

Some inclusion results for the new Tribonacci-Lucas matrix

Murat KARAKAȘ a,* (i)
${ }^{\text {a }}$ Bitlis Eren University, Department of Mathematics, TR-13000, Bitlis, Turkey

ARTICLEINFO

Article history:
Received 22 October 2021
Received in revised form 09 December 2021
Accepted 10 December 2021

Keywords:

Tribonacci-Lucas numbers
Fibonacci numbers
Toeplitz matrix
Summability method

Abstract

The main purpose of this paper is first to establish a new regular matrix by using one of the important sequences of integer number called Tribonacci-Lucas. Also, we class this new Tribonacci-Lucas matrix with some well-known summability methods such as Riesz means, Nörlund means and Cesaro means. To do this, we show that the Tribonacci-Lucas matrix is a regular summability method and in addition to this, we give some inclusion results and finally prove that Cesaro matrix is stronger than the Tribonacci-Lucas matrix.

1. Introduction

In 1963, Tribonacci concept was introduced by Feinberg in [1]. Later, Tribonacci and Tribonacci-Lucas numbers were investigated by Catalani in [2]. These numbers must be regarded as a generalization of the well-known Fibonacci numbers. Also, the Tribonacci-Lucas numbers are members of the following general Tribonacci recurrence

$$
U_{n+1}=U_{n}+U_{n-1}+U_{n-2}, \quad U_{0}=0, U_{1}=U_{2}=1 .
$$

The Tribonacci-Lucas sequence is

$$
\left(v_{n}\right)=(3,1,3,7,11,21,39,71,131,241, \ldots)
$$

and it can be easily seen from the elements of the sequence $\left(v_{n}\right)$ that $v_{0}=3, v_{1}=1, v_{2}=3$ and
$v_{n+1}=v_{n}+v_{n-1}+v_{n-2}$.
The following expressions for the sums of the Tribonacci and Tribonacci-Lucas numbers can be found in [3-4]:

[^0]$p-$ absolutely convergent series by c_{0}, c, ℓ_{∞} and $\ell_{p}(1 \leq p<\infty)$.

Let $s=\left(s_{n}\right)$ be a sequence of non-negative real numbers with $s_{0}>0$ and take $S_{n}=\sum_{k=0}^{n} s_{k}$ for all $n \in \mathbb{N}$. Now, we give the following some well-known examples of particular summability matrices which satisfy the Toeplitz conditions.

Definition 1.1. The Riesz means according to the sequence $s=\left(s_{n}\right)$ is defined by the following matrix for all $n, k \in \mathbb{N}$:
$a_{n k}=\left\{\begin{array}{cc}\frac{s_{k}}{S_{n}}, & 0 \leq k \leq n \\ 0, & k>n\end{array}\right.$.
Riesz mean (R, s) is also stated for a sequence $\left(x_{n}\right)$ as follows: $s_{n}=\frac{s_{1} x_{1}+s_{2} x_{2}+\ldots+s_{n} x_{n}}{S_{n}}$ [11].

Definition 1.2. The Nörlund means according to the sequence $s=\left(s_{n}\right)$ is defined by the following matrix for all $n, k \in \mathbb{N}$:
$\tilde{a}_{n k}=\left\{\begin{array}{ll}\frac{s_{n-k+1}}{S_{n}}, & k \leq n \\ 0, & k>n\end{array}\right.$.
Nörlund mean (N, s) is also stated for a sequence $\left(x_{n}\right)$ as follows:
$\tilde{s}_{n}=\frac{s_{n} x_{1}+s_{n-1} x_{2}+\ldots+s_{1} x_{n}}{S_{n}}$ [11].
The transformation (R, s) is regular if $S_{n} \rightarrow \infty(n \rightarrow \infty)$ and (N, s) is regular if $s_{n} / S_{n} \rightarrow \infty(n \rightarrow \infty)$ [12]. Also, both the Riesz and the Nörlund means are reduced to the following Cesaro mean $(C, 1)$ in the case $s_{n}=1$ for all n :
$C_{n k}=\left\{\begin{array}{l}\frac{1}{n}, k \leq n \\ 0, k>n\end{array}\right.$.
Definition 1.3. Let $\left(\lambda_{n}\right)$ be a strictly increasing sequence of positive integers. For a sequence $\left(x_{n}\right), C_{\lambda}-$ transformation is defined as follows:

