Cilt 11, Say1 3, Sayfa 134-149, 2022 Volume 11, Issue 3, Page 134-149, 2022

Aragtirma Makalesi https://doi.org/10.46810/tdfd.1099472 Research Article

-;é"““i“"k\ Tiirk Doga ve Fen Dergisi PR

>

Turkish Journal of Nature and Science f\ 'y

&
19y

gg_15

_—— / &
%, s
2007 g www.dergipark.gov.tr/tdfd Nggries

On Travelling Wave Solutions of Dullin-Gottwald-Holm Dynamical Equation and Strain
Wave Equation

Seyma TULUCE DEMIRAY?Y, Merve DAVARCI YALCIN?

1 Osmaniye Korkut Ata University, Department of Mathematics, Osmaniye, Tiirkiye
2 Osmaniye Korkut Ata University, Department of Mathematics, Osmaniye, Tiirkiye
Seyma TULUCE DEMIRAY ORCID No: 0000-0002-8027-7290
Merve DAVARCI YALCIN ORCID No: 0000-0002-4862-7836

*Corresponding author: seymatuluce@gmail.com

( Received: 06.04.2022, Accepted: 15.09.2022, Online Publication: 29.09.2022)

Keywords Abstract: In this study, extended trial equation method (ETEM) is implemented to
The Dullin-Gottwald- obtain exact solutions of the Dullin-Gottwald-Holm Dynamical equation (DGHDE)
Holm Dynamical equation, and the strain wave equation. We constitute some exact solutions such as soliton
The strain wave equation, solutions, rational, Jacobi elliptic, periodic wave solutions and hyperbolic function
Extended trial equation solutions of these equations via ETEM. Then, we present results that we obtained by
method, using this method.

Soliton solutions,

Rational Jacobi elliptic and
hyperbolic function
solutions.

Dullin-Gottwald-Holm Denklemi ve Gergin Dalga Denkleminin Hareketli Dalga Coziimleri

Uzerine
Anahtar Kelimeler Oz: Bu calismada, Dullin-Gottwald-Holm Dinamik denkleminin ve gergin dalga
Dullin-Gottwald-Holm denkleminin kesin ¢6ziimlerini elde etmek i¢in genisletilmis deneme denklem
Dinamik Denklemi, metodu uygulanmistir. Bu denklemlerin soliton ¢6ziimleri, rasyonel, Jacobi eliptik,
Gergin dalga denklemi, periyodik dalga ¢6ziimleri ve hiperbolik fonksiyon ¢oziimleri gibi bazi kesin
Genisletilmis deneme ¢oziimleri genisletilmis deneme denklem metodu ile elde edilmistir. Daha sonra bu
denklem metodu, yontemi kullanarak elde ettigimiz sonuglar sunduk.

Soliton ¢oziimler,
Rasyonel Jacobi eliptik ve
hiperbolik fonksiyon
¢Oziimler.

1. INTRODUCTION

In recent years, travelling wave solutions are substantially significant subject matter in biophysics, geophysical sciences,
chemical kinematics, optical fibers, the technology of space, elastic media and some issues in nonlinear sciences. Recently
many scientists have applied various methods to obtain travelling wave solutions of NLEEs (nonlinear evolution
equations) such as Hirota’s direct method [1], Jacobi elliptic function method [2], new version of the trial equation method
[3], (G'/G)—expansion method [4], tanh-coth method [5] etc. In this work, the ETEM [6,7] will be performed to get exact
solutions of the DGHDE and the strain wave equation.

Firstly, we tackle the following the DGHDE [8]

u, +hu, —h (U, +uu, +2uu, )+3uu, +hu,, =0,t>0, )
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where fluid velocity of system is symbolized by U in spatial direction X.

hz2 (h2 > 0) and hﬂ indicate squares of length scales, and h1 = \/ gh (where h1 = 2) demonstrates the linear wave
3

speed for undisturbed water at rest at spatial infinity. G. M. Octavian has submitted the analysis of wave-breaking

solutions to Eq. (1) [9]. M. H. Raddadi et al. have obtained solitary wave solutions of Eq. (1) by using new extended

direct algebraic method [10]. R. K. Gupta and B. Anupma have found exact solutions of Eq. (1) via Lie Classical method

[11].

