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Abstract

The object of the present paper is to find the essential properties for certain subfamilies
of analytic and spirallike functions which are generated by g¢-integral operator. Further,
we derive membership relations for functions belong to these subfamilies, and also we
determine coefficient estimates.
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1. Introduction

Stand by A the family of functions f(¢) = ¢+ 3225 ar¢* analytic in the open unit disk
D={CeC:|(] <1} with f(0) =0 = f'(0) — 1. A function f € A is named univalent
in D provided that it does not take the same value twice. Stand by S the subfamily
of A involving univalent functions. Further, for the function ¢ with the Taylor series
g(Q) =CH+ b+ =+ 322, bpCF, the convolution f * g is expressed by

[e.e]
(f*9) () =C+ > arbih.
k=2

On the other hand, for analytic functions f and g in D, we ensure that f is subordinate
to g, expressed by f < g, for a Schwarz function A such that A (0) = 0,|A (¢)| < 1 and
7O =9(AQ) (eD).

Now, we shall deal with a subfamily of S which is of special interest in its own right,
namely the spirallike functions.

For —oo < t < oo and ¥ € (=%, %), the logarithmic ¥-spiral curve is expressed by
w = wy exp(—e*wt), where wq is a nonzero complex number. We must mention here that
0-spirals are radial half-lines. For an analytic function, we can call it J-spirallike provided
that its range is ¥-spirallike. Stand by 8y the family of 9J-spirallike functions. Analytically,

[ € A belongs to the family 8y iff (em%) >0 [18].
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The study of g-calculus in Geometric Function Theory was partially provided by Sri-
vastava [19]. This application is still among the most popular subject of many mathemati-
cians today [1-4,6,8,12,14,15,20]. In the course of the paper, suppose 0 < ¢ < 1 and the
definitions deal with the complex-valued function f.

The g-derivative of f is expressed by [9]:

£(0) — F(aQ)
Df()={ -9 e
£(0), c=0

When f is differentiable at ¢, we arrive lim,_,;- D, f(¢) = f'(¢).
The g-integral of f is expressed by [10]:

[ s =ct-0) S scab)
0 k=0

provided the series converges.
Next, the ¢-gamma function is expressed by

- o0 1 _qurl
o) = (1= [T 1= (w>0)
k=0
with
Fq(u +1) = [u]qu(u), Fq(“ +1) = [U]q!7 (1.1)

where v € N and
[u]g! = {[“]q[“ g2y, w>1
' 1, u=0.

If we set ¢ — 17, we find I'q(u) — I'(u) [9].
The g-beta function

1
By(u, s) :/0 ¢ = gO)i MG, (s > 0) (1.2)
is the g-analogue of Euler’s formula [10] with
Ly(u)Ty(s)
B =L 1.
Q(u’ 5) I‘q(u—l—s) ( 3)
Next, the g-binomial coefficients are expressed by [7]
|
o [ : (1.4)
"/, [n]q![k — nlg!

In a recent study [11], the generalized g-integral operator XG4 A — A is expressed by

o _ (a8 [y () v R d >0,8> -1
X5a/(©) <B )qcﬁ/o( c)q W f(wdgu (o> 0.8 > ~1).

From (1.1), (1.2), (1.3) and (1.4), they arrive

JB+ET(a+p+1)
“Z TyatptkT,B+1)

For some special values, we find the following integral operators previously known.

X,Bq akck‘

(i) If @ =1, the q—Bernardi integral operator Jg ,f is obtained [13]

+/3 51y — [1+8ly &
Js.4f(C) E arC”.
pa / kzl[k—i_ﬁ]q g
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(ii) If @ =1, ¢ — 17, the Bernardi integral operator is obtained [5]

Jsf (<) 1+ﬁ/ uP 1 f(u) Z;ig KCh.

(iii) f a =1, B =0, ¢ — 17, the Alexander integral operator is obtained [16]

), —1 4
C)—/Oudu—4+kz::2kakC-

Now, we introduce the new subfamilies S§  [A, B] and Kf , [A, B] of analytic functions:

e (x%,qf(C)),  eosd (1 + AC

SgqlA,Bl={f€S:¢ GO 1+B<)+isin197CE®

and

¢ (x‘g,qf(C))” ~ cosd <1 + AC

K§,JA,Bl=<feS:e” |1+ .
: (x8.,£©) 1+B¢

>—|—isin19,(€@ ,
where [J| < 5, - 1< B <AL

We know that there is a relation between the families S§  [A, B] and K§  [A, B] such
as

feK§, [AB] < zf € S§,[A B]. (1.5)

Note that

1) Letting ¢ — 17 and o = 1, we arrive the families Sg[A, B] and Kj [A, B] involving
Bernardi integral operator given in (ii).