$$
s_{n}=\frac{x_{1}+x_{2}+\ldots+x_{\lambda_{n}}}{\lambda_{n}}[13] .
$$

Definition 1.4. The matrix $B=\left(B_{m, n}\right)$ is a (M) matrix if B is triangular and

$$
\left|\sum_{k=1}^{n} b_{m, k} x_{k}\right| \leq T\left|\sum_{k=1}^{n^{\prime}} b_{n^{\prime}, k} x_{k}\right|
$$

for some $n^{\prime}, n^{\prime}=n^{\prime}(n)\left(0 \leq n^{\prime} \leq n\right),(n=1,2,3, \ldots)$ and for all $m(m \geq n)$ [11]. Herein, n^{\prime} is interdepend n and $\left\{x_{n}\right\}$ but it is independent of m. Also, the class (M) isn't confined to the regular matrices.
If $k<n+1$ for the matrix $(C, 1)$, then we have $\frac{1}{n+1} \sum_{m=0}^{k} t_{m} \leq \frac{1}{k+1} \sum_{m=0}^{k} t_{m}$ and so the matrix $(C, 1)$ is a (M) matrix [11].

Theorem 1.5. Let $A=\left(a_{m, n}\right)$ and $B=\left(b_{m, n}\right)$ be regular triangular matrices and A be a (M) matrix. Therefore, if
$\sum_{n=1}^{m}\left|\frac{b_{m, n}}{a_{m, n}}-\frac{b_{m, n+1}}{a_{m, n+1}}\right|<K$,
from which it is concluded that B is stronger than A [11].
Theorem 1.6. The matrix $A=\left(a_{m, n}\right)$ is (M) matrix if it is triangular and holds the following conditions:
$a_{m, k}=0,0 \leq \frac{a_{m, k}}{a_{n, k}} \leq T(0 \leq k \leq n \leq m)$
and
$\frac{a_{m, k}}{a_{n, k}} \geq \frac{a_{m, k+1}}{a_{n, k+1}}(0 \leq k \leq n \leq m)$

2. Inclusion results for the Tribonacci-Lucas matrix

In this part of the paper, we are first going to introduce a new Tribonacci-Lucas matrix. Then, we give some relations and inclusion results between the matrix $V=\left(v_{n k}\right)$ and some well-known summability matrices by comparing them.

Now, let us define our new Tribonacci-Lucas matrix as follows:
$V=\left(v_{n k}\right)=\left\{\begin{array}{cl}\frac{2 v_{k}}{v_{n+2}+v_{n}-6}, & 1 \leq k \leq n \\ 0, & k>n\end{array}\right.$
If we write the terms of this matrix, then we have

$$
V=\left[\begin{array}{ccccc}
\frac{2 v_{1}}{v_{3}+v_{1}-6} & 0 & 0 & 0 & \cdots \\
\frac{2 v_{1}}{v_{4}+v_{2}-6} & \frac{2 v_{2}}{v_{4}+v_{2}-6} & 0 & 0 & \cdots \\
\frac{2 v_{1}}{v_{5}+v_{3}-6} & \frac{2 v_{2}}{v_{5}+v_{3}-6} & \frac{2 v_{3}}{v_{5}+v_{3}-6} & 0 & \cdots \\
\frac{2 v_{1}}{v_{6}+v_{4}-6} & \frac{2 v_{2}}{v_{6}+v_{4}-6} & \frac{2 v_{3}}{v_{6}+v_{4}-6} & \frac{2 v_{4}}{v_{6}+v_{4}-6} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

and so,
$V=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & \ldots \\ \frac{1}{4} & \frac{3}{4} & 0 & 0 & \ldots \\ \frac{1}{11} & \frac{3}{11} & \frac{7}{11} & 0 & \ldots \\ \frac{1}{22} & \frac{3}{22} & \frac{7}{22} & \frac{11}{22} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right]$.
It can be clearly seen from above that the Tribonacci-Lucas matrix is triangular.