Secondly, we investigate the strain wave equation given below [12]:

U, —uxx—y(al(uz)xx—asum+a4um):0, @)

where ¥ shows elastic strain, &, 03 and &, are arbitrary constants. Kumar et al. have found new exact solitary wave

solutions of Eq. (2) by using generalized exponential rational function method [13]. M. G. Hafez and M. A. Akbar have
obtained multiple explicit and exact traveling wave solutions of this equation by using an exponential expansion method
[14].

The arrangement of this study was done as follows. In Sec. 2, we perform ETEM on DGHDE and strain wave equation.
In Sec. 3, the results acquired using this method are expressed.

2. FUNDAMENTALS OF THE ETEM

Step 1. For a known nonlinear partial differential equation
P(u,u,U,,Uy,...)=0 @3)

we get the wave transformation as

N
u(xl,xz,...,xN,t)zu(n),nzl(ij—Ctj, 4)
j=1
where 4 #0, ¢ # 0. Accommodating Eq. (4) into Eq. (3) satisfies a nonlinear ordinary differential equation,
N (u,u’,u",...)=0. ®)
Step 2. Presume that the trial equation of Eq. (5) can be indicated as following:
5 .
u=>rI", ®)
i=0

where

(r')z =A(F): ¢(F) _ E 4+ +ET+E

1//(1")_561"*‘”+...+51F+§o' @)

Considering relations (8) and (9), we can have

() =%[2w} , ©

(ii(i—l)ril“”j, o)
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where ¢(F) and ://(F) are polynomials. Putting these terms into Eg. (5) ensures an equation of polynomial Q(F) of
I
Q(M)=0I°+...40[ +0,=0. (10)

In accordance with balance principle, we can describe a relation of ¢, & and O . We can find some values of 9, £ and
0.
Step 3. Letting the coefficients of Q(F) all be zero will satisfy an algebraic equations system:

o.=0, 1=0,...,s (11)

Solving equation system (11), we will define the values of fo, . --,fg; 40,--~,§g and Tpy..vy T
Step 4. Simplify Eq. (7) to elementary integral shape,

+(17-1) I o \/7 (12)

Applying a complete discrimination system for polynomial to classify the roots of Q(F) , We solve the infinite integral

(12) and categorize the exact solutions for Eq. (3).

3. IMPLEMENTATIONS OF THE ETEM

In this chapter, we implement the ETEM to the DGHDE and the strain wave equation, respectively.
3.1. Implementation on the DGHDE

In an attempt to find travelling wave solutions of Eq. (1), we take the transformation

u(x,t)=U(n), n=x-vt, v=0. (13)
Then, we get
vhZ(U") —vU'+hU’'—h2U (U") +h,(U") +3UU"-2h2UU" =0. (14)

Also, integrating Eq. (14) according to 77 and getting the integration constant to zero, we attain

2
U” (R (<v)—hy +h2U )~ (h —v)U —3UT+ (U = (15)
Embedding Egs. (8) and (9) into Eq. (15), and utilizing the balance principle, we gain

F=e+2. (16)

Then, we procure the corollaries as follows:
Case 1: If we choose £ =0, 6 =1 and 4= 2,then,

(A7)

N2 712 §0+F§1+r2§2
wy == % )
u” — Tl (§l+2r§2)

(18)
264
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where 52 =0, CO #0. Substituting Eq. (6), Eg. (17) and Eq. (18) into Eq. (15), we get an algebraic equation system.

Then, by using Wolfram Mathematica 12, fo, 51, fz,go and V coefficients are obtained as following

_ _ _ h &z
60 50 ’él gl’ 52 h3—|—h22(hl—+-2/l'0),
hé&n
T, =Ty T, =10y, §p = ,
0 =70 T1 =73, G h3+h22(hl+22'0)
__égl(ha"'hzzhsz'o+h;7§+h1h22(h3+h2270))+ (19)
h; (hhi +h; )&,
h & (hy+h (b +2z,))7,

h7 (hhz +hy )&

Embedding Eq. (19) into Egs. (7) and (12), we acquire

dr
£(n-1,) = Af , @
\/50 + él“ +I?

