzümlü region. The 
WV-2 satellite image consists of 8 multispectral (MS) 
bands with a spatial resolution of 2 meters, along with a 
panchromatic band offering a higher spatial resolution of 
0.5 meters. The 8 MS bands encompass the following 
spectral ranges: Coastal, Blue, Green, Yellow, Red, Red 
Edge, Near-Infrared 1, and Near-Infrared 2. It is worth 
noting that the satellite image had undergone prior 
atmospheric, radiometric, and geometric corrections, 
enabling its direct utilization for classification purposes 
without requiring any pre-processing steps. 
 
3. Method 
 

This study had two purposes: (a) to determine the 
locations and distributions of vineyards accurately and 
robustly by using widely used machine learning 
algorithms such as SVM, RF, ROTF and CNN-based deep 
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learning technique (b) to investigate the performance of 
CNN-based deep learning technique by comparing it 
aforementioned machine learning algorithms. To better 
distinguish the vineyards by taking advantage of the sub-
meter spatial resolution of PAN image, the WV-2 MS and 
WV-2 PAN bands were fused with the Hyper Spherical 
Color Space pan-sharpening method (HCS). The 
literature contains numerous studies showcasing the 
efficacy of Padwick's HCS image fusion method [38] in 
maintaining the spectral and spatial characteristics of 
both multispectral and panchromatic input images 
during the fusion process, particularly when applied to 
Worldview-2 images [38-41]. 
 

 
Figure 1. Study area. 

 
The pan-sharpened image (1000x1000 pixels) was 

categorized into five land cover classes, namely vineyard, 
forest, soil, road, and shadow. ENVI software was utilized 
to select a total of 70505 pixels, employing a random 
feature selection approach in MATLAB, to generate the 
training and test data. Subsequently, the fused image was 
subjected to classification using 3D CNN, SVM, RF, and 
ROTF algorithms. To determine the optimal parameters 
for classification, a trial-and-error strategy was 
employed. The optimum parameters for this study were 
determined as m=3, N=350 for RF, K=3, L=3 for ROTF, 
and C=100 for SVM. The 3D CNN model employed in this 
study utilized both spectral features and texture features, 
as detailed in [42], to classify the image. Moreover, the 

Gabor filter was utilized to extract texture data, which 
was then integrated into the RF classifier as explained in 
[26].  Among the machine learning methods employed in 
the study, the RF classifier exhibited the highest 
classification accuracy. Consequently, a comparison was 
conducted to evaluate the performances of these two 
methods. To identify the optimal parameter values and 
filter sizes for texture extraction using the Gabor filter, a 
trial-and-error method was employed to determine the 
values that most accurately represented the vineyards. 
Subsequently, the image was classified using these 
identified parameter values (Figure 2). 
 
3.1. 3D Convolutional neural network model 

 

Deep learning, which is usually defined by neural 
networks with more than two hidden layers, has been 
named one of the top ten breakthrough technologies of 
2013 [43]. Deep learning model used in this study is 
created on the structure of CNN. Three-dimensional (3D) 
convolution is naturally suitable for spatial-temporal 
studies. Recently, some studies have been conducted on 
learning spatial-temporal features from video [44, 45], 
LIDAR point clouds [46], temporal images [47] and 
hyperspectral images [48].  In general, 3D CNN is not as 
widely used as 2D CNN because the temporal dimension 
is typically ignored in machine learning and computer 
vision applications. Remote sensing images, on the other 
hand, frequently provide dynamic or temporal 
information from which more information can be 
extracted. CNNs, which are widely used in image 
processing, are also useful for classifying satellite images 
[49]. 

High spatial resolution multispectral images with 
more than three spectral bands contain a lot of spectral 
information. To extract both spatial and spectral 
information from a multidimensional image, 3D 
convolution is preferred.  By utilizing 3D convolution, the 
interaction between various spectral bands can be 
effectively modeled, encompassing both spatial and 
spectral information. Unlike 2D convolution, which 
focuses solely on spatial details, 3D convolution takes 
into consideration both spatial and spectral aspects, as 
highlighted in reference [50]. The integration of spatial 
and spectral information is crucial for improving the 
accuracy of satellite image classification. In this 
particular study, 3D convolution layers were employed 
to capture the spectral relationships among the 8 bands 
present in the WV-2 image. Consequently, these 8 bands 
were utilized as input data for the 3DCNN model. 

