
Computers and Informatics

2757-8259 2022, Volume 2 Issue 1
Research Article

1

Real-Time calculation of common power quality indices on

Linux RT-Patch

Mehmet Gök

Kahramanmaraş İstiklal University, Department of Digital Game Design, Kahramanmaraş, Turkey, gokmehmet@outlook.com

İbrahim Sefa

Gazi University, Department of Electrics and Electronics Technology Engineering, Ankara, Turkey

Submitted: 22.04.2022

Accepted: 07.06.2022

Published: 30.06.2022

Abstract:

Use of Linux with real-time capabilities is a common study in control systems and data processing due to

programmer-friendly libraries, huge community support and free software. Real-time Linux with low-cost single

board computers (SBCs) present a powerful evaluation environment for developers and researchers today. In this

paper, a power signal processing application using Linux RT-Patch is realized. To evaluate the application, both real-

time and non-real-time versions tested on single board computers Beaglebone Black and Raspberry Pi 3. Under

load conditions, the non-real-time version of the application failed on Beaglebone Black by exceeding the real-time

dead-line time of 20 ms consecutively. Raspberry Pi 3 succeeded even with non-real-time operation under load

conditions. For both computers, the real-time version of the applications succeeded with a mean processing time

under 10 ms. According to processing times, real-time operation brings a great performance enhancement

particularly on Beaglebone Black with single core ARM processor. The measurement results show that the proposed

system can be used for smart power metering and power signal acquisition purposes.

Keywords: Harmonics detection, Real-time operating system, RT-Patch, Single Board Compute

© 2022 Published by peer-reviewed open access scientific journal, CI at DergiPark (https://dergipark.org.tr/tr/pub/ci)

Cite this paper as:
Gök, M. & Sefa, İ. Real-Time calculation of common power quality indices on Linux RT-

Patch, Computers and Informatics, 2022, 2(1), 1-13.

1. INTRODUCTION

In an AC electricity network, harmonics are defined as periodical voltage and current components

overlapping the mains signal. The fundamental harmonic sources are non-linear time-varying loads,

digitally controlled equipment such as variable speed motor drives, solid state switching components

and lighting ballasts and etc. Overheating of wires and transformers, malfunction of relays and breakers,

over voltage and flicker effect are the major effects of harmonics. Increasing the harmonic level may

also result in economic losses. Hence harmonics have to be monitored and determined with adequate

equipment to be taken the preventive measures [1-4].

There have been many different hardware and software applied to determine the harmonics in real-time

in the literature. DSP (Digital Signal Processor), FPGA (Field Programmable Gate Arrays) and MCU

(Microcontoller Unit) and combined solutions integrating those units together, have been used so far

[5-9]. In most of those studies bare metal software or RTOS (Real Time Operating System) were used to

https://dergipark.org.tr/tr/pub/ci
https://orcid.org/0000-0003-1656-5770
https://orcid.org/0000-0002-2093-683X
https://dergipark.org.tr/en/pub/ci/issue/70317/1107323

Computers and Informatics

2

determine the harmonics. Recently, Linux based approaches attract the attention of researchers because

of the integration with a general-purpose OS (Operating System) advantages [10].

Nowadays, Linux based operating systems are common among servers, desktop computers and

embedded devices in contrast to mobile devices running Android OS [11]. Linux based operating

systems provide system developers with wide range of libraries and development tools. Being royalty

free and availability for embedded systems move Linux derived operating systems one step ahead. In

addition to this, having real-time capabilities Linux based operating systems are preferred more in

industrial applications [12-14]. Also, real-time applications with Linux may be promising for many

research areas such as robotics and signal processing.

In this study, hardware equipped with RT-Patched Linux is proposed to monitor and determine the

harmonics with logging capability. This hardware consists of two parts: USB connected data acquisition

device and a single board computer: Raspberry Pi 3 or Beaglebone Black. These devices were

benchmarked against harmonics monitoring and determination. Experiment results show that both

devices are feasible for the task with the use of RT-Patched Linux. In this way, a low-cost harmonics

determination and recording task can be executed without the use of complex and costly commercial

harmonics analyzers.