Now, let us define the following real valued sequence $y=\left(y_{n}\right)$ which is named V - transform of a sequence $x=\left(x_{n}\right)$ for all $n \in \mathbb{N}$:
$y_{n}=V\left(x_{n}\right)=\frac{2}{v_{n+2}+v_{n}-6} \sum_{k=1}^{n} v_{k}$
First, we are going to give the definition of V - convergence in defiance of F-convergence in [14].

Definition 2.1. If $\left(V\left(x_{n}-l\right)\right) \rightarrow 0$ for $n \in \mathbb{N}$ and $l \in \mathbb{R}$, then a real valued sequence $x=\left(x_{n}\right)$ is named V - convergent to l.

Theorem 2.2. The Tribonacci-Lucas matrix $V=\left(v_{n k}\right)$ is a regular summability method $\Leftrightarrow v_{n+2}+v_{n}-6 \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. Let $V=\left(v_{n k}\right)$ be a regular summability method. Then, $\lim _{n \rightarrow \infty} v_{n k}=\lim _{n \rightarrow \infty} \frac{2 v_{k}}{v_{n+2}+v_{n}-6}=0$ from Silverman-Toeplitz theorem in [8]. Thus, $v_{n+2}+v_{n}-6 \rightarrow \infty, n \rightarrow \infty$. Now contrarily, assume that $\quad v_{n+2}+v_{n}-6 \rightarrow \infty \quad$ as $n \rightarrow \infty$. Therefore, $\sum_{k=1}^{\infty} \frac{2 v_{k}}{v_{n+2}+v_{n}-6}=\sum_{k=1}^{n} \frac{2 v_{k}}{v_{n+2}+v_{n}-6}=1 \quad$ and \quad also, $\lim _{n \rightarrow \infty} v_{n k}=\lim _{n \rightarrow \infty} \frac{2 v_{k}}{v_{n+2}+v_{n}-6}=0$
and

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} v_{n k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} v_{n k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 v_{k}}{v_{n+2}+v_{n}-6}=1
$$

In that case, the Tribonacci-Lucas matrix V is a regular summability method.

Theorem 2.3. The Tribonacci-Lucas matrix $V=\left(v_{n k}\right)$ is a (M) matrix.

Proof. Since the inequalities
$0 \leq \frac{2 v_{k}}{v_{m+2}+v_{m}-6} \cdot \frac{v_{n+2}+v_{n}-6}{2 v_{k}}=\frac{v_{n+2}+v_{n}-6}{v_{m+2}+v_{m}-6} \leq \frac{v_{n+2}}{v_{m+2}} \leq 1$
and

$$
\begin{aligned}
\frac{2 v_{k+1}}{\frac{v_{m+2}+v_{m}-6}{2 v_{k+1}}}=\frac{v_{n+2}+v_{n}-6}{v_{n+2}+v_{n}-6} & \leq \frac{v_{n+2}+v_{n}-6}{v_{m+2}+v_{m}-6} \cdot \frac{2 v_{k}}{2 v_{k}} \\
& =\frac{2 v_{k}}{v_{m+2}+v_{m}-6} \cdot \frac{v_{n+2}+v_{n}-6}{2 v_{k}}
\end{aligned}
$$

hold, the Tribonacci-Lucas matrix V is (M) matrix.
Definition 2.4. Let $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ be two real valued sequences. Then, if there are two positive real numbers t and T such that the inequality $t . x_{n} \leq y_{n} \leq T . x_{n}$ holds for all $n \in \mathbb{N}$, they are named equivalent.

Now, let us give the relation between V and (R, s) :
Theorem 2.5. Let $V=\left(v_{n k}\right)$ be a Tribonacci-Lucas matrix and $x=\left(x_{n}\right)$ be a real valued sequence. Then, $x_{n} \rightarrow l(V) \Leftrightarrow x_{n} \rightarrow l(R, s)$ for any sequence $\left(s_{n}\right)$ such that $\left(s_{n}\right)$ and $\left(v_{n}\right)$ are equivalent for all $n \in \mathbb{N}$.