 

𝑣𝑖𝑗
𝑥𝑦𝑧

= 𝑓(𝑏𝑖𝑗 + ∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝑝
𝑞𝑟𝑠

 𝑣(𝑖−1)𝑝

(𝑥+𝑞)(𝑦+𝑟)( 𝑧+𝑠)  
)

𝑅𝑖−1

𝑟=0

𝑄𝑖−1

𝑞=0

𝑆𝑖−1

𝑠=0

𝑃𝑖−1

𝑝=0

 (1) 

 
In Equation 1, 𝑣 represents the output of feature 

maps, 𝑆, 𝑄, 𝑅 defines spectral and spatial kernel 
dimensions where (𝑠, 𝑞, 𝑟) are kernel, and (𝑥, 𝑦, 𝑧) are 
feature map indices. While 𝑤 specifies the kernel 
parameters, 𝑖, 𝑗, 𝑝 represent the input layer, output layer, 
and feature map indices, respectively. 𝑃 is the number of 

feature maps. 𝑃𝑖 represents the feature maps in the 𝑖𝑡ℎ  
layer. While the bias term is denoted by 𝑏, 𝑓 represents 
the activation function of PReLU used in the model. 
Python programming language on Jupyter notebook and 
TensorFlow and Keras library in the background were 
used to create the model and classify the image with this 
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model. Jupyter Notebooks is an open-source and 
browser-based tool that combines interpreted 
languages, libraries, and visualization tools [51]. A 
Jupyter Notebook can run locally or in the cloud. Typical 
outputs include text, tables, charts, and graphics. The 
computer on which the study was conducted has 24 GB 
of RAM, NDVI GTX 1650 GPU, and an i7 9750h processor. 
For this study, a model was created using four 3D 
convolution layers. Each layer had a filter size of 3x3. The 
first, second, third, and fourth layers were configured 
with 128, 64, 32, and 16 filters, respectively. Two fully 
connected layers were used after the convolution layers. 
The first layer is a dense layer that performs a rough 
classification of the extracted features from the 
convolutional layer. The second layer is the model's final 
layer, and it is used to extract class scores with a Softmax 

classifier. Softmax is a technique employed in multi-class 
classification tasks. It computes probability values for 
each class in order to classify a given input. The 
probability value associated with each class falls within 
the range of 0 to 1, and the sum of all probability values 
across all classes is equal to 1. Consequently, the Softmax 
classifier determines the probability values for each class 
in multi-class classification, ultimately selecting the class 
with the highest probability as the predicted class. The 
activation function was the Parametric Rectified Linear 
Unit (PReLU), the optimization method was Adam, and 
the subduction function was categorical cross-entropy. 
The deep learning model created has 3118405 
parameters in total. Figure 3 depicts the 3D CNN model 
that was used. 

 

 
Figure 2. a) Fused image and classified images obtained by classification with b) 3D CNN, c) RF, d) ROTF, e) SVM, 

 f) RF_Gabor. 
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Figure 3. Architecture of 3D CNN model. 

 
3.2. Random Forest 
 

Random Forest is a classifier that can classify multiple 
variables and classes without the use of complex models 
or parameters [52]. The RF classifier outperforms many 
tree-based algorithms [53-56]. RF aims to develop a tree 
by dividing each node according to the GINI index, 
basically. Randomly selected variables are used instead 
of using all variables at each node [26]. Decision trees 
(DTs) are trained in RF using random bootstrap samples 
with the replacement of an original dataset [52]. The user 
defines two parameters: 𝑚 and 𝑁. 𝑚 (The number of 
variables) is used to determine the best split at each 
node. 𝑁 is the number of DTs to be developed.  Bootstrap 
samples are generated by randomly selecting two-thirds 
of the training Dataset. Trees are then built from these 
boot samples without employing pruning. The remaining 
one-third of the training dataset is reserved for use as the 
test dataset. The RF algorithm builds a large number of 
trees to determine the class of each pixel. The labeling of 
a pixel can vary across different trees, indicating that the 
total number of trees determines the frequency of the 
pixel's class assignment. The final class of the pixel is 
determined based on the class that has the highest 
occurrence among the candidate pixel's labels. 
 
3.3. Rotation Forest 
 

Rodriguez et al. [57] proposed the Rotation Forest 
algorithm as an ensemble method for encouraging both 
individual accuracy and classifier member [58]. The 
ROTF is a linear transformation method that creates a 
new performing space within another space [59]. 
Theoretically, the ROTF algorithm and the RF algorithm 
share similarities. Both methods aim to grow more than 
one tree in classification. However, ROTF creates the 
dataset in the Principle Component Analysis (PCA) 
feature space. It generates a large number of DTs from 
training datasets defined within a different feature space. 
The training dataset is divided into subsets, and feature 
extraction is performed using the feature space chosen 
from each subset. The ROTF algorithm has two user-
specified parameters, 𝐾 and 𝐿, which are required to 
determine the dataset used to grow each DT. This 
approach enables classification by training all classifiers 
in parallel [59]. 
 