This study investigates the advantages of using RT-Patch for a real-time power signal processing

application. The main contribution of this study is to show that real time power signal analysis and

monitoring are possible with-use of low power and cost-effective single board computers running RT-

Patched Linux.

In the next sections, the related studies in the literature are first given and then the proposed system is

also presented. Evaluation results of the real-time harmonics detection system are then discussed. Lastly,

we give conclusions of the study based on obtained results and highlights directions for future work.

2. RELATED WORK

The literature survey for this manuscript is classified into two sections: the studies on power signal

processing and research on real-time feature enablement within Linux. This work aims at contributing

to the research in real-time harmonics measurement by merging knowledge given in those sections.

2.1. Model

The paper [10] present a preliminary application for power signal processing with use of RT-Patched

Linux. The authors illustrated a data acquisition test at two different sampling rates (1 ksps and 5 ksps).

The application is evaluated with non-real time and real-time with Linux running on a single board

computer with Allwinner Tech A20 System On Chip (SoC). Analog-digital converter (ADC) integrated

circuit is interfaced to SoC via serial peripheral interface (SPI) bus. RT-patch powered Linux kernel is

successful at 1 ksps sampling rate. However, the jitter is too high for the target application at 5 ksps

sampling rate. A Field Programmable Gate Array (FPGA) based design is recommended to control ADC

and buffer the acquired data. Because, gathering data from an ADC requires a hard real-time tasking.

A multi-channel electrical power signal data acquisition and power metering system is illustrated in [5].

The authors developed the system by using FPGA and AD7606 multi-channel simultaneous ADC.

Digitized signal data is read and power parameters voltage, current, active, apparent and reactive power

and CosΦ are calculated. The parameters are displayed on an LCD. This application is designed by using

Computers and Informatics

3

NIOS II soft-core CPU providing a flexible way for further applications. But the system does not record

acquired signal data and has no network connection.

The authors in [6] and [7] propose a DSP and FPGA employed power signal processing systems that are

high performance solutions. On the other side, hardware designs of these systems are complex and

developing DSP software may require extra effort. Both the systems do not provide database

connectivity. ARM and DSP based solutions with operating systems µc/Cos-II and Linux are

demonstrated in the papers [8] and [9]. Hardware designs for both solutions are complex as in previous

papers. Also, performance measurements and data logging features are not reported.

Power quality analysis by using virtual instrumentation (VI) with LabVIEW are demonstrated in the papers

[15] and [16]. Software packages like LabVIEW and MATLAB provides researchers with ready-to-use and

powerful functions and visual blocks to evaluate power signal processing algorithms. But these tools

require specialized hardware for real-time operation and end-user equipment design is not a trivial task

with these tools.

2.2. Real-Time Linux Approaches

There are both commercial and open-source approaches to add Linux real-time operating features.

MontaVista Linux and TimeSys Linux can be given as examples for commercial distributions that use

modified Linux kernel to meet real-time requirements. Xenomai Framework and Real Time Application

Interface for Linux (RTAI) are open-source alternatives (extensions) that use dual-kernel structure. Within

this method, standard kernel runs in low priority mode and controlled by real-time kernel [12, 13, 17].

Another approach comes to the stage so called RT-Patch recently. RT-Patch modifies standard Linux

kernel to be able to operate in soft real-time domain for intended purposes. On Linux with RT-Patch,

user processes can be executed within a priority close to kernel processes. Maintaining and deploying a

single kernel operating system may be easier for most cases [12, 13, 17, 18].

A water level control application for two tanks by using RT-Linux and autonomous system tailoring tool

(RT-LEAST) is demonstrated in [19]. RT-Linux is another dual kernel method to gain real-time benefit of

embedded Linux. Standard Linux kernel runs as a process of RT-Linux with the possible lowest priority.