S %

where A= é =h,.
2

Integrating Eq. (20), we gain the solutions of Eq. (1) as follows
(7-m,)=An(T-a) (21)
i(n—n0)=2A|n[\/F—al+\/F—az]a2>a1. (22)
Moreover, &;and &, are the roots of the polynomial equation,
F2+éf+é=0. (23)

2, 9
Embedding Eq. (21) and Eqg. (22) into Eqg. (6), we can find the following exact traveling wave solutions for Eq. (1),
respectively:

((x=vt)-no )

u(x,t)=ro+7|a+e " |, (24)

| 2(en+a,)+e

1t = - ’
u(x,t) To+4 (25)

+(og—a,) e

where

. _51(h3+h22h370 +h:T§ +h1h22(h3+h2270))+ hz2 g"o(h3+h22(h1+22'0)>2'1
h (hhi +hy)& he(hh+h)s
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For simplicity, we take 7], = 0, Ty = —7,04, then Eq. (24) is reduced to the single king solution,

For simplicity, we take 7] = 0, o, =1, a, = 0, then Eq. (25) is reduced to the hyperbolic function solution,

u(x,t)= ro+—(1+cosh(B(x vt))),

where

i =& (h+hihg, + +hlh2(h3+h2r0))+ h? & (hy +he (h+21,))z,
hzz(hlh5+h3)§1 h; (hh7 +hy)&

Case 2: If we choose £ =0, 6 =2and 9= 2,then

N2 n,+2lz, 2 §0+F§1+F2§2
e oriors)

4, (fo +Ig +r2§2)+ (&+2rE,)(r,+207,)
) 2, '

(29)
where &, 20, §, #0.

Solving algebraic equation system (11), we find

_ _ __ K&l __ h&r,
980_501 51 511 ‘52 3(hlh§+h3)§l—4h22§02'1’§0 3(h1h2+h3)§1_4h2250711
2h3 2507'1 _ _% 3§071
2h1 h2 gl Tl _Tl' 0 V= 2h1 h2 51

Setting these results into Egs. (7) and (12), we have

+(n-n,) = AIJé ,

§r+r2
whereAi :\/?: h,

Integrating Eq. (31), we obtain the solutions of Eq. (1) as following:

+(n-n)=AIN(T-a,),

i(77—770)=2A1|n[\/l"—ozl +\/F—a2],a2 > a.

Tr. J. Nature Sci. Volume 11, Issue 3, Page 134-149, 2022

(26)

(@7)

(28)

(30)

(1)

(32)

(33)
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Furthermore, &; and &, are the roots of the polynomial equation,

2+él“+é=0. (34)
2 2
Setting Egs. (32) and (33) into Eq. (6), we find travelling wave solutions of Eqg. (1) as
B i(x—vt—no) 7
r,+r,h +ze "
— 2
u(x,t)= i(x-vht-no) : (35)
+7,|h+e "
i (x-vt-m5) ) ]
o|2(h,+h)+e ™
Ty +—
4 ) J:(X*Vt )
+(h—h,)e "®
u(x,t)= . 36
( ) L(xvt=m) 2 )
r—
o 2(h,+h)+e
16 ) ;(X*V‘*Wo)
+(h—h,)e "
For simplicity, we take 775 = 0, then Eq. (35) is reduced to the single king solution, 139
SR )
xt)=[ D 5| o +e 2o , @37)
i=0

where B = i% —Zh1 3 35011

&

For simplicity, we take 7], = 0, o, =1, a, = 0, then Eqg. (36) is reduced to the hyperbolic function solution,

.:0

{22: (1+ cosh(B (x—vt)))i] (38)

where V= —2hl ——3 350‘[1

b4
Case 3: If we choose £ =1, § =1and ¢ =3then
(u,)z _ 7'12 (éto +I'g, +F2§2 +F3§3)

(39)
Sot+T'gy

. (LT (&+208 43078 )7, & (& +TE+T75,+T° ),
U = 2 - 2
2(£,+T¢,) 2(£,+T¢,)

(40)
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where 53 #0, (1 #0. Consecutively, resolving the algebraic equation system (11) yields

_hign (20 + 2 (24,
‘57( hS:_ ( h1+r )) 52 é:z’ 53 h%’é/ozoié/l:é/l’
41(h3+h2 (hl+270)) (1)
Ty =T leé/l(hs—l_hz (m+2TO))1VZ_E+TO'
e, h

Embedding these corollaries into Egs. (7) and (12), we gain

,g" +T
dr, (42)