3.4. Support Vector Machine 
 

The Support Vector Machine classifier can distinguish 
linearly and nonlinearly separable data by finding the 

best hyperplane for separating the classes [60].  If classes 
are linearly separable, it finds the planes separating them 
and uses these planes to construct a linear discriminant 
function. If classes cannot be separated linearly, the data 
is transformed to a higher-dimensional space in which 
the classes can be linearly separated by using a positive 
𝐶 parameter and a kernel function that minimizes 
classification error while maximizing the distance 
between planes [51-64]. The Radial basis function is the 
most commonly used kernel function because it 
performs well [65, 66]. The radial basis function is widely 
recognized for its exceptional performance in 
classification accuracy, making it the preferred choice as 
the most commonly used kernel function [65, 66]. 
 
3.5. Accuracy assessment 
 

Congalton and Green [67] proposed the multinominal 
distribution to calculate the minimum number of 
samples needed to statistically calculate the classification 
accuracy. The minimum number of samples is calculated 
with the Equation 2 and 3 using the multinomial 
distribution approach; 

 

𝑛 =
𝐵П𝑖(1 − П𝑖)

𝑏𝑖
2  (2) 

  

𝐵 = (
𝛼

𝑘
) × 100𝑡ℎ (3) 

 
where 𝑛 represents the number of reference pixels, 𝛼 

represents the confidence interval, 𝑘 represents the 
number of classes, П𝑖 is the ratio of the area of the 𝑖th 
class to the total area, and 𝑏𝑖 represents the required 
accuracy.  If no prior information about П𝑖  is available, 
the sample number is calculated using Equation 4 [68]. 
 

𝑛 =
𝐵

4𝑏2
 (4) 

 
In the study, the analysis of classification accuracy 

required determining the minimum number of reference 
points. For this purpose, a 95% confidence interval was 
utilized, with the number of classes set at 5.  Therefore, 
in the calculation of the 𝐵 value, 𝛼/𝑘 = 0.05/5 = 0.01 is 
used to find the corresponding value at 1 degree of 
freedom in the 𝜒2 distribution table as 𝜒2

(1,0.01)=6.635.  

Accordingly, the minimum number of reference points 
was calculated as 664 as follows, yet 665 was used 
instead in the accuracy analysis (Equation 5). 
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𝑛 =
𝐵

4𝑏2
=

6.635

4(0.052)
= 664 (5) 

 
The appropriate number of reference points required 

to create error matrices that evaluate the accuracy of 
each classification outcome was determined. The 
stratified method was utilized to distribute these points 
evenly across the image. Kappa (𝜅) analysis is another 
approach that performs accuracy analysis by 
determining whether one error matrix is statistically 
significantly different from another. The κ value, 
calculated within the range of 0 to 1, provides a statistical 
assessment of the agreement among the utilized 
categories or classes. This value serves as a measure of fit 
and classification accuracy, with higher values indicating 
better alignment and accuracy (approaching 1) and 
lower values suggesting poorer fit and lower 
classification accuracy (approaching 0). Kappa, as 
pointed out by Pontius and Millones [69], has been 
criticized for attempting to compare accuracy with a 
baseline of randomness. As an alternative, they proposed 
the utilization of allocation and quantity disagreements, 
which leverage the distinctions between a reference map 
and a comparison map. The quantity disagreement 
focuses on disparities in the category proportions 
between the reference and comparison maps, while the 
allocation disagreement addresses differences in the 
spatial distribution of categories between the reference 
and comparison maps [70]. In light of this suggestion, 
allocation and quantification values were calculated in 
addition to the kappa coefficient for each image's post-
classification accuracy assessment. Subsequently, the 
McNemar test was employed to assess the presence of 
statistically significant differences. The classification 
results obtained from all algorithms utilized in the study 
were compared pairwise using the McNemar test. The 
nonparametric McNemar test can be computed using the 
Equation 6 [71]. 
 

         𝜒2 =
(|𝑓12 − 𝑓21| − 1)2

𝑓12 + 𝑓21
 (6) 

 
Where 𝑓12  denotes the number of pixels incorrectly 

classified by the second method but correctly classified 
by the first one, and 𝑓21 denotes the number of pixels 

incorrectly classified by the first method but correctly 
classified by the second one. 