Proof. Assume that $x_{n} \rightarrow l(V)$. In this case, we get
$\lim _{n \rightarrow \infty} \frac{2}{v_{n+2}+v_{n}-6} \sum_{k=1}^{n} v_{k}\left(x_{k}-l\right)=0$.
From here, under the supposition on $\left(s_{n}\right)$, the following inequality holds:

$$
\begin{align*}
\frac{1}{S_{n} \sum_{k=1}^{n} s_{k}\left(x_{k}-l\right)} & \leq \frac{1}{S_{n}} \sum_{k=1}^{n} T \cdot v_{k}\left(x_{k}-l\right) \\
& \leq \frac{T}{t} \frac{2}{v_{n+2}+v_{n}-6} \sum_{k=1}^{n} v_{k}\left(x_{k}-l\right) \tag{5}
\end{align*}
$$

Also, by using the similar technique, we find
$\frac{t}{T} \frac{2}{v_{n+2}+v_{n}-6} \sum_{k=1}^{n} v_{k}\left(x_{k}-l\right) \leq \frac{1}{S_{n}} \sum_{k=1}^{n} s_{k}\left(x_{k}-l\right)$.
Resulting from $x_{k} \rightarrow l(V)$, the inequalities (5) and (6) give us that $\lim _{n \rightarrow \infty} \frac{1}{S_{n}} \sum_{k=1}^{n} s_{k}\left(x_{k}-l\right)=0$. The sufficient condition of this theorem can be easily shown by use of the same method. So, the proof is completed.

Theorem 2.6. Let $B=\left(b_{n k}\right)$ be a regular matrix and suppose that $\sum_{k=1}^{n}\left|b_{n k}-v_{n k}\right| \rightarrow 0$ as $n \rightarrow \infty$. Then for any bounded sequence, $x_{n} \rightarrow l(B) \Leftrightarrow x_{n} \rightarrow l(V)$.

Proof. For any n and bounded sequence $x=\left(x_{n}\right)$, we have

$$
\begin{aligned}
\left|(B x)_{n}-(V x)_{n}\right| & =\left|\sum_{k=1}^{n} b_{n k} x_{k}-\sum_{k=1}^{n} v_{n k} x_{k}\right| \\
& \leq \sum_{k=1}^{n}\left|b_{n k}-v_{n k}\right|\left|x_{k}\right| \leq\|x\| \sum_{k=1}^{n}\left|b_{n k}-v_{n k}\right|
\end{aligned}
$$

Hence, if $x_{n} \rightarrow l(B)$ and $x_{n} \rightarrow l(V)$, then we get

$$
\begin{equation*}
\left|(V x)_{n}-l\right| \leq\left|(V x)_{n}-(B x)_{n}\right|+\left|(B x)_{n}-l\right| \rightarrow 0, n \rightarrow \infty \tag{7}
\end{equation*}
$$

and in a similar way
$\left|(B x)_{n}-l\right| \leq\left|(B x)_{n}-(V x)_{n}\right|+\left|(V x)_{n}-l\right| \rightarrow 0, n \rightarrow \infty$.
Consequently, the inequalities (7) and (8) complete the proof.
Now, we are going to establish the following associate matrix $\tilde{V}=\left(\tilde{v}_{n k}\right)$:
$\tilde{v}_{n k}=\left\{\begin{array}{cc}\frac{2 v_{n-k}}{v_{n+2}+v_{n}-6}, & k \leq n \\ 0, & k>n\end{array}\right.$
We can state the associate matrix $\tilde{V}=\left(\tilde{v}_{n k}\right)$ as a Nörlund type Tribonacci-Lucas matrix when the matrix $\tilde{V}=\left(\tilde{v}_{n k}\right)$ can be written as a Riesz type Tribonacci-Lucas matrix. Accordingly, we first give the following lemma which will be used in the next theorems.