Real-time processes read the water level from sensors and controls the pumps to keep the water level

at a desired setpoint. Water levels of tanks can be observed or set by using GUI of the application runs

over low priority Linux layer. GUI process and real-time process communicates each other via RT-FIFOs.

In this work, measured maximum context switching time is 20 µs and this value is sufficient for such

control tasks. Authors also demonstrate how to customize the Linux to run for a resource constraint

embedded system by using RT-LEAST.

The authors in [17] demonstrate process delay, jitter and rescheduling time measurements on VxWorks,

RTAI, Xenomai and Linux operating systems. VxWorks is a commercial UNIX-like real time operating

system (RTOS). Authors developed a test application that reads data from a multi-channel analog-to-

digital converter (ADC) board and writes a single output on digital-to-analog (DAC) board

corresponding to analog inputs. Test procedure is performed by calculating the time elapsed between

ADC conversion and DAC response measured with an oscilloscope. In the first test case, an interrupt

service routine (ISR) is used for the measurement of delay time. This ISR reads analog inputs and writes

DAC output directly. The minimum delay time is accomplished with VxWorks at 69.20 µs. The minimum

jitter is measured with RTAI at 0.15 µs. However, Linux with no-load condition is better than Xenomai

with 72.8 µs in delay time and better than VxWorks with 0.4 µs in jitter time. In the second test set, ADC

ISR fires a kernel task instead of writing DAC output directly. In that case, rescheduling time is measured

and RTAI has the best timing for jitter and rescheduling delay. Delay time is very close for all operating

systems. Eventually, both Xenomai and RTAI can be considered good open-source alternatives to

Computers and Informatics

4

VxWorks. However, RTAI and Xenomai application development is harder than VxWorks because the

need for kernel mode development.

The paper [12] evaluates the real-time performance of RT-Patched kernel in comparison to original

kernel with the version 2.6.25-4-rt4. They performed two tests by using synthetic real-time and synthetic

best-effort task at the same time. The operating system is booted into single-user mode to minimize the

effect of other processes on the measurement. In these tests, the activation times and jitter are observed.

The results in the first test are nearly the same for both original and patched kernel. First test is

performed by using two cores of CPU and real-time task’s CPU load is fixed at 25%. The second test

realized by using single core of CPU and CPU load of real-time task is fixed at %75. In this test, patched

kernel’s activation period performance is better than original kernel test.

As seen in previous works, several real-time Linux solutions for control and processing fields, have been

developed by engineers up to now. RTAI and Xenomai are the dual kernel approaches including a real-

time microkernel and a Linux kernel with low priority. The lack of this approach is the need to maintain

the microkernel for different types of hardware platforms. In this approach, low priority kernel runs on

hardware abstraction layer (HAL) requiring additional maintenance.

With RTAI, a real-time application is designed as a micro-kernel module making design and debugging

tasks are harder. Descendant of RTAI, Xenomai has moved one step ahead the effort by providing

developers with userspace application programming interface (API) via an emulation layer. However, the

emulation layer development is an additional task over microkernel and HAL. The main advantage of

the dual-kernel approach is providing a safer operation by keeping most of original Linux kernel

untouched [12, 13].

The single kernel real-time Linux is obtained by patching the original Linux kernel without the need for

an extra effort. RT-Patch is directly maintained by kernel developers. Both real-time and non-real-time

applications can run on this system without any modification for the new kernel. The paper [13] reports

that dual-kernel approach guarantees slightly lower latency and better determinism. But ease of use can

make RT-Patch an ideal solution depending on the application. From developer’s perspective,

developing a real-time application is not too much different than standard userspace application

development. Application’s main thread or other worker threads are updated with priority modification

C function “sched_setscheduler” to obtain real-time version over RT-Patched system [10, 18]. As a result,

RT-Patch provides a native method for soft real-time application development.