\/50_'_51 1—‘+§2 1—~2+1—~3

77 770

where A= é :hz.
3
Integrating Eq. (42), we get the solutions of Eq. (1) as following:

§o+§1

i(n—no)=2Az (43)
B §o+§1
b(M-a) 140

&, + & arctan (o + i) (C-a,)
o + i arct {\/(§0+§1F)(a2—a1)]

2A,

i(ﬂ—ﬂo)= é,( ) ! (“44)
a,—a
NI i “T?Hm
(77 770 Az((§o+§1a1) ( 1|)) Az(( glal) (g{),n|)), (45)
\/41 §0+é’1a3 \/4/1 §0+§10£3)
where
F(¢,|)=Td—w,
o J1-1%sin?y
(46)

ﬂ((o,n,l):]: dy

(1+ nsin’ z,//),\ll—lzsin2 v

and
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o arcsin \/(F—a3)(a2 -

@)
(T—oy) (e, — 1)
ne% "% |2:(§o+§10‘1 0‘3_052) (47)

os-a)
al_az’ (4'04-4'10!3)(0!1 052)

Also, @4, Q,and (5 are the roots of the polynomial equation,

r3+§r2+§r+i=0. (48)

s & S

Remark 1. The solutions of Eq. (1) were attained by using ETEM and these obtained solutions were checked in
Wolfram Mathematica 12.

3.2. Implementation of the Strain Wave Equation

In an attempt to find travelling wave solutions of Eq. (2), we take the transformation
u (X,t) =U (77), n=X- kt, where k is an arbitrary constant. Then, we acquire

(K2 -2)U"—ya, (U2) +7(a-ak?)u™ =0, (49)
Also, integrating Eq. (49) according to 77 twice and getting the integration constant to zero, we get
}/(a3—a4k2)U”+(k2 —1)U —yaU? =0. (50)
Embedding Egs. (8) and (9) into Eq. (50), and using the balance principle, we find

=0+¢e+2. (51)
After this solution procedure, we get the results as follows:

Case 1: Ifwetake £ =0, § =1 and F =3, then

N2 2'12 §3r3+§2r2+§lr+§0
(wy == )

, (52)
o
2
o 7 (3§3F +2&,I'+ 51)
= : (53)
264
where 53 #0, (0 #0. Respectively, solving the algebraic equation system (11) yields
7, (257, - &7
50 2507 4:1 251' 52 2527 4:3 = l( 23;2 - 1)'
0
2,7, (—a3 +a, (1+yoyz, )) g (—a3 +a, (1+2ya,7, ))T1
0= 2 + 2 ' (54)
2,7, 2047,

ro—r =1, k= \/—2521'0 (1+ yayry )+ & (1+ 2y, ) 7, |
—28,T, + 617y
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Embedding these results into Eqgs. (7) and (12), we have

dr
(n-m,) = A [ - (55)
\/F3+§2F2 +il“+é

4:3 é:S 53

Integrating Eq. (55), we get the solutions to the Eq. (2) as follows:

$(n-m5)=-2A —,—Fl_a ’ 0

I —
+(n—mn,)=2 ’ 63 arctan / _a2 a, >, (67)
a0 a0

(1) A o -a

10 > Oy, (58)
a,—o, \/l"—az +\/al—a2 ‘
i(77_770):2 A F(go,l),al>a2>a3, (59)
o, —ag
where
A= I 3(—25270 (—053 +a, (1+ yalro))) N 3¢ (~ay+a, (1+ 27/0511'0))2'1
&, 20,7, (28,7, - &) 20,7, (28,7, - &) ’ (60) "
@ dl//
F ) I =\ - 5
(o1) gl—lzsmzz//
and
_[T= -
@ =arcsin %G 2% % (61)
a, — 04 o~
Also &), 0, and (5 are the roots of the polynomial equation,
r3+ér2+ir+§=0. (62)

5 % &

Substituting the solutions (56-59) into Eg. (6), we can get the following exact traveling wave solutions such as rational
function solution, hyperbolic function solutions and Jacobi elliptic function solutions of Eq. (2), respectively:

47, A,
(X—kt—no)2 '

u(x,t) =7, + e +7, (0, — ;) tanh? (% /%(X—kt—%)} (64)

u(x,t) =7, + o, + (63)
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u(x,t) =7, + 7,0, +1,(a, —a, ) csch? G f% (x— kt)J, (65)

and
1l o -« o, —a
u(x,t) =7, + 0, + 7, (@, — ;) s’ (_E ,Tf*(x—kt—no),ﬁ}, (66)
where
(- =287, (14 youry )+ & (1+ 2ye7, ) 7,

=287y + &1

If we take 7y =—7;&,; and 7], =0 for simpleness, then the solutions (63)-(65) can degrade to rational function solution

— 2
2
u(x,t) = r\/ﬁ , (67)

1-soliton solution

_ A
u(X’t)_coshz[Bl(x—kt)]’ (©%)

singular soliton solution

A
,t = ’
LD sinh®[ B, (x—kt)] "
where
=287, (L+ vty )+ & (14 2pa,7y )T, -
k = 20( 10) l( 10) 11A1:T1A31A4:T1(a2_a1)’

—28,7+ &7y

1l |o,—«a
A=1(-a,), BlziE ’—1A3 2,

Here, A4 and A5 are the amplitudes of the solitons, while K is the velocity and Bl is the reverse width of the solitons.

Thus, we can say that the solitons exist for 7; > 0.

In addition, if we receive 7, = —7,&, and 77, = 0, Eq. (66) is converted into the Jacobi elliptic function solution

ui(x,t):Aasnz[Bi (x—kt),u] (70)

a4 —a,
where

143
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(e \/ =2&,7, (1+ youzy )+ & (1+ 2pay7, ) 7,

—28,T, + &7y A

Remark 2. When the modulus | —1, Eq. (70) can be converted into dark soliton solutions

u,(x,t) = A tanh®[ B, (x—kt)],

where
a =a,
—2&,7, (1+you7y ) + & (14 2p47, ) 7, _ _
and K= represents the velocity of the dark soliton.
—28,Ty + &7y

Case 2: Ifwetake £ =0, s =2and 3 =4, then

() (r,+20,0) (ET + &+ &I +ED+&,)
v = )
o

(z,+200)(AET° + 2517 + 25T +&) 27,(ET +ET° +EI? + 4T+ &)
+
24, o

where &, 20, £, #0.

Respectively, solving the algebraic equation system (11) outputs as follows:

36(-1+K?) ¢2rlel +5767% (o, —klar, ) 2t

6
(04 T
A 28572 +

£ - a,—Ka, 720‘1(053_k20‘4)§0
° 2887272 '
AL aloty 807 80T,
= ] = + ] = . e —
a= s 7, 6z, (a3 —k2a4) % 3(a3—k2a4) 2 6(a3 —k2a4)

6 —1+k? +4(0£3—k2a4)§12'2
1 Z'12+ 4 CoTy

|7 al

T, T, =17, k=K.

Embedding these results into Egs. (7) and (12), we have

dr

1ﬂ4+§1“3+§1“2+é1“+§’
7 A R

2
where A = /&“3_—6'(“4_
a7,

Integrating Eq. (75), we get the solutions to the eq. (2) as follows

i(n—no)—A;f\/

: A6=rl(a2—a3),Bi:% al_%,(i:l,Z).

(1)

(72)

(73)

144
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+(n— = , 76

(7=m) o (76)

2 IN'-a
£(n1=110) = faz F—aj’ & > a,, (77)
A 1H_0‘1|

+(n—mn,)= I , 8

(7-7) o (79)

r- —ay) (T -
t(n-1,)= 25 In \/( %)@ ) \/( %)@ 052)|, a >a, >0, (19
\/(al a,) (o —ay) \/F—az (0:1—053)+\/(1"—053)(05l a, ‘
2
+(n—1m,)= A Flol), o, >a,>a;>a,,
‘\/(al —053)(052 _a4) (80)
where
2
_ r- - — -
A = %‘S—Gk“‘t' go:arcsin\/( a)(2 0‘4)’ |2:(0‘2 a;)(e 0‘4). (81)
ar, (F—a,)(an—a,) (-, —a,)
Also &y, 05, yand &, are the roots of the polynomial equation,
145
r4+§r3+§r2+ir+§:0. (82)
Si Sa S S
Substituting the solutions (76)-(80) into Eq. (6), we have
2

