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1. INTRODUCTION 

 

In recent years, travelling wave solutions are substantially significant subject matter in biophysics, geophysical sciences, 

chemical kinematics, optical fibers, the technology of space, elastic media and some issues in nonlinear sciences. Recently 

many scientists have applied various methods to obtain travelling wave solutions of NLEEs (nonlinear evolution 

equations) such as Hirota’s direct method [1], Jacobi elliptic function method [2], new version of the trial equation method 

[3], (G'/G)–expansion method [4], tanh-coth method [5] etc. In this work, the ETEM [6,7] will be performed to get exact 

solutions of the DGHDE and the strain wave equation.  

Firstly, we tackle the following the DGHDE [8] 
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Abstract: In this study, extended trial equation method (ETEM) is implemented to 

obtain exact solutions of the Dullin-Gottwald-Holm Dynamical equation (DGHDE) 
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solutions, rational, Jacobi elliptic, periodic wave solutions and hyperbolic function 

solutions of these equations via ETEM. Then, we present results that we obtained by 
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Dullin-Gottwald-Holm Denklemi ve Gergin Dalga Denkleminin Hareketli Dalga Çözümleri 
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Öz: Bu çalışmada, Dullin-Gottwald-Holm Dinamik denkleminin ve gergin dalga 

denkleminin kesin çözümlerini elde etmek için genişletilmiş deneme denklem 

metodu uygulanmıştır. Bu denklemlerin soliton çözümleri, rasyonel, Jacobi eliptik, 

periyodik dalga çözümleri ve hiperbolik fonksiyon çözümleri gibi bazı kesin 

çözümleri genişletilmiş deneme denklem metodu ile elde edilmiştir. Daha sonra bu 

yöntemi kullanarak elde ettiğimiz sonuçlar sunduk. 
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where fluid velocity of system is symbolized by u  in spatial direction x . 

2

2 2( 0)h h 
 
and 

1

3

h

h
 

indicate squares of length scales, and 1h gh  (where 
1 2h  ) demonstrates the linear wave 

speed for undisturbed water at rest at spatial infinity. G. M. Octavian has submitted the analysis of wave-breaking 

solutions to Eq. (1) [9]. M. H. Raddadi et al.  have obtained solitary wave solutions of Eq. (1) by using new extended 

direct algebraic method [10]. R. K. Gupta and B. Anupma have found exact solutions of Eq. (1) via Lie Classical method 

[11]. 

Secondly, we investigate the strain wave equation given below [12]: 

 

  2

1 3 4 0,tt xx xxxx xxttxx
u u u u u       

                                                                                     
   (2) 

 

where   shows elastic strain, 1 3,   and 4  are arbitrary constants. Kumar et al. have found new exact solitary wave 

solutions of  Eq. (2) by using generalized exponential rational function method [13]. M. G. Hafez and M. A. Akbar have 

obtained multiple explicit and exact traveling wave solutions of this equation by using an exponential expansion method 

[14].  

The arrangement of this study was done as follows. In Sec. 2, we perform ETEM on DGHDE and strain wave equation. 

In Sec. 3, the results acquired using this method are expressed. 

 

2. FUNDAMENTALS OF THE ETEM 

 

Step 1. For a known nonlinear partial differential equation 

 

 , , , , 0t x xxP u u u u 
                                                                                                               

(3) 

 

we get the wave transformation as 

 

   1 2

1

, , , , , ,
N

N j

j

u x x x t u x ct  


 
   

 
                                                                                      (4) 

 

where 0  , 0c  . Accommodating Eq. (4) into Eq. (3) satisfies a nonlinear ordinary differential equation, 

 

 , , , 0.N u u u  
                                                                                                     

(5) 

 

Step 2. Presume that the trial equation of Eq. (5) can be indicated as following: 
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(6) 

 

where 
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Considering relations (8) and (9), we can have 
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where    and     are polynomials. Putting these terms into Eq. (5) ensures an equation of polynomial     of 

 : 

  1 0 0.s

s         
                                                                                                 

(10) 

 

In accordance with balance principle, we can describe a relation of ,  and . We can find some values of ,  and

 . 