3. THEORETICAL BACKGROUND

In this study FFT (Fast Fourier Transform), THD (Total Harmonics Distortion), SNR (Signal-to-Noise Ratio)

and frequency calculations are implemented in real-time. FFTW3 library is employed for FFT calculation

[20]. FFT is one of the most used methods used for harmonics calculation [2, 3]. Digitized AC data is

processed in groups of ten periods in accordance with IEC 61000-4-7 specification for 50 Hz power line

frequency [2, 3, 20]. Incoming cycle data is appended to the end of the FFT window and the data of the

first cycle is disposed of. This is a basic implementation of STFT (Short Time Fast Fourier Transform)

transform. STFT is a widely used method for time-frequency analysis of non-stationary signals. STFT

performs DFT operation by using moving window approach with adequate overlapping segments of the

power signal. STFT can be expressed using the Eq. (1) [22].

Computers and Informatics

5

𝑆𝑇𝐹𝑇(𝑡, 𝜔) = ∫ 𝑥(𝜏)𝜔(𝑡 − 𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏

∞

−∞

(1)

where the variable x(τ) is the signal and ω(t- τ) is the window function. The discrete form of STFT can be

represented in Eq. (2) [3].

𝑋𝑆𝐹𝑇𝐹(𝑚, 𝑓𝑘) = ∑ 𝑥(𝑛)ℎ(𝑛 − 𝑚)𝑒−𝑗(
2𝜋
𝑁

)𝑘𝑛

𝑁−1

𝑛=0

(2)

where fk is the kth harmonic frequency and m is an integer indicating the window position on time scale

[3]. The frequency resolution ∆f can be determined by using Eq. (3).

∆𝑓 =
𝑓𝑠

𝑁

(3)

where N is represents the number of samples acquired at the sampling frequency fs [23]. In our case, the

frequency resolution is 5 Hz with the values N=2000 and fs=10 ksps.

Total harmonic distortion (THD) can be expressed as a ratio representing the nonlinear distortion in

circuits in which harmonics (signals whose frequency is an integer multiple of the input signal) are

generated. THD ratio is measured in percent or in decibels (dB), and can be calculated by using Eq. (4).

𝑇𝐻𝐷 =
∑ 𝑈𝑘

2𝑁
𝑘=2

𝑈1

(4)

where: U1 amplitude of first (or fundamental) harmonic, Uk amplitude of k-th harmonic [15, 21]. This

parameter can be calculated by using amplitude values obtained after FFT operation in the previous

step. In this study, harmonics up to 100th can be used for THD calculation due to the 10 ksps sampling

rate. The quality of power signal can be described by the signal-to-noise ratio (SNR). Signal-to-noise

ratio can be calculated by using Eq. (5);

𝑆𝑁𝑅𝑑𝑏 = 10𝑙𝑜𝑔10 (
𝑃𝑥

𝑃𝑛

) = 20𝑙𝑜𝑔10 (
𝑈𝑥

𝑈𝑛

)
(5)

where: Ux amplitude of base frequency signal, Un sum of amplitudes of other signal components.

Amplitudes are used instead of power parameters as in calculation of SNR. In this study, the signal

components up to 6th harmonic are excluded in SNR calculation as the sources of noise resides out of

the fundamental signal components.

Counting of zero crossings is one of the most commonly used method to calculate the power signal

frequency. IEC 61000-4-30 clearly defines the method of the frequency calculation as: “the ratio of the

number of integral cycles counted during the maximally 10 second’s time clock interval, divided by the

cumulative duration of the integer cycles.” In this study, frequency measurement is based on zero-

crossing method. 10 periods of FFT window is used for calculations. Last eight cycles, taking place in the

end of the FFT window, are used for frequency calculation. The number of integer cycles is determined

Computers and Informatics

6

by counting the consecutive negative to positive transitions. Then the frequency is calculated by dividing

elapsed time between first and last zero-crossing points by the number of integer cycles (Eq. 6);

𝑓 =
𝑡[𝑧𝑐𝑖𝑛] − 𝑡[𝑧𝑐𝑖0]

𝑛

(6)

where f is the line frequency, zic is the zero-crossing index, t is the time vector of data samples, n is the

number of integer cycles. 10 periods are used to obtain the lowest possible spectral leakage [3].