Furthermore, the performance evaluation of both 
3DCNN and the other methods employed in this study 
was conducted using metrics in Equation 7-11 including 
F1-Score, specificity, and accuracy. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (7) 

  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (9) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (11) 

 
Where TP and TN represent true positive and true 

negative observations in the confusion matrix, 
respectively. FP and FN are false positive and false 
negative observations [72]. For each class in the 
confusion matrix of each method, the metrics were 
computed. 

 
 

4. Results and Discussion 
 

By analyzing the error matrices, the classification 
accuracies of the classified images were examined for the 
SVM, RF, ROTF algorithms, and the 3D CNN model. The 
overall classification accuracies obtained from the error 
matrices were 86.47%, 70.53%, 66.92%, and 62.41% for 
the 3D CNN, RF, ROTF, and SVM, respectively (Table 1). 
In addition, the Mean IoU value for 3D-CNN, which 
includes the average of all classes, was found to be 
84.93%. These results indicate that the 3D CNN method 
exhibited superior performance compared to RF by a 
margin of 16%, ROTF by 20%, and SVM by 24%. This 
analysis is further supported by the Kappa coefficients 
presented in Table 1. 

 

 
Table 1. Overall classification accuracies and kappa analyses.  

3D CNN RF ROTF SVM 
Overall Accuracy 86.47 70.53 66.92 62.41 

Kallocation 87.35 86.64 81.81 78.86 
Kquantity 92.35 57.90 56.58 50.18 

Khisto 95.11 72.47 71.09 66.54 
Kcongalton 83.08 62.79 58.16 52.47 

Kcohen's 85.91 69.07 65.67 60.10 

 
 

Upon examining the κ allocation values, it was evident 
that 3D CNN showcased superiority over RF by 1%, ROTF 
by 6%, and SVM by 8%. In terms of κ amount values, 3D 
CNN surpassed RF by 34%, ROTF by 36%, and SVM by 
42%. Moreover, the κ histo values indicated that 3D CNN 
demonstrated a 24% improvement compared to RF, a 
24% improvement compared to ROTF, and a 29% 

improvement compared to SVM. The κ congalton and κ 
cohen values presented in Table 1 further confirm the 
superiority of 3D CNN over other methods. 

In order to enhance the accuracy of RF and assess its 
performance relative to 3D CNN, the texture features 
extracted using the Gabor filter were incorporated. The 
integration of RF texture features resulted in a 
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classification accuracy of 75.94%, representing a 5% 
improvement compared to the original RF performance 
(Table 2).  

After comparing the Kappa values, it becomes clear 
that RF_Gabor exhibits a 3% improvement over RF. 

Moreover, Table 3 presents the computed Quantity and 
Allocation disagreement/agreement values, which were 
proposed by Pontius and Millones [69] for accuracy 
assessment. 
 

 
Table 2. Contribution of texture to classification accuracy for RF. 

  Vineyard Forest Soil Road Shadow ∑Row PA (%) UA(%) 
Vineyard 136 20 5 15 1 177 92.52% 76.84% 

Forest 10 119 3 14 86 232 82.07% 51.29% 
Soil 1 6 120 24 8 159 91.60% 75.47% 

Road 0 0 3 59 0 62 52.68% 95.16% 
Shadow 0 0 0 0 35 35 26.92% 100.00% 

∑Column 147 145 131 112 130 665     
Overall accuracy   70.53%       

Khisto  72.47 %       

 
Table 3. Contribution of texture to classification accuracy for RF_Gabor. 

  Vineyard Forest Soil Road Shadow ∑Row PA (%) UA(%) 
Vineyard 142 8 2 12 0 164 96.60% 86.59% 

Forest 4 135 4 19 88 250 93.10% 54.00% 
Soil 1 2 121 11 5 140 92.37% 86.43% 

Road 0 0 4 70 0 74 62.50% 94.59% 
Shadow 0 0 0 0 37 37 28.46% 100.00% 

∑Column 147 145 131 112 130 665     
Overall accuracy   75.94% 

      

Khisto  75.14%       

 
Table 4. The agreement and disagreement values. 