2) Letting ¢ — 17, @ = 1 and 8 = 0, we arrive the families S[A, B] and K [A, B]
involving Alexander integral operator given in (iii).

This paper deals with the new subfamilies S§  [A, B] and K§ , [A, B] of analytic func-
tions involving a generalized g¢-integral operator and its several properties.

2. Convolution properties

To present convolution properties, we express Lemma 2.1 due to Silverman and Silvia
[17].

Lemma 2.1. The function f is in S* [A, B] iff for all { € D and alln, |n| =1,

1 [f*c—'_A BCZ

¢ (1-¢)?

Lemma 2.2. The function [ is in S&q [A, B] iff for all { € D and alln, |n| =1,
Ly(B+E)Tg(a+8+1) 4
gl (“Z 1—5 a5+ kT (5+1)<>]7&0’

Y 4 (Acos ¥ 4 iBsin9)n
e (1+ Bn)

] £0. (2.1)

where

(2.2)
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Proof. An application of Lemma 2.1 exhibits that f € 5§, [A, B] iff

emc (x%,qf(é“))/ 4 cos 6 (1 + An

+4sind
X34/ (€) 1+ Bn)

U 4+ (Acosd + iBsin9)ny

& (X3 F0) ~ X3 Q) ( )#0 (CeD, Inl=1). (23)

e(1+ Bn)
Since
e < <
' =frgeem f=lre
we arrive
X3l () = F(Q) #h(Q) = =
(3l (0) = £+ 1O T

~ T ) g(a
where h(¢) = ( + 3729 rzggiﬁllz Igig ¢*.

By substituting € given by (2.2), we find that the relation (2.3) is equivalent to

70+ 1) < i o) A0 (2.4)

On the other hand, by extensions of = )2 and 0 C) we find

(e i0)- “Z 29

By substituting (2.5) in (2.4), the proof is complete.

Theorem 2.3. A necessary and sufficient condition for the function f to be in Sg"q [A, B]
is that

2 (k—1)(e"” +iBysind) — (A — kB)ncosd  Ty(B+k)Tyla+ B +1)

11— k=1 2.
,CXZ:Q (A— B)ncosd Fq(a+5+k)Fq(ﬂ+1)ak< #
Proof. Notice that
k—e B (k — 1)(61'19 +iBnsind) — (A — kB)n cosz? (2.6)

l1—¢ (A— B)ncos?
By using (2.6), we can write the relation (2.1) as

1 > (k—1)(e” +iBnsind) — (A —kB)ncos?d T (B+k)y(a+8+1) 4
Z1C=> X kG| #0
(A — B)ncosd Fyla+ B+ k) (B+1)
(2.7)
Simplifying relation (2.7), we obtain the desired condition. O

Lemma 2.4. The function [ is ian‘q[A,B] iff for all ¢ € D and alln, n| =1,
LB+ E)(a+B8+1), 4
g[ (“Z 1—5 At BT kT (ﬁ+1)kg>17&0’

Y 4 (Acos ¥ 4 iBsin9)n
e (1+ Bn)

where
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Proof. Set
f=<he f(0)=h(0), f(D)Ch(D), CeD.

Note that
4 Ly(B+E)Tg(a+p+1)
Ch(¢ “Z 1—5 JatBLET,(B+1)

From the identity (f *h = f * Ch’ and the fact that
feKg, [A,Bl & (f€S5,[ADB],

K¢k, (2.8)

from Lemma 2.1, we arrive

PO HOI£0 & ZIFO = CH(QO) £ 0 (29)
By substituting relation (2.8) in (2.9), we have the desired result. O

Theorem 2.5. A necessary and sufficient condition for the function f to be in Kj [A, B|
is that

X, (k—1)(e”? +iBnsind) — (A —kB)ncos?d T (B+ Kk (a+B+1)

l_kz:; (A — B)ncos?d Fyla+ B+ k)y(B+1)

kaicFt £ 0.

Proof. By using Lemma 2.2 and in a similar way of Theorem 2.3, we solve the theorem.
O

3. Coefficient estimates

In the following, as an application of previous theorems, we derive coefficient estimates
and inclusion properties for a function to be in the families S§ , [A, B] and K§  [A, B].

Lemma 3.1 ([21]). Let the parameters A, B and «, as well as the integer k, limited by
-1<B< A<, -5 <9< 7 and k € N\{1} be fized. Assume

[A— (k= 1)B]” cos? ¥ + (k — 2)* (Bsin?9 — 1) > 0,
Then
k-1
_— [(A — B)?cos® 9 + Z ’(A —nB)?cos? 0 4 (n — 1) (B2 sin? 9 — 1)’

2 , 2
(A—B)e~ cosﬁ—jB‘ k—ZI(A—B)e_wcosﬁ—jB‘
(G +1)° = G +1)°

We can express following coeflicient estimates by using Lemma 3.1.

