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ABSTRACT 
 

The problem of modelling and analysis of fluid flow in the presence of viscous dissipation as a result of a wedge in motion is 

analytically and numerically deliberated upon. The much-valued significance of this study in the aspects of technological and 

industrial revolution include aerospace, oil recovery systems, defence machineries, extrusion, moulding and polymerisation of 

sheets, building of war arsenal and glass whirling. However, the frontiers of several physical problems are modelled by both 

partial and ordinary differential equations (PDEs and ODEs). Therefore, the mathematical modelling of our present problem is 

not an exemption. Hence, the PDEs in which our problem under consideration is modelled become reformed into coupled 

ODEs in nonlinear form through the deployment of adequate and standard conversion procedure with dimensionless variables. 

In line with the approach of our solution methodology, the boundary conditions governing the flow models are also transmuted. 

Afterwards, the well-established regular perturbation skill aided in the resolution of the problem. The solutions realized are 

simulated through the adoption of a software package (Mathematica V.10 scheme) for the numerical solutions. Our numerical 

results are embodied in form of graphs and legends. It is worthy to note that an increase in the rate of flow remains a function 

of effect of rising values of the porosity and Grashof thermal parameters whereas the opposite behaviour of the flow field is 

linked to improving values of suction parameter. Also, the enhancement of the suction parameter and Eckert number breeds 

intensification in the temperature. Similarly, an enhancement in the values of Prandtl number, 

𝑃𝑟 = 0.7, 1.5, 5.0, 7.0  with radiation parameter, 𝐴 = 0.1, and Eckert number 𝐸𝑐 = 0.2 showed an increase in the rate of 

heat transfer i.e., −φ′(0) = 0.7594, 1.9077, 10.5114, 17.9537. Hence, the Nusselt number intensifies with the rising values 

of the Prandtl parameter. 
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1. INTRODUCTION 
 

The study of fluid viscosity forms an important part of thermal augmentation in its application to heat 
exchangers machinery. The fluid viscidness helps in transferring and transforming thermal energy across 

the flowing fluid and this process impacts hotness to the fluid. Hence, this partly irretrievable procedure 

is termed viscous dissipation. Thus, the shear strain plays a vital role in the transformation, thermally. 

The significance of this research is valued in the area of scheming chilling devices, thermal loss of 

different forms in improving thermal conductivity characteristics of an isothermal flow leading to a 

surge in their technological advancement and applications. Meanwhile, in the study of fluid flows over 

a wedge, informs a typical issue in the general behavioural pattern of dynamical fluid system. Therefore, 

applications of wedge flow ranges from mechanical, petrochemical, geological engineering and 

technology etc. Hence, the progress made in controlling and enhancing the rate of thermal conductivity 

in various engineering, technological, production, metallurgical and packaging firms cannot be 

overemphasised. The initial investigation of incompressible fluid viscosity past a wedge using the 

Falkner-Skan equation remains the concept of [1]. The analytical simulation of this equation using 

https://orcid.org/0000-0003-4177-3213
https://orcid.org/0000-0002-4340-836X
https://orcid.org/0000-0003-4917-4709
https://orcid.org/0000-0003-0430-0302
https://orcid.org/0000-0001-9555-9752


Uka et al. / Eskişehir Technical Univ. J. of Sci. and Technology  A – Appl. Sci. and Eng. 24 (3) – 2023 
 

165 

numerical dwindling velocity distribution was studied by [2]. Lately, several researchers developed keen 

interest in studying transmission of fluid over a wedge material. Thus, the deployment of Dirichlet with 

Robin heat conditions at the boundary was studied by [3, 4, 5]. Later on, Shit and Majee [6] examined 

the influence of heat radiation and chemical reaction on MHD fluid passage over a dual disposed elastic 

plate with non-constant viscosity due to thermal source/sink. They inferred that radiation as well as heat 

source/sink determines to a large extent, the rate at which heat is conveyed at wall section. The numerical 

analysis involving hydromagnetic slip movement of liquid filled with nanofluid over a wedge in the 

presence of convectively thermal source/drip was shared by [7].  

