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Introduction 

The Adomian Decomposition Method was first 
introduced by George Adomian in the early 1980s. 
Adomian is an American mathematician who developed 
this method for ordinary, partial, linear and nonlinear 
differential equations. Adomian applied this method to 
find approximate solutions to deterministic, stochastic, 
linear and nonlinear problems with boundary and initial 
conditions. The method is constructed by decomposing its 
nonlinear terms. It is defined as 𝑁𝑦 = ∑ 𝐴𝑛

∞
𝑛=0 . Here, 𝐴𝑛 

are Adomian polynomials. Each 𝐴𝑛 depends on the 
arguments 𝑦0, 𝑦1,𝑦2, … , 𝑦𝑛  for 𝑛 > 0. The formulas to 

obtain these polynomials were developed by Adomian. 
Finding approximate analytical solutions of non-linear 
differential equations with the Adomian Decomposition 
Method will make the solution faster and more reliable in 
many areas mentioned above. 

In this study, Laplace Adomian Decomposition Method 
(LADM) is used to calculate approximate solutions of 
nonlinear ordinary and partial differential equations. 
Laplace-Adomian Decomposition Method (LADM) is a 
combination of Adomian Decomposition Method and 
Laplace Transform Method. This method has been 
successfully used to solve different problems in [1-7]. Also, 
LADM does not require predefined dimension definition 
like the Runge–Kutta method. Also, LADM can be 
considered as an ideal method for ordinary and partial 
equations representing nonlinear models. Compared to 
other analytical methods, LADM has fewer parameters, so 
LADM is a useful technique that does not require 
discretization and linearization [8]. A comparison between 
LADM and ADM for analysis of FDEs is given in [9]. The 
Kundu-Eckhaus equation deals with quantum field theory 

and the analytical solution of these nonlinear PDEs is 
explored in [10] using LADM. The multi-step Laplace 
Adomian decomposition method for nonlinear FDEs is 
described in [11]. The analysis of the smoke model was 
successfully studied using LADM [12]. 

The motivation of this study is the previous literature 
on random modeling of several diseases ( Merdan et al., 
2017; Merdan et al., 2018; Bekiryazici and Hasimoglu et 
al., 2022). Gamma and Normal (Gauss) distributions will 
be used for the distributions of the random parameters. 

The aim of this study is to analyze the solution 
behavior graphically by finding various probability 
characteristics such as expected value, variance and 
confidence intervals by obtaining the approximate 
analytical solution of random partial differential equations 
with the use of the Laplace-Adomian Method. 

 

Adomian Decomposition Method Combined with 
Laplace Transform 

Let the partial or ordinary differential equation 
𝐹𝑦(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) be given with the initial condition 
𝑦(𝑥, 0) = 𝑓(𝑥). Here F is the differential operator with 
linear and non-linear terms. In this case, the operator 
form  is defined by 

 

𝐿𝑡𝑦(𝑥, 𝑡) + 𝑅𝑦(𝑥, 𝑡) + 𝑁𝑦(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)      (1) 
 

𝐿𝑡 =
𝜕

𝜕𝑡
  , 𝑅 is a linear operator with partial derivatives 

with respect to 𝑥, 𝑁 is a nonlinear operator, and 𝑔 is an 
inhomogeneous term independent of 𝑦. 

http://xxx.cumhuriyet.edu.tr/
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The solution for 𝐿𝑡𝑦(𝑥, 𝑡) can be expressed as 
 

𝐿𝑡𝑦(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) − 𝑅𝑦(𝑥, 𝑡) − 𝑁𝑦(𝑥, 𝑡)     (2) 
 

The ℒ Laplace transform is an integral transform found 
by Pierre-Simon Laplace. It is a powerful and practical 
method for solving ordinary and partial differential 
equations. 

 

Definitions and Theorems 

Definition 1. Given the 𝑓(𝑡) function for every 𝑡 ≥ 0; Let 𝑓 be defined [13] as the Laplace transform 𝐹. Therefore, 
 

𝐹(𝑠) = ℒ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
        

 
The Laplace transform of the 𝑡𝑛 function is found as follows: 
 

ℒ{𝑡𝑛} =
𝑛!