4. ARCHITECTURE OF REAL-TIME HARMONICS DETECTION SYSTEM

In order to evaluate of power signal processing within real-time Linux environment, a data acquisition

device and a single board computer are used. Power signal data are digitized and streamed to the

computer through USB connection. On the computer side, a power signal processing application runs

to perform signal processing and required calculations tasks.

The data acquisition device is proposed in our previous work [24]. The device has a high-speed USB-

FIFO interface chip: FT2232H. This chip has two communication channels. First channel is used for control

data acquisition (eg. start or stop acquisition); second channel is used for buffering and transferring

signal data (Fig. 1). Streaming data is buffered by using of 4 KB on-chip memory.

Figure 1. Power signal data acquisition device.

On the computer side, power signal processing application incorporates FTD2XX driver library so as to

read streaming data. This application creates two threads with the same priorities at startup:

thDataGetter and thDataProcessor. First thread, thDataGetter is used to read data brought by device

driver of FT2232H. Then the data is queued by using C++ queue type using push method. Flowchart of

this operation is given in Figure 2. ADC data is queued before processing to avoid data overflow in

hardware FIFO.

Second thread thDataProcessor pops queued signal data from the queue. This data is parsed into related

channels. Parsed data for each channel is added to end of the signal window, which is ten periods length.

Finally power signal data is processed as voltage-current pairs for three phases (Six channels of ADC is

used). FFT, THD, SNR and frequency calculations are implemented in this sequence. For every new period

of analog data (20 ms), these operations are repeated as seen in Fig. 3. These calculations are more time-

Computers and Informatics

7

consuming than the previous implementations in [17] and [19]. For the real-time versions of the threads,

memory locking function “mlockall” is used to avoid remapping page tables causing latencies in context

switching [17].

Figure 2. Flowchart of thread thDatagetter.

Figure 3. Flowchart of thread thDataProcessor.

In this application, signal sampling rate is chosen as 10 ksps. For every period of acquired data in 8

channels, 3200 bytes are transferred to the processing computer. Raw signal data is recorded to SQL

compatible database by using SQLite 3 database engine [25]. Data is inserted to relevant table inside

thDataGetter thread. SQLite database write operations are performed by using “synchronous off” option

in order to protect a real-time thread from being blocked by a disk write operation. This option is safe

unless a power loss or an operating system crash according to SQLite documentation.

The signal processing application is a console application built with ncurses library as seen in Figure 4.

This library provides easy-to-use application programming library (API) to create text-based user

interface design. Signal processing application has two versions: real-time and non-real-time. The real-

time version of the application is obtained by adding priority modification calls to the non-real-time

version.

Recorded raw signal data can be downloaded over network by a web interface running independently

from data acquisition and data processing application shown in Fig. 5. This web interface is served by

using Python and Flask. Flask is a micro framework for Python web application development [26]. The

Computers and Informatics

8

web application serves acquired data from database file to user interface via AJAX (Asynchronous

JavaScript and XML) calls. Also, power signal processing application can be controlled remotely by using

web interface. In this way complexity of the application is resolved by using a low-priority separate

application model.

Figure 4. Native user interface of the proposed application.

Figure 5. Web-based interface of proposed application.

5. EXPERIMENTAL SETUP

Performance tests of the system are realized by measuring the harmonics on an AC power line with an

RMS value of 220 volts with 50 Hz as fundamental frequency. SCT-013-30A split core current transformer

is used to convert current to voltage. A potential transformer with 6 volts RMS seconder voltage is used

to reduce the voltage of the line seen in Fig. 6. Seconder voltage is applied to differential inputs by using

voltage divider to half. Single phase voltage and current are monitored in this way illustrated in Fig. 7.