Step 3. Letting the coefficients of    all be zero will satisfy an algebraic equations system: 

 

0, 0, , .i i s  
                                                                                                   

(11) 

 

Solving equation system (11), we will define the values of 0 0, , ; , ,     and 0 , , . 
 

Step 4. Simplify Eq. (7) to elementary integral shape, 

 

 
 

 

 
0 .

d
d


 




    

 
 

                                                                                      

(12) 

Applying a complete discrimination system for polynomial to classify the roots of    , we solve the infinite integral 

(12) and categorize the exact solutions for Eq. (3). 

 

3. IMPLEMENTATIONS OF THE ETEM 

 

In this chapter, we implement the ETEM to the DGHDE and the strain wave equation, respectively.  

 

3.1. Implementation on the DGHDE 

 

In an attempt to find travelling wave solutions of Eq. (1), we take the transformation 

 

 ( , ) , , 0.u x t U x vt v                                                                                                      (13) 

 

Then, we get
        

 

     2 2 2

2 1 2 3 23 2 0.vh U vU hU h U U h U UU h U U               
                                               

(14) 
                                                                    

 

Also, integrating Eq. (14) according to   and getting the integration constant to zero, we attain  

 

    
2

2 2 2 2

2 3 2 1 2

3 1
( ) 0.

2 2

U
U h v h h U h v U h U                                                                       (15) 

Embedding Eqs. (8) and (9) into Eq. (15), and utilizing the balance principle, we gain 

 

2.                                                                                                                                                (16) 

 

Then, we procure the corollaries as follows: 

Case 1:  If we choose 0, 1  
 

and

 

2,  then, 

 

 
 2 2

2 1 0 1 2

0

,u
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0

2
,

2
u
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where 2 00, 0.  
 
Substituting  Eq. (6), Eq. (17) and Eq. (18)  into Eq. (15), we get an algebraic equation system. 

Then, by using Wolfram Mathematica 12, 0 1 2 0, , ,     and v  coefficients are obtained as following 

 

 

 

  
 

  
 

2

2 1 1
0 0 1 1 2 2

3 2 1 0

4

2 1 1
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h h h h h h h h
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                                                                                                (19) 

 

                                                                                    

 

Embedding Eq. (19) into Eqs. (7) and (12), we acquire 

 

 0

20 1

2 2

,
d

A 
 

 


  

 


                                                                                                     

(20) 

where 0
2

2

A h



  . 

Integrating Eq. (20), we gain the solutions of Eq. (1) as follows 

 

   0 1lnA                                                                                                                                 (21) 

 0 1 2 2 12 ln , .A            
 

                                                                                                        (22) 

Moreover, 1 and 2  are the roots of the polynomial equation, 

 

2 01

2 2

0.


 
                                                                                                                                    (23)

                                                                                                                                                    

 

Embedding Eq. (21) and Eq. (22) into Eq. (6), we can find the following exact traveling wave solutions for Eq. (1), 

respectively: 
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For simplicity, we take 0 0 1 10, ,       then Eq. (24) is reduced to the single king solution, 

 

    , ,
B x vt

u x t Ae




                                                                                                                   

(26) 

where 1

1
,A B

A
   . 

 

For simplicity, we take 0 1 20, 1, 0,      then Eq. (25) is reduced to the hyperbolic function solution,

  
    

     1
0, 1 cosh ,

2
u x t B x vt


                                                                                          (27)

 
where  
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2
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Case 2: If we choose 0, 2   and

 

2,  then 
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2 1 2 0 1 2

0

2
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                                                                                               (28) 
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2 0 1 2 1 2 1 2

0

4 2 2
,

2
u

       



      
 

                                                                       

 (29) 

where 2 00, 0   .  