𝑠𝑛+1           

 
Definition 2. Given a continuous function 𝑓(𝑡), if 𝐹(𝑠) = 𝐿{𝑓(𝑡)} then 𝑓(𝑡) is called the inverse Laplace transform of 
𝐹(𝑠) and 

 
𝑓(𝑡) = ℒ−1{𝐹(𝑠)}          (3) 
 
It is expressed by (3). The Laplace transform has derivative properties: 
 

ℒ{𝑓(𝑛)(𝑡)} = 𝑠𝑛ℒ{𝑓(𝑡)} − ∑ 𝑠𝑛−1−𝑘𝑓(𝑘)(0)𝑛−1
𝑘=0   

   

ℒ{𝑡𝑛𝑓(𝑡)} = (−1)𝑛𝐹(𝑛)(𝑠)  
        

The Laplace Adomian Decomposition Method consists of applying the Laplace transform to both sides of the equation 
(2). 

 
ℒ{𝐿𝑡𝑦(𝑥, 𝑡)} = ℒ{𝑔(𝑥, 𝑡)} − ℒ{𝑅𝑦(𝑥, 𝑡)} − ℒ{𝑁𝑦(𝑥, 𝑡)}     
 
𝑠𝑦(𝑥, 𝑠) − 𝑦(𝑥, 0) = ℒ{𝑔(𝑥, 𝑡) − 𝑅𝑦(𝑥, 𝑡) − 𝑁𝑦(𝑥, 𝑡)}     
 

𝑦(𝑥, 𝑠) =
𝑓(𝑥)

𝑠
−

1

𝑠
ℒ{−𝑔(𝑥, 𝑡) + 𝑅𝑦(𝑥, 𝑡) + 𝑁𝑦(𝑥, 𝑡)}       

 
Equation (2) is found and inverse Laplace transform is applied to this equation, 
 

𝑦(𝑥, 𝑡) = 𝑓(𝑥) − ℒ−1 [
1

𝑠
ℒ{−𝑔(𝑥, 𝑡) + 𝑅𝑦(𝑥, 𝑡) + 𝑁𝑦(𝑥, 𝑡)}]      (4) 

 
is obtained. 
The Adomian Decomposition Method produces a series of solutions given by 𝑦(𝑥, 𝑡): 

 
𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡)∞

𝑛=0                                                           (5) 
 
𝑁𝑦(𝑥, 𝑡) = ∑ 𝐴𝑛(𝑦0, 𝑦1, … , 𝑦𝑛)∞

𝑛=0                      (6) 
 

is a sequence of Adomian polynomials. 𝐴𝑛 Adomian polynomials, 
 
𝐴0 = 𝑓(𝑦0)           
 

𝐴1 = 𝑦1
𝑑𝑓(𝑦0)

𝑑𝑦0
          

 

𝐴2 = 𝑦2
𝑑𝑓(𝑦0)

𝑑𝑦0
+

𝑦1
2

2!

𝑑2𝑓(𝑦0)

𝑑𝑦0
2          

 

𝐴3 = 𝑦3
𝑑𝑓(𝑦0)

𝑑𝑦0
+ 𝑦1𝑦2

𝑑2𝑓(𝑦0)

𝑑𝑦0
2 +

𝑦1
3

3!

𝑑3𝑓(𝑦0)

𝑑𝑦0
3        
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𝐴4 = 𝑦4
𝑑𝑓(𝑦0)

𝑑𝑦0
+ (

1

2!
𝑦2

2 + 𝑦1𝑦3)
𝑑2𝑓(𝑦0)

𝑑𝑦0
2 +

1

2!
𝑦1

2𝑦2
𝑑3𝑓(𝑦0)

𝑑𝑦0
3 +

𝑦1
4

4!

𝑑4𝑓(𝑦0)

𝑑𝑦0
4    

     … 
form can be obtained. With 𝜆 ∈ 𝑅 being the parameter, 
 
𝑦 = ∑ 𝑦𝑛

∞
𝑛=0            

 
solution series of the function, 
 
𝑦 = ∑ 𝜆𝑛𝐴𝑛

∞
𝑛=0           

 
and nonlinear 
𝑓(𝑦) = ∑ 𝜆𝑛𝐴𝑛

∞
𝑛=0           

 
can be written parametrically. Adomian Polynomials can be obtained from the formula (7), provided that the 𝑓(𝑦) 
function at the 𝜆 ∈ 𝑅 point is analytical. 
 