 

The application of chemical reactions in the presence of fluid flow has proved very useful in diverse 

industrial uses, such as in food handling firms and paint production companies, etc. Hence, Sulochana 

et al. [8] through analytical means studied free and forced convection Casson nanofluid past a diagonal 

material. They maintained that improved concentration of fluid and transmission mass ratio is achieved 

because of appreciating values of chemical reactivity. The MHD Falkner-Skan wall layer passage with 

interior energy supply/drop was discussed by [9]. Their result established a difference in heat supply/lag 

on transmission speed of thermal energy when compared to its rate on the skin-friction coefficient. Few 

years ago, some research on nanofluid flow over a wedge has been carried out by [10, 11, 12 and 13]. 

The report on non-Newtonian equation over a nonlinearly elongating plate with different external factors 

was achieved by [14]. However, Aman et al. [15] inspected a nanofluid flow with small-particles in 

form of gold due to the impact of radiation as well as transverse diffusion on the distribution field. A 

fluid prototype surrounded by Riga sheets with an architype flow having stretching and viscosity 

features amid a sloping conduit has been established by [16, 17]. In recent times, Ullah et al. [18] 

explored the inspiration of enforced Lorentz effects on a non-Newtonian flow. Similarly, flow over a 

wall layered nanofluid past a moving wedge was presented by [19]. An examination on the flow and 

thermal transportation characteristics in a viscous fluid past a nonlinearly stretched plate was conducted 

by Vajravelu [20]. The fourth-order Runge–Kutta integration approach was used in the solution of his 

problem. It was found that the heat flow moves from the stretching plate towards the fluid. The influence 

of Hall current and heat radiation on thermal and mass transportation of a chemically reacting MHD 

flow of a micropolar fluid over a permeable sheet was studied by Oahimire and Olajuwon [21]. They 

applied perturbation scheme in order to solve the dimensionless equations. Their results indicated that a 

rise in the strength of magnetic field leads to a fall in the fluid motion in the direction of the sheet. 

Recently, hydromagnetic stream and thermal problems have received important motivation at a high 

level. Thus, the analysis of the effect of hall current, chemical reaction and radiation on a natural 

convective flow confined by a vertical medium immersed in a spongy surface due to the influence of 

unvarying magnetic field was scrutinized by Tavva et al. [22]. They applied the simple perturbation 

method in solving the problem. Their findings showed that both velocity and concentration surges as a 

result of multiplicative reactions and declines due to a destructive reaction. 

 

Similarly, Kumar et al. [23] considered the impact of Hall current, radiation, Soret as well as Dufour 

numbers on an unsteady MHD free convection flow through an infinite vertical stationary sheet in an 
absorbent media. The solution of the dimensionless equations with the boundary constraints were made 

possible by utilizing the Galerkin technique. It was observed that as the Soret factor enhances, the 

concentration distribution improves and opposite movement was noticed in terms of Dufour parameter. 

Accordingly, Cortell [24] performed a numerical examination in line with the boundary layer flow 

prompted in a quiescent fluid due to continuous plate stretching as a result of the velocity 𝑢𝑤 = (𝑥)~𝑥
1

3 

in the presence of thermal transfer. The Runge-Kutta fourth order scheme and shooting method were 

used in solving the problem. From the result, the temperature rises as the temperature ratio number 

increase and it depreciates as thermal radiation factor improves. The investigative analysis of heat and 

mass distribution impact on the flow past a stretching sheet with thermal source was investigated by 

Barik et al. [25]. The solution was carried out by applying Kummer’s function. It was noted that tougher 

suction bound with magnetic field interaction led to a decline in the skin friction coefficient. 
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In the course of reviewing the above literatures, it’s obvious that there’s a short fall in analysing the 

impartation of viscosity degeneracy, absorbent medium and suction numerically on a fluid flow over a 

non-static wedge. Therefore, we shall take the afore-mentioned flow characteristics into account in this 

present study. Meanwhile, this work is organised into 5 parts starting with the introduction which 

contains the significance of the current analysis and review of other studies as the first part. In part 2, 

the mathematical models of the problem under consideration and the flow arrangement was formulated 

and presented while part 3 consists of the methodology applied in the solution process and part 4 depicts 

the gained results and their discussion, followed by the conclusion. 
 