Other phases of the line are monitored by using same scheme.

Figure 6. Photograph of the experimental setup.

Computers and Informatics

9

Figure 7. Block diagram of the testbed.

6. PERFORMANCE RESULTS

Performance measurements have been carried out on single board computers Raspberry Pi 3 and

Beaglebone Black by using both real-time and non-real-time versions of the application. On Beaglebone

Black, Ubuntu 16.04 OS with kernel version 4.1.29-bone-rt-r22 is used and on Raspberry Pi 3, Debian 8

OS with kernel version 4.4.9-rt17-v7+ is preferred. Both real-time and non-real-time tests have been

performed with these kernels.

Package processing time is the metric to exhibit the differences of two versions. Processing time is the

sum of the computation times of FFT, RMS, Frequency, THD and SNR parameters. Timing calculations

are observed for 2500 periods of power line signal (During 0.02 x 2500 = 50 sec).

For the non-real-time versions of application, the performance measurements are given in Table 1. In

this case, there are no other user application or operation running on the systems. These test results

show that processing time takes lower time on the Raspberry Pi 3 with multi-core CPU as expected.

Standard deviation on Raspberry Pi 3 is significantly lower than on Beaglebone Black as can be seen in

Figure 8. The horizontal axis of the graph indicates the number of data processing sequence repeated

for every period of ac signal data; the vertical axis indicates the time taken by processing phase.

According to this measurement, both SBCs are able to meet real-time requirements.

Table 1. Processing times for the non-real-time versions of proposed software with no load.

Processing Time (µs) Beaglebone Black Raspberry Pi 3

Minimum 5669 2307

Maximum 21778 8038

Mean 7785 2516

Standard Deviation 2548 233

Figure 8. Processing times for non-real-time version with no load; (a) Beaglebone Black, (b) Raspberry Pi 3.

Computers and Informatics

10

The results given in Table 2 are the measurement results when a file copy operation over Secure Shell

(SSH) performed with non-real-time version of signal processing application. File copy operation uses

CPU, memory, network and disk resources together. Therefore, this operation is selected to realize a real

load condition for the OS. The starting and finishing times of the file copy operations can be clearly

observed in the graph given in Figure 9. For the Raspberry Pi 3, timings do not change much between

load and no-load conditions. These results show that the multi-core and multi-threaded application

model can be considered as a solution for real-time applications. Non real-time version of the proposed

application on Beaglebone Black has moved away from meeting real-time requirements under load

condition.

Table 2. Processing times for non-real-time versions of proposed software under load.

Processing Time (µs) Beaglebone Black Raspberry Pi 3

Minimum 5530 2313

Maximum 99130 18724

Mean 16821 2708

Standard Deviation 12728 1201

Figure 9. Processing times for non real-time version under load; (a) Beaglebone Black, (b) Raspberry Pi 3.

Maximum processing time for Beaglebone Black is too high (99130 µs) and this duration may cause

overflow of FIFO buffer on FTDI interface chip. File copy operation takes about 20 seconds on

Beaglebone Black and about 5 seconds on Raspberry Pi 3.

The performance measurements for real-time version of the application are given in Table 3. Minimum,

maximum and mean processing times show that both Raspberry Pi 3 and BeagleBone Black are suitable

for a multi-channel power quality parameter calculation application. Low deviation of processing delays

also can be observed in Fig. 10.

Table 3. Processing times for real-time versions of proposed software with no load.

Processing Time (µs) Beaglebone Black Raspberry Pi 3

Minimum 5124 2298

Maximum 6014 2955

Mean 5681 2407

Standard Deviation 78 50

Figure 10. Processing times for non real-time version under load; (a) Beaglebone Black, (b) Raspberry Pi 3.