𝐴𝑛 =
1

𝑛!
[

𝑑𝑛

𝑑𝜆𝑛 𝑓(∑ 𝜆𝑖𝑦𝑖
∞
𝑖=0 )]

𝜆=0
, 𝑛 ≥ 0                   (7)    

  
Using the equations (4), (5) and (6), 
 

∑ 𝑦𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝑓(𝑥) − ℒ−1 [−

1

𝑠
ℒ{𝑔(𝑥, 𝑡)} +

1

𝑠
ℒ{𝑅 ∑ 𝑦𝑛(𝑥, 𝑡)∞

𝑛=0 + ∑ 𝐴𝑛(𝑦0, 𝑦1, … , 𝑦𝑛)∞
𝑛=0 }]       (8)             

 
is obtained. From equation (8), the following formulas are subtracted: 

 

{
𝑦0(𝑥, 𝑡) = 𝑓(𝑥)

𝑦𝑛+1(𝑥, 𝑡) = −ℒ−1 [−
1

𝑠
ℒ{𝑔(𝑥, 𝑡)} +

1

𝑠
ℒ{𝑅𝑦𝑛(𝑥, 𝑡) + 𝐴𝑛(𝑦0, 𝑦1, … , 𝑦𝑛)}] , 𝑛 = 0,1,2 …

          (9) 

 
Using equation (9), an approximate solution is obtained: 

 
𝑦(𝑥, 𝑡) ≈ ∑ 𝑦𝑛(𝑥, 𝑡)𝑘

𝑛=0                                                                       
 
lim
𝑘→∞

∑ 𝑦𝑛(𝑥, 𝑡) = 𝑦(𝑥, 𝑡)𝑘
𝑛=0                

                                                         

Application 

To examine the solution behavior of random partial differential equations, an approximate solution is obtained by 
the Laplace-Adomian Decomposition Method. Various interpretations were made by establishing the expected value, 
variance and %99 confidence interval of the solution. 
 
Example 1. 

Consider the following random partial differential equation 
 

𝑦𝑡 + 𝑦𝑥𝑥 − 𝑦2 − 𝑦 ∙ 𝑦𝑥𝑥 = 0          (10) 
subject to the initial conditions 
 

 𝑦(𝑥, 0) = 𝐵𝑠𝑖𝑛𝑥          (11) 
 
where 𝐵~𝑁(𝜇, 𝜎2) is parameter with Normal distribution. 
To solve (10)-(11) by means of  Laplace-Adomian Decomposition Method, making the Laplace transform of Equation 
(10). 

When the operations in (1)-(4) are performed, the following relation is obtained. 
 

{
𝑦0(𝑥, 𝑡) = 𝑓(𝑥)

𝑦𝑛+1(𝑥, 𝑡) = −ℒ−1 [−
1

𝑠
ℒ{𝑔(𝑥, 𝑡)} +

1

𝑠
ℒ{𝑅𝑦𝑛(𝑥, 𝑡) + 𝐴𝑛(𝑦0, 𝑦1, … , 𝑦𝑛)}] , 𝑛 = 0,1,2, …

  (12) 
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Identifying the zeroth component 𝑦0(𝑥, 𝑡) by 𝐵𝑠𝑖𝑛𝑥, the remaining components 𝑦𝑛(𝑥, 𝑡),       𝑛 ≥ 1, can be determined 
by using the recurrence relation 
 

𝑦0(𝑥, 𝑡) = 𝐵𝑠𝑖𝑛𝑥         
 
𝐴0 = 𝑓(𝑦0) = 𝑦0

2 = 𝐵2𝑠𝑖𝑛2𝑥  
       

where 𝐴𝑛 are Adomian polynomials that represent the nonlinear term and other terms are as follows 
 

𝐴1 = 2𝑦0𝑦1 = 2𝐵2𝑡𝑠𝑖𝑛2𝑥         
            (13) 

𝐴2 = 2𝑦0𝑦2 + 𝑦1
2 = 𝐵2𝑡2𝑠𝑖𝑛2𝑥 +

𝐵2𝑡2

3
𝑠𝑖𝑛2𝑥(3 − 2𝐵(𝑡 − 3)𝑠𝑖𝑛𝑥)   

… 
Other polynomials can be generated similarly to enhance the accuracy of the approximation. Using equations (12) and 
(13) above, the following connections are found. 
 