U(X’t):To+Tla1iﬁ+fz(ali$_%] : (83)

u(x,t)=7r,+n0+

4A72(052—051)T1 I, 4A72(a2—0£1) | e
47 —[(ay—a, ) x—kt—n, | 4A7 —[(ay—a, ) x—kt—n, |

2

(2, -a)7, N (a,-a,) NS
exp{(alg]az)(x—kt—ﬂo)}—l EXP[W(X_kt_UO)}_l

u(xt)=r,+70, +

2

(a1 _aZ)Tl (0!1 _az) , (86)

eI R N [

u(x,t)=7,+70+




u(x’t):z-o‘l'Tlal_ z(al_az)(al_aS)Tl

20, —a, — oy +(a; — at, ) cosh x—kt—1,)

{\/(alaz)(alas)(
A,

2(a—a,) (o, — )

\/(al_az)(al_a3)
A,

+7,| a —

2a1—a2—a3+(a3—a2)cosh[

(X—kt—ﬂo)}

U(X,t)=ro+z'1a2+ Tl(al_az)(%_az)

\/(al _0‘3)(“2 _a4) (
27,

a4—az+(a1—a4)sn2!

r (o -a,)(a,—a,)

(o, — ) (e, — ;) a,—a,)(a,-a,
J ) (k) | ))( )]

+7,| a, +

a4—a2+(al—a4)sn2[

For simplicity, if we take 1, = 0, then we can write the solutions (83)-(88) as follows:

u(x,t)=22:ri (ali A ]i,

i=0 X_ kt

u(xt)= 2 o AN (o -a,) |
(xt)=2, [ 4Aﬁ[(a1az)(xkt)]2]’

u(x,t)= ;i a, + exp[Bﬁ;ﬁd)]—J ,

u(x,t):gri al+exp[BT1(;fi<t)]—lJ’
u(x,t)=> 7| & - 200 —a,)(e ) J ,

= 2a1—a2—a3+(a3—a2)cosh[C(X—kt)]

(87)

(88)

(89)

(90)

(91)

(92)

(93)

146




(94)

where

Here, A7 is the amplitude of the soliton, while k is the velocity and 82 and C are the inverse width of the solitons.

Remark 3. The solutions of Eq. (2) were reached by using ETEM and these obtained solutions were checked in
Wolfram Mathematica 12.

(x,t)
t
8x10%

6x10%° -
4x10%

2x10%° -

I A I i x
-20 -10 10 20

Figure 1.Graph of the solution (26) is indicated at 7, = 1, T, = 2, h1 =2, h2 =1 h3 =-1, 50 =3 51 =-1, -25<x <25,
—5<t <5 and the second graph denotes the exact solution of Eq. (26) for t=3.

(x.t) (x,t)
t

230 S -20  -10 10 20~ 30
500000
-1.0x108}

-15x108}

-20x10°F

Figure 2.Graph of the solution (27) is indicated at 7 =1, 7 =—2, h1 =—2, h2 = 2, h3 =1, fo = —2, 51 =—1,
—35< x <35, —10 <t <10and the second graph denotes the exact solution of Eq. (27) for t = 2.
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Figure 3. Graph of the solution (67) is indicated at 7,; = -1, T, = 2, 51 =4, §2 =1, o, = -2, o= -2, a, =], y =3,
—35< x <35, =5 <1t <5 and the second graph denotes the exact solution of Eq. (67) for t =4.5.
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Figure 4. Graph of the solution (68) is indicated at 7, = —2, T, = 5, 51 = 3, §2 =1, o, = —3, a, =1, Oy = —l, o, = 2,
y =4, —30 < x <30, —3 <t < 3 and the second graph denotes the exact solution of Eq. (68) for { = 2.
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-40
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Figure 5. Graph of the solution (70) is indicated at 7, = —1, T =1, §1 = 2, 62 = 4, o, = —1, a, = 5, o5 = —3, a, = 3,

y =2, —45< x <45, =1 <t <1 and the second graph denotes the exact solution of Eq. (70) for T = 0.5.

4. CONCLUSIONS

In this work, we get travelling wave solutions of the
DGHDE and strain wave equation by using ETEM. It is
necessary to note that ETEM presents powerful
mathematical tool for finding the exact solutions of these
equations and this method is highly efficient in the matter
of seeking for new solutions such as soliton solutions,
rational, Jacobi elliptic, periodic wave solutions and
hyperbolic function solutions.
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