Solving algebraic equation system (11), we find 

                                                                                                                                                                                                                            

   

2 2 4 2

2 1 1 2 1 1
0 0 1 1 2 02 2 2 2

1 2 3 1 2 0 1 1 2 3 1 2 0 1

3 0 1 3 0 1
0 1 1 1 2 12 2

2 1 2 1

, , , ,
3 4 3 4

2 2 3 3
2 , , 0, 2 .

h h

h h h h h h h h

h h
h v h

h h

   
     

     

   
   

 

     
   

         

                        (30)

 

Setting these results into Eqs. (7) and (12), we have 

 

 0 1

20 1

2 2

,
d

A 
 

 


  

 
           (31)

                                                                                                           

where 0
1 2

2

A h



  . 

 
Integrating Eq. (31), we obtain the solutions of Eq. (1) as following: 

 

   0 1 1ln ,A     
                                                                                                                

(32) 

 

 0 1 1 2 2 12 ln , .A            
 

                                                              

(33) 

 



 

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 134-149, 2022     Tr. J. Nature Sci. Volume 11, Issue 3, Page 134-149, 2022 
 

 

139 

Furthermore, 1  
and 2  are the roots of the polynomial equation, 

 

2 01

2 2

0.


 
                                                                                                                                    (34) 

   

                                                 

 

Setting Eqs. (32) and (33) into Eq. (6), we find travelling wave solutions of Eq. (1) as
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(36)            

 

 

For simplicity, we take 0 0,   then Eq. (35) is reduced to the single king solution,  
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For simplicity, we take 0 1 20, 1, 0,     then Eq. (36) is reduced to the hyperbolic function solution,
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Case 3: If we choose 1, 1   and

 

3  then

   

 
 2 2 3

2 1 0 1 2 3

0 1

,u
    

 

  
 


                                                                                                  (39)

 

 

  
 

 
 

2 2 3

0 1 1 2 3 1 1 0 1 2 3 1

2 2

0 1 0 1

2 3
,

2 2
u

           

   

       
  

 
                                             (40) 



 

Tr. Doğa ve Fen Derg. Cilt 11, Sayı 3, Sayfa 134-149, 2022     Tr. J. Nature Sci. Volume 11, Issue 3, Page 134-149, 2022 
 

 

140 

where 3 10, 0   . Consecutively, resolving the algebraic equation system (11) yields 
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(41) 

 

Embedding these corollaries into Eqs. (7) and (12), we gain 

 

 
 

0

1

0 2

2 30 1 2

3 3 3

,A d




 

  

  



   

   
                                                                                      (42) 

 

where 1
2 2

3

A h



  . 

Integrating Eq. (42), we get the solutions of Eq. (1) as following:   
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and
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0 1 1 3 223 2
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                                                                                            (47) 

 

Also, 1 2,  and 3  are the roots of the polynomial equation, 

 

3 2 02 1

3 3 3

0.
 

  
                                                                                                                        (48) 

 

 

Remark 1. The solutions of Eq. (1) were attained by using ETEM and these obtained solutions were checked in 

Wolfram Mathematica 12.

 

 

3.2. Implementation of the Strain Wave Equation 

 

In an attempt to find travelling wave solutions of Eq. (2), we take the transformation 

   , , ,u x t U x kt     where k  is an arbitrary constant. Then, we acquire 

       42 2 2

1 3 41 0,k U U k U                                                                                           (49) 

 

Also, integrating Eq. (49) according to   twice and getting the integration constant to zero, we get 
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                                                                                     (50) 

 

Embedding Eqs. (8) and (9) into Eq. (50), and using the balance principle, we find 

 

2.                                                                                                                                           (51) 

                                                                                                                                                                          

After this solution procedure, we get the results as follows: 

 

Case 1: If we take 0, 1  
 
and 3  , then 
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        (53) 

 

where 3 00, 0   . Respectively, solving the algebraic equation system (11) yields
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Embedding these results into Eqs. (7) and (12), we have 
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Integrating Eq. (55), we get the solutions to the Eq. (2) as follows:  
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Also 1 2,   and 3  are the roots of the polynomial equation,  
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3 3 3
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Substituting the solutions (56-59) into Eq. (6), we can get the following exact traveling wave solutions such as rational 

function solution, hyperbolic function solutions and Jacobi elliptic function solutions of Eq. (2), respectively: 
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If we take 0 1 1     and 0 0 
 
for simpleness, then the solutions (63)-(65) can degrade to rational function solution 
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1-soliton solution 
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singular soliton solution 
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Here, 4A  and 5A  are the amplitudes of the solitons, while k  is the velocity and 1B
 
is the reverse width of the solitons. 