𝑦1(𝑥, 𝑡) = ℒ−1 [
1

𝑠
ℒ{𝑅𝑦0(𝑥, 𝑡) + 𝐴0}] = 𝐵𝑡𝑠𝑖𝑛𝑥      

 

𝑦2(𝑥, 𝑡) = ℒ−1 [
1

𝑠
ℒ{𝑅𝑦1(𝑥, 𝑡) + 𝐴1}] =

𝐵𝑡2

6
𝑠𝑖𝑛𝑥(3 − 2𝐵(𝑡 − 3)𝑠𝑖𝑛𝑥)    

𝑦3(𝑥, 𝑡) = ℒ−1 [
1

𝑠
ℒ{𝑅𝑦2(𝑥, 𝑡) + 𝐴2}] = −

2𝐵4𝑡5

315
𝑠𝑖𝑛4𝑥(5𝑡2 − 35𝑡 + 63) +

𝐵𝑡3

1260
[210𝑠𝑖𝑛𝑥 +

21𝐵2𝑠𝑖𝑛3𝑥(5𝑡3 − 18𝑡2 − 10𝑡 + 40) + 𝐵 (2𝑐𝑜𝑠2𝑥 (−420 + 105𝑡 − 𝐵𝑡2𝑠𝑖𝑛𝑥(35𝑡 − 126 − 4𝐵𝑠𝑖𝑛𝑥(5𝑡2 −

35𝑡 + 63))) − 21𝑠𝑖𝑛2𝑥(3𝑡2 + 10𝑡 − 80)]        

    
⋯ 

If the 𝑦0(𝑥, 𝑡), 𝑦1(𝑥, 𝑡), 𝑦2(𝑥, 𝑡), 𝑦3(𝑥, 𝑡) found above are written in the series, the following relation is obtained. 
 
𝑦𝐿𝐴𝐷𝑀 = 𝑦0(𝑥, 𝑡) + 𝑦1(𝑥, 𝑡) + 𝑦2(𝑥, 𝑡) + 𝑦3(𝑥, 𝑡) + ⋯      (14) 

 
If the values 𝑦0(𝑥, 𝑡), 𝑦1(𝑥, 𝑡), 𝑦2(𝑥, 𝑡), 𝑦3(𝑥, 𝑡) are written and edited in (14), 
 

𝑦𝐿𝐴𝐷𝑀 = 𝐵𝑠𝑖𝑛𝑥 + 𝐵𝑡𝑠𝑖𝑛𝑥 +
𝐵𝑡2

6
𝑠𝑖𝑛𝑥(3 − 2𝐵(𝑡 − 3)𝑠𝑖𝑛𝑥) −

2𝐵4𝑡5

315
𝑠𝑖𝑛4𝑥(5𝑡2 − 35𝑡 + 63) +

𝐵𝑡3

1260
[210𝑠𝑖𝑛𝑥 + 21𝐵2𝑠𝑖𝑛3𝑥(5𝑡3 − 18𝑡2 − 10𝑡 + 40) + 𝐵 (2𝑐𝑜𝑠2𝑥 (−420 + 105𝑡 − 𝐵𝑡2𝑠𝑖𝑛𝑥(35𝑡 − 126 −

4𝐵𝑠𝑖𝑛𝑥(5𝑡2 − 35𝑡 + 63))) − 21𝑠𝑖𝑛2𝑥(3𝑡2 + 10𝑡 − 80)] + ⋯     (15) 

 
is obtained. The solution in a series form is given by 𝑦𝐿𝐴𝐷𝑀 and using Taylor series, the exact solution  
 

𝑦(𝑥, 𝑡) = 𝐵𝑠𝑖𝑛𝑥(1 +
𝑡

1!
+

𝑡2

2!
+

𝑡3

3!
+ ⋯ )        (16) 

 
is readily obtained. 