2. FORMULATION OF PROBLEM AND BASIC MODELS 
 

An incompressible, steady laminar hydrodynamic conducting fluid movement over a wedge is 

appropriated. The coordinated systems due to the 𝑥 − 𝑎𝑥𝑖𝑠 corresponding to the wedge wall is 

positioned while the normal is along 𝑦 − 𝑎𝑥𝑖𝑠, with constant pressure, 𝑝. However, there’s an indented 

angle in tune with the wedge external surface as depicted in figure 1, where  

𝛼 = 𝑤𝑒𝑑𝑔𝑒 𝑎𝑛𝑔𝑙𝑒. The wall and neighbourhood temperatures of the wedge refers to 𝑇𝑠 and 𝑇∞. 

respectively.  

 

Hence, the following deductions ensue: 

▪ An electrically conducting steady fluid stream equation is provided.   

▪ Impression of degeneracy, porosity with radiative energy is reasoned.  

▪ A constant pressure, 𝑝 is considered. 

In the light of the Boussineq estimate and conditions, the mathematical models of the flow emerges: 2.1 

Continuity Equation 

𝜕𝑢′

𝜕𝑥′ +
𝜕𝑣′

𝜕𝑦′ = 0           (1) 

2.2 Momentum equation 

𝑢′ 𝜕𝑢′

𝜕𝑥′ + 𝑣′ 𝜕𝑣′

𝜕𝑦′ = 𝜗
𝜕2𝑣′

𝜕𝑦′2 +
𝑣

𝑘′ 𝑢′ −
1

𝜌

𝜕𝑝′

𝜕𝑥′ + 𝑔𝛼𝑇(𝑇′ − 𝑇∞
′ )𝑙2     (2) 

2.3 Energy conservation equation 

𝑢′ 𝜕𝑇′

𝜕𝑥′ + 𝑣′ 𝜕𝑇′

𝜕𝑦′ =
𝜇

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 +
𝜇

𝜌𝑐𝑝
(𝑇′ − 𝑇∞

′ ) −
𝑘′

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦′      (3) 

With wall restrictions stated as  

𝑢 = 𝑈𝑤 = 𝑏𝑥𝑛, 𝑣 = −𝑚,  𝑇′ = 𝑇𝑠
′, 𝐶′ = 𝐶𝑠

′    at 𝑦 = 0 

            (4) 

𝑢 → 0,  𝑇′ → 𝑇∞
′ ,  𝐶′ → 𝐶∞

′       as 𝑦 → ∞ 

The similarity transformation characteristics include: 

𝜂 = 𝑦√
𝑏(𝑛+1)

2𝑣
𝑥

(𝑛−1)

2 ,  𝑢 = 𝑏𝑥𝑛𝑓′(𝜂), 𝑇′ − 𝑇∞
′ = (𝑇𝑠

′ − 𝑇∞
′ )𝜃(𝜂)                (5) 

             

𝑣 = −√
𝑏𝑣(𝑛+1)

2
  𝑥

𝑛−1

2 [𝑓(𝜂) + (
𝑛−1

𝑛+1
) 𝜂𝑓′(𝜂)]       (6) 

Where,  

𝑒0 > 0 and 𝑒0 < 0 are suggestive of suction and injection accordingly. Meanwhile, equation (1) 

stands for the non-compressible steady continuity equation and equation (2) defines the fluid momentum 

equation. Equation (3) establishes that heat drift in the fluid takes place in view of convection, reaction 
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of viscous dissipation and radiative flux, as represented by the first, second and third terms respectively 

on the right-hand side. 

 
Figure 1. Physical representation of wedge flow 

 

From the relation above, we have 𝑙, 𝑔 as characteristics length and acceleration regarding gravity. Also, 

the following terms 𝜗, 𝜌, 𝐶𝑝 , 𝑞𝑟 , 𝑘, 𝜎, 𝑝, 𝑇, 𝑥 𝑎𝑛𝑑 𝑦 are dynamic velocity, density, capacity of heat, 

thermal radiative flux, permeability constant, electrical conductivity, pressure, fluid temperature, 

direction of axes of the velocity components with 𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
. 