Thus, we can say that the solitons exist for 1 0  .  

In addition, if we receive 0 1 3   
 
and 0 0  , Eq. (66) is converted into the Jacobi elliptic function solution  
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   2 0 1 0 1 1 0 1

2 0 1 1
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Remark 2. When the modulus 1l  , Eq. (70) can be converted into dark soliton solutions  
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 represents the velocity of the dark soliton. 

 

Case 2: If we take 0, 2   and 4  , then  
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where
 4 00, 0   .  

Respectively, solving the algebraic equation system (11) outputs as follows:  
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Embedding these results into Eqs. (7) and (12), we have 
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Integrating Eq. (75), we get the solutions to the eq. (2) as follows 
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where 
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7

1 2 2 1 4 1 3 2 4

6 6
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k
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                               (81) 

 

Also 1 2 3, ,   and 4  
are the roots of the polynomial equation, 

 

4 3 23 02 1

4 4 4 4

0.
  

   
                                                                                                             (82)   

                                                                                 

Substituting the solutions (76)-(80) into Eq. (6), we have  
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(87) 

 

 
  

 
  

 
  
  

  

 
  

 
  
  

1 1 2 4 2

0 1 2

1 3 2 42 2 3 1 4

4 2 1 4 0

7 1 3 2 4

2

1 1 2 4 2

2 2

1 3 2 42 2 3 1 4

4 2 1 4 0

7 1 3 2 4

,

,
2

.

,
2

u x t

sn x kt
A

sn x kt
A

    
  

       
    

   

    
 

       
    

   

 
  

    
     

   

 
 
  
  

     
      

     

                 

                                                                                                                                                                                           (88)

For simplicity, if we take 0 0  , then we can write the solutions (83)-(88) as follows: 
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Here, 7A  is the amplitude of the soliton, while k is the velocity and 2B  and C are the inverse width of the solitons. 

Remark 3. The solutions of Eq. (2) were reached by using ETEM and these obtained solutions were checked in 

Wolfram Mathematica 12.

 

 
 

Figure 1.Graph of the solution (26) is indicated at 0 1,  1 2,   1 2,h   2 1,h   3 1,h    0 3,   1 1,   25 25,x    

5 5t     and the second graph denotes the exact solution of Eq. (26) for 3.t   

 

 

 
 

Figure 2.Graph of the solution (27) is indicated at 0 1,  1 2,   1 2,h   2 2,h  3 1,h  0 2,   1 1,  

35 35,x   10 10t   and the second graph denotes the exact solution of Eq. (27) for 2t  . 
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Figure 3. Graph of the solution (67) is indicated at 0 1,   1 2,  1 4,  2 1,  1 2,   3 2,   4 1,  3, 

35 35,x   5 5t    and the second graph denotes the exact solution of Eq. (67) for 4.5.t   

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Graph of the solution (68) is indicated at 0 2,   1 5,  1 3,  2 1,  1 3,   2 1,  3 1,   4 2, 

4,  30 30,x   3 3t   and the second graph denotes the exact solution of Eq. (68) for 2.t   
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Figure 5. Graph of the solution (70) is indicated at 0 1,   1 1,  1 2,  2 4,  1 1,   2 5,  3 3,   4 3, 

2,  45 45,x   1 1t    and the second graph denotes the exact solution of Eq. (70) for 0.5t  . 

 

4. CONCLUSIONS 

 

In this work, we get travelling wave solutions of the 

DGHDE and strain wave equation by using ETEM. It is 

necessary to note that ETEM presents powerful 

mathematical tool for finding the exact solutions of these 

equations and this method is highly efficient in the matter 

of seeking for new solutions such as soliton solutions, 

rational, Jacobi elliptic, periodic wave solutions and 

hyperbolic function solutions. 
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