Theorem 3.2. Let f € S5 [A, B]. Assume
(A—(k—1)B)?cos®d > (k — 2) (1 — B%sin? 19) .

Then

] Dy(a+B+k)T,(B+1) 1:[ (A — B) cos 9e Bj‘
S BB, ar AT D) 1 -

This result is sharp.



58 T. Yavuz, S. Altinkaya

Proof. Let us put

I(C) = X5,/(Q) = ¢+ > Bl

k=2
where By = Lalfth)lq(at5+1)

Lg(a+B+k)Lq(B+1)
Since f € 5§, [A, B, there exists a function A(() such that
w .. o6(C) . 1+ AA(Q)
e sec? —itany = —————.
1(¢) 1+ BA(Q)
Then, we get

1 +itand) i k—1)By¢k = ((A—B)g+§j[A—kB—z‘(k—nBtanﬁ] Bk§k> A(Q).

k=2
The above equality may be rewritten (for m € N) as follows:

m

o) 1

(1+itand) Y (k—1) BplF+ Y dp¢h = <Z [A— kB —i(k — 1)Btan ) Bk§k> A(Q).
k=2 k=m+1 k=1

Hence,

o0

> dkc’f:(mZ A~ KB — i(k —1)Btanﬁ1Bkck> AQ (k= 1) (1 + itan) 3" Bic*

k=m+1 k=2

and both two sums on the RHS are convergent and the sum on the LHS is convergent in
D for k =2,3,--- . By appealing to Parseval’s Theorem, we arrive

(k —1)2|By|? <Z{A mB>cos? 9 + (B?sin? ) — 1) (m — 1)°} [Bnl*,  (32)

where B; = 1.
We need to show the inequality given in (3.1) is true by using the principle of mathe-
matical induction. Actually, we see that it holds for k = 2, as

|B2| < (A — B)cos?.
Suppose that inequality (3.1) holds true for k& = m — 1 for some fixed m, it means that
the inequality

’A B) cos e~ —Bj‘
‘Bm 1| < H (j+1) (33)

holds true. Then, we have to show that (3.1) is true for & = m. It is easy to see this
relation considering (3.2), (3.3) and Lemma 3.1. After necessarily calculations, we have
for k = m that

m—1
e S ket (e 6
k=1
1
<( D {(A—B) cos” U+
m—

mzf ’[A — kB)? cos® 9 + <B2 sin? ) — 1) (n— 1)2‘ ]Bk|2}
k=2
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1 m—1
< W {(A — B)?cos? 9 + Z ‘[A — kB]*cos? 9 + (k —1)? (B2sin219 - 1)‘
m= k=2

- ‘A B) cos e Bj’
g (G+1)

m— ‘A B) cos e Bj’
-5

We see that (3.1) is true for every k. To examine the sharpness in (3.1), it is enough to
consider the function
1) = X3/ (C) = .
- Xﬁvq - (B— A)e*'“9 cosd
(14 B(Q)

We can also prove the following theorem by using relation given in (1.5)

Theorem 3.3. Let f € Kj [A, B]. Assume
(A= (k—1)B)*cos® > (k — 2)* (1 - B?sin”9).

Then

ay| < Lalo BB (F+1) k=2|(A — B) cos v~ — Bj
ST B+ (a+B+1) 1 jt2 '

This is also sharp estimate.

Theorem 3.4. If f € 5§, [A, B], then

- To(B+k)Tg(a+B+1)
Z k(B +1) —1]+|Acosﬁ+zBsm29]) T,(a B+ k(A1 1)

|ak| < (A — B)cos,

Proof. Since

1 oo (k=1)(e®+iBnsin®)—(A—kB)ncosd T'q(B+Ek)Tq(a+p+1)
— k= (A-B)i cos v Tolat B+ (1) T

(k—1)(e*’ +iBnsin9)—(A—kB) 9| Tq(B+k)Tq(a+B+1)
>1-30 A By rg(a+5+13)13q G okl
and
(k—1)(e*? +iBnsin¥)—(A—kB)n cos ¥ |(k—l)(ew—l—iBsinﬁ)—(A—kB)c0519|
(A—B)ncos (A—B)cos?
< |(k(B+1)—1|+]A cos 9+iB sin 9|
— (A—B) cos ¥ ’
the outcome follows from Theorem 2.3. O
Theorem 3.5. If f € K [A, B], then
> k 1
Z E(B+1) —1|+|Acosz9+zBsmi9|) Lo(B+MTgla+ B+ )k:|ak|§(A—B)cosﬁ.

= Lola+B+k)Ty(B+1)
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