Lemma 2.7. The series $\sum_{n=1}^{\infty} s_{n} x^{n-1}$ and $\sum_{n=1}^{\infty} S_{n} x^{n-1}$ are convergent for all x where $|x|<1$, if $\left(N, s_{n}\right)$ is a regular Nörlund matrix. This lemma is also suitable for the matrix $\tilde{V}=\left(\tilde{v}_{n k}\right)$ just because the matrix $\tilde{V}=\left(\tilde{v}_{n k}\right)$ is a Nörlund type matrix. In the continuation of this study, we can use V_{n} in place of \tilde{V}_{n} having regard to the definition of $\tilde{V}=\left(\tilde{v}_{n k}\right)$.

Remark 2.8. Due to the fact that the series $v(x)=\sum_{n=1}^{\infty} v_{n} x^{n-1}$ and $V(x)=\sum_{n=1}^{\infty} V_{n} x^{n-1}$ are convergent for all $|x|<1$, the series below are also convergent:
$q(x)=\frac{s(x)}{v(x)}=\frac{S(x)}{V(x)}, \quad q(x)=\sum_{n=1}^{\infty} q_{n} x^{n-1}$,
$r(x)=\frac{v(x)}{s(x)}=\frac{V(x)}{S(x)}, \quad r(x)=\sum_{n=1}^{\infty} r_{n} x^{n-1}$.
Theorem 2.9. $\left(N, s_{n}\right) \subseteq(\tilde{V})$ if and only if there is $T>0$ such that for every $n \quad\left|q_{1}\right| S_{n}+\left|q_{2}\right| S_{n-1}+\ldots+\left|q_{n}\right| S_{1} \leq T . V_{n}$ and $\lim _{n \rightarrow \infty} \frac{q_{n}}{V_{n}}=0$.

Proof. Let $\left(k_{n}\right)$ and $\left(h_{n}\right)$ be the (N, s) - transformation and (\tilde{V}) - transformation of a real valued sequence $\left(p_{n}\right)$. Then, we get
$\sum_{n=1}^{\infty} V_{n} h_{n} x^{n-1}=\sum_{n=1}^{\infty} V_{n} \frac{\left(v_{n} p_{1}+v_{n-1} p_{2}+\ldots+v_{1} p_{n}\right)}{V_{n}} x^{n-1}$
$=\left(v_{1} p_{1}\right) x^{0}+\left(v_{2} p_{1}+v_{1} p_{2}\right) x^{1}+\left(v_{3} p_{1}+v_{2} p_{2}+v_{1} p_{3}\right) x^{2}+\ldots$
$+\left(v_{n} p_{1}+v_{n-1} p_{2}+\ldots+v_{1} p_{n}\right) x^{n-1}+\ldots$
$=p_{1}\left(v_{1} x^{0}+v_{2} x^{1}+v_{3} x^{2}+\ldots\right)+p_{2}\left(v_{1} x+v_{2} x^{2}+v_{3} x^{3}+\ldots\right)$
$+p_{3}\left(v_{1} x^{2}+v_{2} x^{3}+v_{3} x^{4}+\ldots\right)+\ldots+p_{n}\left(v_{1} x^{n-1}\right)+\ldots$
$=p_{1} x^{0}\left(v_{1} x^{0}+v_{2} x^{1}+v_{3} x^{2}+\ldots+v_{n} x^{n-1}\right)+p_{2} x^{1}\left(v_{1} x^{0}+v_{2} x^{1}+v_{3} x^{2}+\ldots+v_{n-1} x^{n-2}\right)$
$+\ldots+p_{n} x^{n-1}\left(v_{1} x^{0}\right)+\ldots$
$=\left(\sum_{n=1}^{\infty} p_{n} x^{n-1}\right)\left(\sum_{n=1}^{\infty} v_{n} x^{n-1}\right)=p(x) v(x)$.
In a similar way, we also have

$$
\begin{equation*}
\sum_{n=1}^{\infty} S_{n} k_{n} x^{n-1}=p(x) s(x) \tag{11}
\end{equation*}
$$