 

3. SOLUTION APPROACH 
 

By adopting the approximation of Rosseland equalities [27] in case of radiation, with  

𝑞 = − (
4𝜎∗

3𝑚∗
)

𝜕𝑇′4

𝜕𝑦
          (7) 

With  

𝜎∗ ≈ 1.3806 × 10−23 as Stefan-constant term, 𝑚∗ = average absorption quantity. Taking the 

expansion of 𝑇4 about 𝑇∞ in terms of Taylor’s series gives 

𝑇4 = 𝑇∞
4 + 3𝑇∞

3 (𝑇 − 𝑇∞) + 6𝑇∞
2 (𝑇 − 𝑇∞)2 + ⋯       (7a) 

Ignoring terms in greater index produces 

𝑇4 ≅ 4𝑇𝑇∞
3 − 3𝑇∞

4           (8) 

Noting that  

𝜕𝑝′

𝜕𝑥′ = 0            (9) 

Similarly, using equations (7) – (8) into equation (3) simplifies to  

𝑢′ 𝜕𝑇′

𝜕𝑥′ + 𝑣′ 𝜕𝑇′

𝜕𝑦′ =
𝜇

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 +
𝜕2𝑇′

𝜕𝑦′2

16𝜎∗𝑇∞
3

3𝑚𝑓
∗ +

𝜇

𝜌𝑐𝑝
(𝑇′ − 𝑇∞

′ )      (10) 

Transformation of equations (2), (4) and (10) with the non-dimensional variables in equations (5) and 

(6) assumes 
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𝑑3𝑓

𝑑𝜂3 + 𝑓(𝜂)
𝑑2𝑓

𝑑𝜂2 + 𝐾𝑟
𝑑𝑓

𝑑𝜂
+ 𝐺𝑙𝜃(𝜂) = 0        (11) 

𝑑2𝜃

𝑑𝜂2
(1 + 𝐴) + 𝑃𝑟𝑓(𝜂)

𝑑𝜃

𝑑𝜂
+ 𝑃𝑟𝐸𝑐𝜃(𝜂) = 0       (12) 

𝑑𝑓

𝑑𝜂
= 1,  𝑓(𝜂) = 𝑚𝑜, 𝜃(𝜂) = 1     at 𝜂 = 0   (13) 

𝑑𝑓

𝑑𝜂
→ 0,  𝜃(𝜂) → 0      as 𝜂 → ∞   (14) 

Where, 

 𝐾 =
𝑘′𝑣𝑜

2

𝑣2 , 𝐴 =
16𝜎∗𝑇∞

3

3𝑘∗𝑘
, 𝑃𝑟 =

𝜇𝐶𝑝

𝑘
, 𝐸𝑐 =

𝑢2

𝐶𝑝∆𝑇
 ∋ ∆𝑇 = 𝑇𝑠

′ − 𝑇∞
′ , 𝐺𝑙 =

𝛼𝑇𝑙2𝑔(𝑇𝑠−𝑇∞)

𝑢𝑣
, specify the Porosity,  

radiation, Prandtl, Eckert and local thermal Grashof relations. 

 

3.1. Analytical Solution 

 
The analytical solution of the problem has been carried out by utilizing the regular perturbation method. 

It is a mathematical technique used to obtaining approximate solutions for differential equations that 

contain a small parameter, say 𝛤. This technique is mainly useful when the differential equation is 

coupled, difficult or impossible to be solved directly but can be simplified by assuming that the small 

parameter 𝛤 is much smaller than 1. 

 

Step 1: We need to state or write down an ordinary differential equation involving a small parameter 𝛤. 

Step 2: We assumed that the solution can be expressed as a power series in terms of the small parameter 

𝛤: i.e., 𝑦(𝜂) = 𝑦0(𝜂) + 𝛤𝑦1(𝜂) + 𝛤2𝑦2(𝜂) + ⋯     (15) 

where  𝑦0(𝜂), 𝑦1(𝜂), 𝑦2(𝜂), etc., are functions that are to be determined. 

Step 3: We substituted the assumed solution into the original ODE in order to obtain a series of 

equations. 

Step 4: We equated coefficients of different powers of 𝛤, so as to generate a set of equations involving 

the unknown functions 𝑦0(𝜂), 𝑦1(𝜂), 𝑦2(𝜂), etc. These equations were solved to determine the 

expressions for the unknown functions. 