Computers and Informatics

11

The performance measurements under load condition for real-time version of the application are given

in Table 4. Under load condition Raspberry Pi 3 performs the calculations under 5 ms. The jitter in

processing time is more on Beaglebone Black. The maximum processing time on Beaglebone Black is

lower than non-real-time version, though. This is a significant enhancement over non real-time version.

During file transfer operation, on Beaglebone Black maximum processing time is 8.2 ms satisfying the

real-time requirement. This processing time is far lower than non-real-time version of the application

running on Beaglebone Black under load condition. The changes in processing times can be observed

in Figure 11.

Table 4. Processing times for real-time versions of proposed software under load.

Processing Time (µs) Beaglebone Black Raspberry Pi 3

Minimum 5114 2258

Maximum 8222 2990

Mean 5987 2475

Standard Deviation 491 103

Figure 11. Processing times for the real-time versions of the application under load; (a) Beaglebone Black, (b)

Raspberry Pi 3.

In this experiment, file copy operation takes about 30 seconds on Beaglebone Black and 6 seconds on

Raspberry Pi 3. Beaglebone Black spends nearly 10 seconds more for file transfer operation because

real-time tasks steals more time from kernel-level tasks in this experiment. The difference is about 1

second for Raspberry Pi 3 because of CPU core-distributed tasks. As seen in Figure 10 and Figure 11,

real-time operation presents more stable processing times.

7. CONCLUSIONS

This study demonstrates a real-time power quality parameter calculation application on single board

computers Beaglebone Black and Raspberry Pi 3 running on RT-patched Linux. On the first occasion,

Raspberry Pi 3 is the winner for both real-time and non-real-time versions of the application under load

and no-load conditions. This result shows that how a multi-threaded application model can be efficient

on multi-core CPUs. However, choosing the real-time version of the application is the fair way to assure

the real-time operation due to non-deterministic nature of the scheduler. On the second occasion, non-

real-time version of the application running on Beaglebone Black fails under load conditions. This is an

expected situation due to the kernel level operations have higher priorities than user level processes.

Beaglebone Black has a single core CPU which cannot handle this type of operations. Real-time version

of the application performs real-time operation in 11 ms satisfying the requirements as in no-load

condition. In this case real-time threading keeps the calculations being suspended by kernel level

processes. This result shows that a single board computer with single-core CPU can be used for real-

time power system harmonics detection and power metering applications with RT-pathed OS.

Computers and Informatics

12

For the future work, ADC will be interfaced to Beaglebone Black processor via an FPGA by eliminating

the need for USB connection. Latencies due to the USB packet processing mechanism, will be further

decreased in this way. Test cases will be repeated by employing both RT-Patched kernel and Xenomai

Framework in a comparative manner.

REFERENCES

[1] Yılmaz, A.S., Alkan, A., & Asyalı, M.H. Applications of parametric spectral estimation methods on

detection of power system harmonics. Electr Power Syst Res 2008, 78(4), 683-693.

[2] Sadinezhad, I. & Agelidis, V.G. Slow sampling on-line harmonics/interharmonics estimation

technique for smart meters. Electr Power Syst Res 2011, 81(8), 1643-1653.

[3] Jain, S.K. & Singh, S.N. Harmonics estimation in emerging power system: key issues and challenges.

Electr Power Syst Res 2011, 81(9), 1754-1766.

[4] Li, P., Li, X., Li, J., You, Y., & Sang, Z. A real-time harmonic extraction approach for distorted grid.

Mathematics 2021, 9(18), 1-20.

[5] She, X. & Xiong, J. Multi-channel electrical power data acquisition system based on AD7606 and

NIOSII. 2011 International Conference on Electrical and Control Engineering 2011, 1625-1627.

[6] Wenyi, L. & Hongcheng, Y. Design of high speed synchronous multi-channel data acquisition and

processing system based on TMS320C6747. 2010 The 2nd International Conference on Computer

and Automation Engineering 2010, 758-760.