𝑁[𝜙(𝑥, 𝑡; 𝑞)]  nonlinear operator, 𝐿[𝜙(𝑥, 𝑡; 𝑞)] L linear operator and 𝐿(𝑐1(𝑥)) = 0, 𝑐1(𝑥) integration constant; 

apply Homotopy Analysis Method [15-17] to equation (10) given with 𝑦0(𝑥, 𝑡) = 𝐵𝑠𝑖𝑛𝑥 initial condition. 

𝑁[𝜙(𝑥, 𝑡; 𝑞)] =
𝜕𝜙(𝑥,𝑡;𝑞)

𝜕𝑡
+

𝜕2𝜙(𝑥,𝑡;𝑞)

𝜕𝑥2 − 𝜙(𝑥, 𝑡; 𝑞)2 − 𝜙(𝑥, 𝑡; 𝑞)
𝜕2𝜙(𝑥,𝑡;𝑞)

𝜕𝑥2                                                      

𝐿[𝜙(𝑥, 𝑡; 𝑞)] =
𝜕𝜙(𝑥,𝑡;𝑞)

𝜕𝑡
                                                                                                

𝐿(𝑐1(𝑥)) = 0, 𝑐1(𝑥) 

 
Equation (18) is obtained by using equation (17). 

𝐿[𝑦𝑚(𝑡) − 𝜒𝑚𝑦𝑚−1(𝑡)] = ℎ𝐻(𝑡)𝑅𝑚(�⃗�𝑚 , 𝑡)                                                                        (17) 

𝑅𝑚[�⃗�𝑚−1 ] =
𝜕𝑦𝑚−1(𝑥,𝑡)

𝜕𝑡
+

𝜕2𝑦𝑚−1(𝑥,𝑡)

𝜕𝑥2 − 𝑦𝑚−1(𝑥, 𝑡)2 − 𝑦𝑚−1(𝑥, 𝑡)
𝜕2𝑦𝑚−1(𝑥,𝑡)

𝜕𝑥2                                       (18) 

The solution of equation (17) for 𝑚 ≥ 1 deformation of order 𝑚.  
𝑦𝑚(𝑥, 𝑡) = 𝜒𝑚𝑦𝑚−1(𝑥, 𝑡) + ℎ𝐻(𝑟, 𝑡)𝐿−1[𝑅𝑚(�⃗�𝑚−1(𝑥, 𝑡))]  

If 𝑚 ≥ 1, 𝜒𝑚 = 1, ℎ = −1 ve  𝐻(𝑟, 𝑡) = 1, 

𝑅1(�⃗�0(𝑥, 𝑡)) =
𝜕𝑦0(𝑥,𝑡)

𝜕𝑡
+

𝜕2𝑦0(𝑥,𝑡)

𝜕𝑥2 − 𝑦0(𝑥, 𝑡)2 − 𝑦0(𝑥, 𝑡)
𝜕2𝑦0(𝑥,𝑡)

𝜕𝑥2 =  −𝐵sin (𝑥)     (19) 
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𝑦1(𝑥, 𝑡) = 𝜒1𝑦0(𝑥, 𝑡) + ℏ𝐿−1[𝑅1�⃗�0(𝑥, 𝑡)] 

𝑦1(𝑥, 𝑡) = −𝐵𝑠𝑖𝑛(𝑥) + ℏ ∫(−𝐵𝑠𝑖𝑛(𝑥))𝑑𝑡 

𝑦1(𝑥, 𝑡) = 𝐵 sin 𝑥 + 𝐵𝑡sin𝑥 
𝑦2(𝑥, 𝑡) = 𝜒1𝑦1(𝑥, 𝑡) + ℏ𝐿−1[𝑅2�⃗�1(𝑥, 𝑡)] 

𝑦2(𝑥, 𝑡) =
1

6
Bsin 𝑥(6 + 6𝑡 + 3𝑡2 + 2𝐵 sin 𝑥) 

𝑦3(𝑥, 𝑡) = 𝜒1𝑦2(𝑥, 𝑡) + ℏ𝐿−1[𝑅3�⃗�2(𝑥, 𝑡)] 