Step 5: As soon as the expressions for 𝑦0(𝜂), 𝑦1(𝜂), 𝑦2(𝜂),  etc., were found, we substituted them into 

the assumed solution of equation (15) to realize the approximate solution, 𝑦(𝜂). 

Step 6: We applied the boundary conditions (given) to determining the integration constants that 

appeared in the solutions obtained in Step 4 above. 

Relating to Bestman [28], we have 

𝜂 = ∆𝑒0,     𝑓(𝜂) = 𝑒0𝐹(𝜂),     𝜃(𝜂) = 𝜑(𝜂),      𝛤 =
1

𝑒0
2      (16) 

Inputting equation (16) and its differentials into equations (11) – (12) produces, 

𝑑3𝑓

𝑑𝜂3 + 𝑓(𝜂)
𝑑2𝑓

𝑑𝜂2
+ 𝛤𝐾

𝑑𝑓

𝑑𝜂
+ 𝛤2𝐺𝑙𝜑(𝜂) = 0        (17) 

𝑑2𝜑

𝑑𝜂2
(1 + 𝐴) + 𝑃𝑟𝑓(𝜂)

𝑑𝜑

𝑑𝜂
+ 𝛤𝜑(𝜂)𝑃𝑟𝐸𝑐 = 0        (18) 

Which depends on: 

𝜂 = 0;     𝑓 = 1,  
𝑑𝑓

𝑑𝜂
= 𝑒0,  𝜑 = 1  

            (19) 

𝜂 → ∞;   
𝑑𝑓

𝑑𝜂
→ 0,  ℎ → 0 

The application of the regular perturbation technique in resolving equations (17) and (18) 

follows. Thus, let the series solution be: 
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𝑓(𝜂) = 1 + ∑ (𝛤)𝑘𝑓𝑛(𝜂)∞
𝑘=𝑛=1         (20) 

𝜑(𝜂) = ∑ (𝛤)𝑘𝜑𝑛(𝜂)∞
𝑘=𝑛=1          (21) 

Differentiating equations (20) trice and (21) twice in terms of 𝜂, using the results in equations 

(17) – (18) and simplifying, shows that at zeroth order, we have: 

𝑑2𝜑𝑜

𝑑𝜂2
(1 + 𝐴 ) + 𝑃𝑟

𝑑𝜑𝑜

𝑑𝜂
= 0: 𝜑

𝑜
(0) = 1, 𝜑

𝑜
(∞) = 0      (22) 

Evaluating at order one (1) provides:  

𝑑3𝑓1

𝑑𝜂3 +
𝑑31

𝑑𝜂3 = 0: 𝑓1(0) = 0, 𝑓1
′(0) = 1, 𝑓1

′(∞) = 0      (23) 

𝑑2𝜑1

𝑑𝜂2
(1 + 𝐴) + 𝑃𝑟

𝑑𝜑1

𝑑𝜂
+ 𝑃𝑟𝑓1(𝜂)

𝑑𝜑𝑜

𝑑𝜂
+ 𝐸𝑐𝑃𝑟𝜑

𝑜
(𝜂) = 0: 𝜑

1
(0) = 0, 𝜑

1
(∞) = 0  (24) 

In terms of order two (2), we gained 

𝑑3𝑓2

𝑑𝜂3 +
𝑑3𝑓2

𝑑𝜂3 + 𝑓1(𝜂)
𝑑2𝑓1

𝑑𝜂2 + 𝐾
𝑑𝑓1

𝑑𝜂
+ 𝐺𝑙𝜑

𝑜
(𝜂) = 0: 𝑓2(0) = 0, 𝑓2

′(0) = 0, 𝑓2
′(∞) = 0  (25) 

The analytical solutions mentioned below are obtained by solving equations (22) – (25) in line with 

their appropriate and respective wall conditions. 