Agreement/Disagreement (%) 3D CNN RF_Gabor RF ROTF SVM 
Chance agreement  10 10 10 10 10 

Quantity agreement 10 11 11 11 11 
Allocation agreement 66 55 50 46 41 

Allocation disagreement 10 4 8 10 11 
Quantity disagreement 4 20 22 23 26 

 

The overall disagreement, sum of both allocation and 
quantity disagreements, is lowest for 3D CNN at 14%, 
followed by RF_Gabor at 24%, RF at 30%, ROTF at 33%, 
and SVM at 37%. This indicates that 3D CNN effectively 
reduces disagreement and enhances classification 

accuracy. Additionally, the incorporation of texture 
features decreases the disagreement of RF by 6%.  

Producer (PA) and User (UA) accuracies that can be 
obtained from error matrices are also examined (Figure 
4).  
 

 
Figure 4. Producer's (PA) and User's (UA) in the error matrices of the classified images obtained with 3DCNN, RF, 

ROTF, SVM, and RF_Gabor. 
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Upon comparing the PA (Producer's Accuracy) 
values, it is evident that RF, ROTF, SVM, and RF_Gabor 
achieved PA values of 11%, 12%, 3%, and 15% 
respectively. These results indicate that the other 
methods demonstrated more accurate classification of 
the vineyard class compared to 3D CNN. For soil class, 
RF_Gabor, RF and SVM performed 9%, 8% and 5% better 
than 3D CNN, respectively, yet 3D CNN performed 8% 
more successful classification than ROTF. Also, 3D CNN 
classified road and shadow classes better than other 
methods. According to UA values (Figure 4), 3D CNN 
outperforms RF_Gabor by 4%, RF by 13%, SVM by 18%, 
and ROTF by 22% for the vineyard class. When it comes 
to the forest class, 3D CNN surpassed RF_Gabor by 29%, 
RF by 31%, SVM by 36%, and ROTF by 35%. Regarding 
the soil class, 3D CNN outcompeted RF by 7%, SVM by 
23%, and ROTF by 2%, while RF_Gabor outperformed 3D 
CNN by 5%. Based on the UA results, 3D CNN especially 
discriminated vineyard, forest and soil classes better 
than RF, ROTF, and SVM, but was not succeeded as the 
other methods in road and shadow classes. The high 

similarity in spectral properties between the forest and 
vineyard classes has led to a significant amount of 
confusion between these classes. Similarly, the spectral 
properties of very dark pixels in earth roads, soil, and 
forest classes closely resemble those of the shadow class, 
resulting in confusion among these classes as well. 
However, the incorporation of texture information has 
contributed to improved identification and extraction of 
vineyards. 

In order to evaluate the significance of performance 
differences between 3D CNN and other classifiers using 
the McNemar test, χ2 values were computed for 
RF_Gabor, RF, ROTF, and SVM as 19.512, 44.100, 63.515, 
and 90.289, respectively (Table 5). 

The χ2 values exceeding the reference value of 3.84 
indicate that the 3D CNN classifier yields a significant 
improvement in accuracy at the 95% confidence interval. 
Lastly, Figure 5 presents the land-use map generated 
from the thematic classified image using the 3D CNN 
classifier, which demonstrates the highest classification 
accuracy. 

 
 

 
Figure 5. Land-use map was produced from the image classified with the 3D CNN classifier. 
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Table 5. McNemar test results for 3D CNN and other classifiers. 
 𝑓11 𝑓12 𝑓21 𝑓22 Total 𝜒2 

3D CNN-RF_Gabor 418 157 87 3 665 19.512 
3D CNN-RF 397 178 72 18 665 44.100 

3D CNN-RTF 379 196 66 24 665 63.515 
3D CNN-SVM 355 220 60 30 665 90.289 

𝑓11 is the number of correctly classified pixels in both cases. 𝑓22 represents the number of misclassified pixels in both 
cases. 𝑓12 represents number of correctly classified pixels with first classifier but misclassified pixels with second 
classifier. 𝑓21 is the number of misclassified pixels with second classifier but correctly classified pixels with first classifier 
 

It has been determined that the 3D CNN model, 
incorporating 3D convolution layers, outperforms RF, 
ROTF, and SVM, which are commonly utilized in vineyard 
detection in existing literature. An important aspect to 
note is that the developed 3D CNN model achieves high 
accuracy directly from the image data, eliminating the 
requirement for additional data. For instance, while 
texture features were added to the WV-2 image using 
Gabor to enhance the classification accuracy of the RF 
algorithm, the addition of supplementary textures 
proved to be less effective compared to the 3D CNN 
model, which can automatically extract textures from 
images. However, one drawback of the 3D CNN model, 
which achieves accurate vineyard detection in WV-2 
images without necessitating user intervention, is the 
significantly longer training time (20 hours) when 
compared to other machine learning models. 