𝑦3(𝑥, 𝑡) = −
1

18
𝐵(−3𝑡3 sin 𝑥 − 18 sin 𝑥 − 18𝑡 sin 𝑥 + 𝐵2𝑡3 sin 𝑥 + 3𝐵2𝑡2 sin 𝑥 + 6𝐵2𝑡 sin 𝑥

− 9𝐵2𝑡2 sin 𝑥 𝑐𝑜𝑠𝑥2 − 18𝐵2𝑡 sin 𝑥 𝑐𝑜𝑠𝑥2 − 3𝐵2𝑡3sin𝑥cos𝑥2 − 9𝑡2sin𝑥 − 6𝐵 + 2𝐵3𝑡
+ 6𝐵3𝑡𝑐𝑜𝑠𝑥4 + 6𝐵𝑐𝑜𝑠𝑥2 − 8𝐵3𝑡𝑐𝑜𝑠𝑥2 + 24𝐵𝑡𝑐𝑜𝑠𝑥2 − 12𝐵𝑡) 

 
Continuing in this way, the closed form solution is found as (20). 

𝑦(𝑥, 𝑡) = 𝐵𝑠𝑖𝑛𝑥(1 +
𝑡

1!
+

𝑡2

2!
+

𝑡3

3!
+ ⋯ )         (20) 

Again, it has been observed that the solution obtained by Laplace-Adomian Decomposition Method is compatible 
with each other when compared to the Homotopy Analysis Method solution. 

The parameters of the normally distributed random variable 𝑋 are 𝐵~𝑁(𝜇, 𝜎2). Using the moment-generating 
function of the normal distribution, we get 

𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋] = 𝑒
1

2
𝜎2𝑡2+𝜇𝑡          (21) 

from (17), the 1st and 2nd moment of the random variable 𝐵~𝑁(𝜇, 𝜎2) are, 

𝐸[𝐵] = 𝜇,     𝐸[𝐵2] = 𝜎2 + 𝜇2,        
 

is calculated as. If the basic properties of the expected value for the 𝑋 and 𝑌 independent random variables are used, 
the expected value of equations (16) and (20) is: 

𝐸[𝑦(𝑥, 𝑡)] = (𝑥 + 𝑡𝑥 +
1

2
𝑡2𝑥 −

1

6
𝑥3 + ⋯ ) 𝐸(𝐵) = (𝑥 + 𝑡𝑥 +

1

2
𝑡2𝑥 −

1

6
𝑥3 + ⋯ )   (22) 

The expected value (22) is obtained. If 𝐵~𝑁(𝜇 = 2, 𝜎2 = 4) is specially selected, 
 

𝐸[𝑦(𝑥, 𝑡)] = 2 (𝑥 + 𝑡𝑥 +
1

2
𝑡2𝑥 −

1

6
𝑥3 + ⋯ )      

 
is obtained. If the expected value is plotted with MATLAB (2013a) for the given parameter values, the graph in Figure 1. 
is obtained. 
 

 

 

Figure 1. The solution behavior of the expected value of 
equations (16) and (20) for 𝐵~𝑁(𝜇 = 2, 𝜎2 = 4) special 
values.. 
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If the basic properties of the variance are used for each random variable X, the variance of equations (16) and (20) 
is calculated as (24). 

 
𝑉𝑎𝑟(𝐵) = 𝐸(𝐵2) − [𝐸(𝐵)]2 = 𝜎2 + 𝜇2 − 𝜇2 = 𝜎2       (23) 

𝑉𝑎𝑟[𝑦(𝑥, 𝑡)] = (𝑥 + 𝑡𝑥 +
1

2
𝑡2𝑥 −

1

6
𝑥3 + ⋯ )

2

𝑉𝑎𝑟(𝐵)        

 
If the value in (23) is substituted, 
 

𝑉𝑎𝑟[𝑦(𝑥, 𝑡)] = (𝑥 + 𝑡𝑥 +
1

2
𝑡2𝑥 −

1

6
𝑥3 + ⋯ )

2

𝜎2     

 
is obtained. If 𝐵~𝑁(𝜇 = 2, 𝜎2 = 4) is specially selected, 

 

𝑉𝑎𝑟[𝑦(𝑥, 𝑡)] = 4 (𝑥 + 𝑡𝑥 +
1

2
𝑡2𝑥 −

1

6
𝑥3 + ⋯ )

2

      

 
is obtained. Figure 2. is obtained if the variance is plotted with MATLAB (2013a) for the given parameter values. 