𝑓′(𝜂) = 𝑒𝑥𝑝 − 𝜂 +
1

(𝑒𝑜)2 (−𝜂𝑒𝑥𝑝 − 𝜂 − 𝑒𝑥𝑝 − 𝜂 −
1

2
𝑒𝑥𝑝 − 2𝜂 + 𝑘𝜂𝑒𝑥𝑝 − 𝜂 + 𝑘𝑒𝑥𝑝 − 𝜂 −

𝐺𝑙

𝑗(𝑗−1)
𝑒𝑥𝑝 − 𝑗𝜂 + 𝑆4 − 𝑆6𝑒𝑥𝑝 − 𝜂)        (26) 

𝜑(𝜂) = 𝑒𝑥𝑝 − 𝑗𝜂 +
1

(𝑒𝑜)2
(−𝑗𝜂𝑒𝑥𝑝 − 𝑗𝜂 −

(𝑗)2

1+𝑗
𝑒𝑥𝑝 − (1 + 𝑗)𝜂 + 𝐸𝑐𝜂𝑒𝑥𝑝 − 𝑗𝜂 +

(𝑗)2

1+𝑗
𝑒𝑥𝑝 − 𝑗𝜂) (27) 

With, 

 𝑆4 = 0, 𝑆6 = 𝑘 −
3

2
−

𝐺𝑙

𝑗(𝑗−1)
 , 𝑗 =

𝑃𝑟

1+𝐴
 as the constants. 

Nonetheless, in the engineering designing of various forms of devices, the Nusselt number, 𝑁𝑢 which 

represents the rate at which thermal energy is conveyed through a given scheme, becomes very 

relevant. Thus, 

 

𝑁𝑢 = 𝜑′(𝜂) = −(1 + 𝐴) (
𝜕𝜑

𝜕𝜂
)

𝜂=0
        (28) 

 

3.2. Numerical Simulation 

 

The Mathematica scheme and Wolfram language have been applied to finding the numerical results of 

equations (26) – (28) respectively. Hence, such solutions are offered in form of graphs containing 

legends as demonstrated below. 

 

4. RESULTS AND DISCUSSION 

 

From the graphical results, 𝑓′(𝜂) and 𝜑(𝜂) implies velocity and temperature of flowing fluid and 

represents the vertical axis while the independent variable, 𝜂 is on the horizontal axis. 
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Figure 2. Influence of local thermal Grashof parameter, 𝐺𝑙 on the fluid flow rate 

In Figure 2, as the dominance of the buoyancy force proportion overshadows the viscous force, the flow 

field rises. Thus, the flow rate 𝑓′(𝜂), heightens as the dimensionless fluid parameter values of 𝐺𝑙 
increases. The result of varying the values of radiation 𝐴 in ascending array, on the momentum and 

temperature of the moving fluid is visualized in Figures 3 and 4, accordingly. However, the introduction 

of this parameter (𝐴) into the flow, changes heat energy into kinetic form and as it augments continually, 

both 𝑓′(𝜂) and 𝜑(𝜂) intensifies. 

 

Figure 3. Influence of radiation constraint, 𝐴 on the fluid flow rate 

 

Figure 4. Influence of radiation number, 𝐴 on the energy transmission rate 
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The impact of the permeability factor, 𝑘 is explained in Figure 5. Meanwhile, due to the spongy nature 

of the medium through which the fluid flow takes place, the rate of tide changes dynamically resulting 

to a surge in momentum boundary layer. Thus, the upsurge in the values of 𝑘, leads to an appreciable 

enhancement in the flow distribution of 𝑓′(𝜂). 
 

 

Figure 5. Influence of porosity constraint, 𝑘 on the fluid flow rate  

 

Figure 6. Influence of suction constraint, 𝑒𝑜 on the fluid flow rate  

Similarly, the development of 𝑓′(𝜂) and 𝜑(𝜂) owing to the effects of suction parameter, 𝑒𝑜 on fluid rate 

and thermal transfer are depicted in Figures 6 and 7 respectively. Whence, raising the values of this 

parameter informs increasing speed of fluid motion, 𝑓′(𝜂) and thermal boundary layer with a rising field 

of 𝜑(𝜂). 

 

Figure 7. Influence of suction number, 𝑒𝑜 on the energy transmission rate 
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Figure 8. Influence of Prandtl factor, 𝑃𝑟 on the energy transmission rate 

Figure 8, captures the result of the uprising effect of 𝑃𝑟 on temperature. Meanwhile, the ratio of viscous 

to thermal diffusivity rate is referred to as Prandtl factor. Therefore, as a non-dimensional number, when 

𝑃𝑟 ≪ 1, the thermal boundary layer thickness becomes bigger when compared with 𝑃𝑟 ≫ 1. Therefore, 

improving the values of 𝑃𝑟 reflects a fall in 𝜑(𝜂). 
 