In order to assess the classification performance of 
the 3DCNN method and other approaches, the metrics 
presented in Table 5 were analyzed for each method and 

class. Upon examining the results in Table 6, it is 
observed that the 3DCNN method demonstrates 
successful classification, supported by the minimum and 
maximum values of F1-score (0.79-0.97), specificity 
(0.95-0.99), and accuracy (0.91-0.99). The RF_Gabor 
method exhibits classification performance that closely 
resembles that of 3DCNN, as indicated by the F1-score 
(0.44-0.91), specificity (0.76-1.00), and accuracy (0.80-
0.95) (Table 7). When averaging the metric values across 
the classes, the 3DCNN method achieves an F1-score of 
0.866, specificity of 0.963, and accuracy of 0.942. For the 
RF_Gabor method, the corresponding values are an F1-
score of 0.737, specificity of 0.930, and accuracy of 0.892. 
ROTF yields an F1-score of 0.653, specificity of 0.895, and 
accuracy of 0.839 (Table 8). SVM demonstrates an F1-
score of 0.584, specificity of 0.872, and accuracy of 0.809 
(Table 9). These results align with the overall 
classification accuracies obtained from the respective 
methods.  
 

 
Table 6. Evaluation the performance of the methods for 3DCNN. 

 PRECISION RECALL F1-SCORE SPECIFICITY  ACCURACY 
VINEYARD 0.902 0.816 0.857 0.972 0.935 

FOREST 0.827 0.759 0.791 0.953 0.908 
SOIL 0.820 0.832 0.826 0.951 0.926 

ROAD 0.820 0.973 0.890 0.951 0.955 
SHADOW 0.955 0.977 0.966 0.987 0.985 

 
Table 7. Evaluation the performance of the methods for RF_Gabor. 

 PRECISION RECALL F1-SCORE SPECIFICITY  ACCURACY 
VINEYARD 0.866 0.966 0.913 0.943 0.949 

FOREST 0.540 0.931 0.684 0.763 0.802 
SOIL 0.864 0.924 0.893 0.953 0.946 

ROAD 0.946 0.625 0.753 0.991 0.917 
SHADOW 1.000 0.285 0.443 1.000 0.844 

 
 

Table 8. Evaluation the performance of the methods for ROTF. 
 PRECISION RECALL F1-SCORE SPECIFICITY  ACCURACY 

VINEYARD 0.680 0.939 0.789 0.825 0.857 
FOREST 0.473 0.786 0.591 0.723 0.738 

SOIL 0.797 0.748 0.772 0.933 0.885 
ROAD 0.951 0.518 0.671 0.992 0.886 

SHADOW 1.000 0.285 0.443 1.000 0.827 

 
Table 9. Evaluation the performance of the methods for SVM. 

 PRECISION RECALL F1-SCORE SPECIFICITY  ACCURACY 
VINEYARD 0.727 0.850 0.784 0.861 0.857 

FOREST 0.470 0.752 0.578 0.713 0.723 
SOIL 0.595 0.885 0.712 0.791 0.815 

ROAD 0.970 0.286 0.441 0.997 0.837 
SHADOW 1.000 0.254 0.405 1.000 0.811 
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5. Conclusion  
 

Accurately identifying vineyards is crucial for 
contributing to the national economy, effectively 
managing viticulture processes, monitoring crops, and 
implementing site-specific automated crop management. 
With this objective in mind, this study aimed to 
determine the spatial distribution of Cimin grape using 
high-resolution satellite images. The performance of the 
developed 3D CNN model was compared to that of the RF, 
ROTF, and SVM algorithms. The classification accuracies 
obtained were 86.47%, 75.94%, 70.53%, 66.92%, and 
62.41% for the 3D CNN, RF_Gabor, RF, ROTF, and SVM 
methods, respectively. The 3D CNN method 
outperformed the RF_Gabor (second-ranked) by 11% 
and the RF (third-ranked) by 16% in terms of 
classification performance, resulting in more accurate 
vineyard classification. The evaluation of metrics such as 
F1-Score, specificity, accuracy, Kappa analyses, and χ^2 
values obtained from the McNemar test further confirm 
the success of the 3D CNN method. Preliminary results 
indicate that the proposed 3D CNN-based deep learning 
model can effectively classify Cimin vineyards and 
determine their spatial distributions. Future work will 
focus on evaluating the performance of different CNN-
based architectures for the same problem. 
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