 

 

Figure 2. Solution behavior of the variance of equations (16) and (20) for 
𝐵~𝑁(𝜇 = 2, 𝜎2 = 4) special values.. 

 

The expected value and variance values for  are given in Table 1. 

Table 1. Table for the expectation value and variance with 𝑥 = 0.5 

t 𝑬[𝒚(𝒙, 𝒕)] 𝑽𝒂𝒓[𝒚(𝒙, 𝒕)] 

0.0 0.9583333333 0.9184027780 

0.1 1.063333333 1.130677778 

0.2 1.178333333 1.388469445 

0.3 1.303333333 1.698677778 

0.4 1.438333333 2.068802778 

0.5 1.583333333 2.506944445 

0.6 1.738333333 3.021802778 

0.7 1.903333333 3.622677778 

0.8 2.078333333 4.319469448 

0.9 2.263333333 5.122677780 

1.0 2.458333333 6.043402780 
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The standard deviation is equal to the square root of the variance. 
 

          (24) 

 
Confidence intervals for expected values of random variables, 
 

        (25) 

is equation to and this can be obtained through standard deviations. For , this formula gives approximately %99 

confidence interval for the approximate expected value of the normally distributed random variable [14]. If the %99 
confidence interval is plotted with MATLAB (2013a), the graph in Figure 3. is obtained. 
 

 

Figure 3. The solution behavior of the %99 confidence interval of equations 
(16) and (20) for 𝐵~𝑁(𝜇 = 2, 𝜎2 = 4) special values.. 

 

Example 2. 
 
We will then consider the following random partial differential equation 

          (26) 

random partial differential equation is subject to the following initial conditions. 

            (27) 

Where   is parameter with Gamma distribution. 

To solve (26)-(27) by means of  Laplace-Adomian Decomposition Method, making the Laplace transform of equation 
(26). 

By applying the present method, 

         

  

      (28) 

  

 

         (29) 
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… 
equations are obtained. 

If the values   are written and edited in (14), 

 

    

             (30) 
equation (30) is obtained. If the equation opens to Taylor series; 

  (31) 

solution is obtained. If the random variable  has a gamma distribution, using the moment generating function, 

          

from the expression, the 1st and 2nd moment of the random variable  

 

,     

        

is calculated as. If the basic properties of the expected value for the  and  independent random variables are used, 

the expected value of equation (31) is 
 

𝐸[𝑦(𝑥, 𝑡)] = (
1

4
−

1

4
𝑥 +

5

4
𝑡 +

1

16
𝑥2 −

5

8
𝑡𝑥 +

25

16
𝑡2 +

1

48
𝑥3 −

5

16
𝑡𝑥2 +

25

16
𝑡2𝑥 − 

125

48
𝑡3 + ⋯ ) 𝐸(𝐵)  (32) 

 
is obtained. If the moment value found above is substituted in the expression (32), 

 

𝐸[𝑦(𝑥, 𝑡)] = (
1

4
−

1

4
𝑥 +

5

4
𝑡 +

1

16
𝑥2 −

5

8
𝑡𝑥 +

25

16
𝑡2 +

1

48
𝑥3 −

5

16
𝑡𝑥2 +

25

16
𝑡2𝑥 −

125

48
𝑡3 + ⋯ )

𝜔

𝜆
   (33) 

 

the expected value is found as (33). If  is specially selected, 

 

𝐸[𝑦(𝑥, 𝑡)] = (
1

4
−

1

4
𝑥 +

5

4
𝑡 +

1

16
𝑥2 −

5

8
𝑡𝑥 +

25

16
𝑡2 +

1

48
𝑥3 −

5

16
𝑡𝑥2 +

25

16
𝑡2𝑥 −    

125

48
𝑡3 + ⋯ )

2

3
   

 
is obtained. If the expected value is plotted with MATLAB (2013a) for the given parameter values, the graph in Figure 4. 
is obtained. 
 