 

Figure 9. Influence of Eckert constraint, 𝐸𝑐 on the energy transmission rate 

 

Figure 10. Influence of 𝑃𝑟 on Nusselt number, 𝑁𝑢 

In Figure 9, the influence of Eckert constraint, 𝐸𝑐 on 𝜑(𝜂) of fluid stream is obvious. The dimensionless 

number, 𝐸𝑐 relates to the connection concerning the flow’s energy kinetically with energy variance 

existing at the wall in terms of debauchery through heat transference. Thus, appreciating values of 𝐸𝑐 

embraces increment in the fluid’s temperature, 𝜑(𝜂). The stimulus as a result of enhancing values of 𝑃𝑟 
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on 𝑁𝑢, is referenced in Figure 10. When 𝑃𝑟 < 1, heat spreads slowly but at 𝑃𝑟 > 1, the rate of thermal 

transference intensifies as shown in Table 1 below and the above mentioned Figure 10. Thus, growing 

values of 𝑃𝑟 aids in regulating the speed at which a conducting fluid cools in a given system. Therefore, 

heat disperses quickly thereby helping to guide the temperature of a given device functioning with the 

dynamics of fluid flow in several physical applications. However, the evolving changes on thermal 

transmission rate, (𝑁𝑢) as a result of increasing values of 𝐴 are highlighted in both Table 2 and Figure 

11. Nevertheless, from these two forms of data presentations, it can be detected that as 𝐴 improves, the 

rate of heat conveyance, (𝑁𝑢) recedes. 

 

Figure 11. Influence of 𝐴, on Nusselt number, 𝑁𝑢 

 

 

Table 1. Nusselt number coefficient for varying values of 𝑃𝑟 at 𝑒𝑜 = 2.0 

𝐴 𝐸𝑐 𝑃𝑟 −𝜑′(0) 

0.1 0.2 0.7 0.7594 

0.1 0.2 1.5 1.9077 

0.1 0.2 5.0 10.5114 

0.1 0.2 7.0 17.9537 

 

 

Table 2. Nusselt number coefficient for varying values of 𝐴 at 𝑒𝑜 = 2.0 

𝐴 𝐸𝑐 𝑃𝑟 −𝜑′(0) 

0.0 0.2 0.71 0.7822 

0.2 0.2 0.71 0.7635 

0.4 0.2 0.71 0.7523 

0.6 0.2 0.71 0.7458 
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5. CONCLUSION 

 

The analysis of the influence of viscous degeneracy for the augmentation of thermal transferal over a 

moving wedge in a porous domain is deliberated. From the results obtained by means of using 

perturbation approach and an in-built Wolfram Mathematica solver, the following concluding remarks 

are made.  

(a) The momentum boundary layer increases as 𝐺𝑙 and 𝑘 improves in their values, thus leading to 

upsurge in the fluid velocity.  

(b) There is an increase in the fluid’s velocity, 𝑓 ′(𝜂) and temperature, 𝜑(𝜂) as the values of radiation 𝐴 

and suction 𝑒𝑜 parameters enhances.  

(c) Increasing values of 𝐸𝑐 raises the thermal wall layer such that 𝜑(𝜂) of the fluid grows while the 

reverse is the condition when 𝑃𝑟 improves.  

(d) The rate of heat transfer, 𝑁𝑢 is brought under control through cooling when 𝑃𝑟 intensifies whereas 

for 𝐴, the opposite is the outcome.  
Meanwhile, in line with the current study, the suggestive areas of future research include numerical 

simulations and optimization techniques: Thus, the conduction of advanced numerical simulations using 

Computational Fluid Dynamics (CFD) and optimization procedures to study the fluid flow and heat 

transfer characteristics over a moving wedge in a porous chamber due to viscous dissipation remains a 

future research area to be explored. Also, the investigation of diverse geometries, permeability 

distributions, and wedge motion patterns to optimize the heat transfer performance and identify the most 

efficient configuration, forms another area of future research. 
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