[7] Zhang, M. & Li, K. DSP-FPGA based real-time power quality disturbances classifier. 2010 IEEE PES

Transmission and Distribution Conference and Exposition 2010, 1-6.

[8] He, Z. & Liao, Y. The design of analog acquisition system in distribution automation. 2012 China

International Conference on Electricity Distribution 2012, 1-4.

[9] Wang, A., Pan, F., Li, Y., & Tao, R. The design of power quality detecting system based on OMAP-

L138, IEEE 13th Workshop on Control and Modeling for Power Electronics 2012, 1-4.

[10] Dias, R.A., Souza, T.E., & Noll, V. Experimental analysis of the Linux RT-patched for acquisition

applied to power sector. Int J Comput Appl 2014, 101, 43-49.

[11] Perneel, L., Fayyad-Kazan, H., & Timmerman, M. Can Android be used for real-time purposes? 2012

International Conference on Computer Systems and Industrial Informatics 2012, 1-4.

[12] Betz, W., Cereia, M., & Bertolotti, I.C. Experimental evaluation of the Linux RT patch for real-time

applications. 2009 IEEE Emerging Technologies & Factory Automation Conference 2009, 1-4.

[13] Vun, N., Hor, H.F., & Chao, J.W. Real-time enhancements for Embedded Linux. 2008 14th

International Conference on Parallel and Distributed System 2008, 737-740.

[14] Vujović, V. & Maksimović, M. Raspberry Pi as a Sensor Web node for home automation. Comput

Electr Eng 2015, 44, 153-171.

[15] Chen, Y. Research and design of intelligent electric power quality detection system based on VI. J

Comput 2010, 5(1), 158-165.

[16] Miron, A., Chindriş, M.D., & Cziker, A.C. Software tool for real-time power quality analysis. Adv Electr

Comp Eng 2013, 13(4), 125-132.

[17] Barbalace, A., Luchetta, A., Manduchi, G., Moro, M., Soppelsa, A., & Taliercio, C. Performance

comparison of VxWorks, Linux, RTAI and Xenomai in a hard real-time application. IEEE Trans Nucl

Sci 2008, 55(1), 435-439.

[18] Reghenzani, F., Massari, F., & Fornaciari, W. The real-time Linux kernel: A survey on Preempt_RT.

ACM Comput Surv 2019, 52(1), 1-36.

[19] Vidal, J., Mendoza, P., Vila, J., Crespo, S., & Sáez, S.A. Minimal RT-Linux embedded system for control

applications. 2002 IFAC 15th Triennial World Congress 2002, 249-254.

[20] Frigo, M. & Johnson, S.G. The design and implementation of FFTW3. Proceedings of the IEEE 2005,

93(2), 216–231.

Computers and Informatics

13

[21] Radil, T. & Ramos, P.M. Methods for estimation of voltage harmonic components. Power Quality,

A. Eberhard (Ed.), Rijeka, Croatia: InTech 2011, 13, 255-270.

[22] Han, J., Kim, W., & Kim, C. Fault type classification in transmission line using STFT. 11th IET

International Conference on Developments in Power Systems Protection 2012, 1-5.

[23] Lima, A.A.M., Cerqueira, A.S., Carlos, A.D., & Oliveira, E.J. Estimation of harmonics and

interharmonics based on single channel independent component analysis. 16th International

Conference on Harmonics and Quality of Power 2014, 298-302.

[24] Gök, M., Görgünoğlu, S., & Sefa, İ. Design of a real-time USB interfaced multi-channel power system

harmonics detection system. 9th International Conference on Electrical and Electronics Engineering

2015, 521-524.

[25] SQLite database engine. Accessed on: Oct. 3, 2020. [Online]. Available: https://www.sqlite.org

[26] Flask: a Python micro-framework for web. Accessed on: Oct. 3, 2020. [Online]. Available:

https://flask.palletsprojects.com