 

Figure 4. The solution behavior of the expected value of equation (31) for 
𝐵~𝐺𝑎𝑚𝑚𝑎(𝜔 = 2, 𝜆 = 3)  special values.. 
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𝑉𝑎𝑟(𝐵) =
𝜔(𝜔+1)

𝜆2 − (
𝜔

𝜆
)

2

=
𝜔

𝜆2          (34) 

 

𝑉𝑎𝑟[𝑦(𝑥, 𝑡)] = (
1

4
−

1

4
𝑥 +

5

4
𝑡 +

1

16
𝑥2 −

5

8
𝑡𝑥 +

25

16
𝑡2 +

1

48
𝑥3 −

5

16
𝑡𝑥2 +

25

16
𝑡2𝑥 −

125

48
𝑡3 + ⋯ )

2

𝑉𝑎𝑟(𝐵) (35) 

 
To calculate the variance of equation (31), if (34) is substituted in (35), the variance value is calculated as follows. 
 

𝑉𝑎𝑟[𝑦(𝑥, 𝑡)] = (
1

4
−

1

4
𝑥 +

5

4
𝑡 +

1

16
𝑥2 −

5

8
𝑡𝑥 +

25

16
𝑡2 +

1

48
𝑥3 −

5

16
𝑡𝑥2 +

25

16
𝑡2𝑥 −

125

48
𝑡3 + ⋯ )

2 𝜔

𝜆2  

   
If 𝐵~𝐺𝑎𝑚𝑚𝑎(𝜔 = 2, 𝜆 = 3) is specially selected, 
 

𝑉𝑎𝑟[𝑦(𝑥, 𝑡)] = (
1

4
−

1

4
𝑥 +

5

4
𝑡 +

1

16
𝑥2 −

5

8
𝑡𝑥 +

25

16
𝑡2 +

1

48
𝑥3 −

5

16
𝑡𝑥2 +

25

16
𝑡2𝑥 −

125

48
𝑡3 + ⋯ )

2 2

9
  

    
is obtained. Figure 5. is obtained if the variance is plotted with MATLAB (2013a) for the given parameter values. 
 

 

Figure 5. The solution behavior of the variance of equation (31) for 
𝐵~𝐺𝑎𝑚𝑚𝑎(𝜔 = 2, 𝜆 = 3)  special values.. 

 

The expected value and variance values for 𝑥 = 0.5 are given in Table 2. 
 

Table 2. Table for the expectation value and variance with 𝑥 = 0.5 
t 𝑬[𝒚(𝒙, 𝒕)] 𝑽𝒂𝒓[𝒚(𝒙, 𝒕)] 

0.0 0.09548611114 0.004558798709 

0.1 0.1666666667 0.01388888889 

0.2 0.2586805555 0.03345781493 

0.3 0.3611111111 0.06520061729 

0.4 0.4635416667 0.1074354384 

0.5 0.5555555556 0.1543209878 

0.6 0.6267361110 0.1963990766 

0.7 0.6666666669 0.2222222222 

0.8 0.6649305551 0.2210663222 

0.9 0.6111111110 0.1867283952 

1.0 0.4947916670 0.1224093967 
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If (24) and (25) equations are used, for 𝐾 = 3; If the 
interval (0, 2.05) is taken into account, the %98 
confidence interval of the expected value of the random 
variable showing the Gamma distribution is plotted with 
MATLAB (2013a), and the graph in Figure 6. is obtained. 
 

 

Figure 6. The solution behavior of the %99 confidence 
interval of equation (31) for 𝐵~𝐺𝑎𝑚𝑚𝑎(𝜔 =
2, 𝜆 = 3)  special values.. 

 

Conclusions 
 

In this study,  a hybrid method Laplace Addomain 

Decomposition Method is applied to find the solution of 

some important   partial differential equations which are 

randomized with the help of Normal and Gamma 

distributions. We conclude that the Laplace Addomain 

Decomposition Method (LADM) is a powerful and efficient 

technique that can be used to find the approximate 

analytical solution of nonlinear random partial differential 

equations. The analytical solution of the given problem is 

given with the help of power series. The initial conditions 

or coefficients of Random PDD were selected from the 

Normal and Gamma distribution, and expected value, 

variance and confidence intervals, which are the main 

probability characteristics, were obtained to analyze 

random effects. 
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