Now, from the hypothesis, we know that $v(x)=q(x) s(x)$ and $v(x) p(x)=q(x) s(x) p(x)$.
If we consider (17), (18) and the Cauchy product of series, then we find $\sum_{n=1}^{\infty} V_{n} h_{n} x^{n-1}=\sum_{n=1}^{\infty} \sum_{m=1}^{n} q_{n-m+1} S_{m} k_{m} x^{n-1}$ and so for all $n \in \mathbb{N}$,
$V_{n} h_{n}=q_{n} S_{1} k_{1}+q_{n-1} S_{2} k_{2}+\ldots+q_{1} S_{n} k_{n}$. Thus, $h_{n}=\sum_{n=1}^{\infty} b_{n n} k_{m}$ and $b_{n m}=\left\{\begin{array}{ll}\frac{q_{n-m+1} S_{m}}{V_{n}}, & m \leq n \\ 0, & m>n\end{array}\right.$. The matrix $b_{n m}$ is regular, in truth
$\lim _{n \rightarrow \infty} b_{n m}=\lim _{n \rightarrow \infty} \frac{q_{n-m+1} S_{m}}{V_{n}}=\lim _{n \rightarrow \infty} \frac{q_{n-m+1} S_{m}}{V_{n-m+1}}=0$,
$\sum_{m=1}^{\infty}\left|b_{n m}\right|=\frac{\left|q_{1}\right| S_{n}+\ldots+\left|q_{n}\right| S_{1}}{V_{n}} \leq T$,
$\lim _{n \rightarrow \infty} \sum_{n=1}^{m} b_{n m}=\frac{q_{1} S_{n}+\ldots+q_{n} S_{1}}{V_{n}}=\frac{V_{n}}{V_{n}}=1$.
Therefore, the proof of sufficient condition is completed. The proof of necessary condition can be done by taking advantage of the specifications in the expression of theorem.

Definition 2.10. Let $\beta=\left(\beta_{n}\right)$ be a strictly increasing sequence of positive integers. Let us define the V_{β} - transformation of a sequence $x=\left(x_{n}\right)$ as follows:
$z_{n}=\frac{2}{v_{\beta(n)+2}+v_{\beta(n)}-6} \sum_{k=1}^{\beta(n)} v_{k} x_{k}$.

Litlle o notation, also called Landau's symbol is usually used in mathematics. Informally, $f(t)=o(g(t))$ is supposed to mean that f grows much slower than g and it is insignificant in comparison. Formally, we write $f(t)=o(g(t))$ if and only if for every $T>0$ there exists a real number N such that for all $t>N$ we get $|f(t)|<T|g(t)|$ and if $g(t) \neq 0$, this is equivalent to $\lim _{t \rightarrow \infty} \frac{f(t)}{g(t)}=0$.

Theorem 2.11. Let $\beta=\{\beta(n)\}$ and $\gamma=\{\gamma(n)\}$ be a strictly increasing sequences of natural number. Then, V_{β} is equivalent to V_{γ} on ℓ_{∞} if $\lim _{n \rightarrow \infty} \frac{v_{\beta(n)+2}+v_{\beta(n)}-6}{v_{\gamma(n)+2}+v_{\gamma(n)}-6}=1$.

Proof. Let $x=x(n)$ be a bounded sequence and $T(n)=\max \{\beta(n), \gamma(n)\}, t(n)=\min \{\beta(n), \gamma(n)\}$. Then, we have for any n

$$
\left|\left(v_{\beta} x\right)_{n}-\left(v_{\gamma} x\right)_{n}\right|=\left|\frac{2}{v_{\beta(n)+2}+v_{\beta(n)}-6} \sum_{k=1}^{\beta(n)} v_{k} x_{k}-\frac{2}{v_{\gamma(n)+2}+v_{\gamma(n)}-6} \sum_{k=1}^{\gamma(n)} v_{k} x_{k}\right|
$$

$$
=\left|\frac{2}{v_{T(n)+2}+v_{T(n)}-6} \sum_{k=1}^{T(n)} v_{k} x_{k}-\frac{2}{v_{t(n)+2}+v_{t(n)}-6} \sum_{k=1}^{(n n)} v_{k} x_{k}\right|
$$

$$
=\left|\frac{2}{v_{T(n)+2}+v_{T(n)}-6} \sum_{k=1}^{\prime(n)} v_{k} x_{k}+\frac{2}{v_{T(n)+2}+v_{T(n)}-6} \sum_{k=(n)+1}^{T_{k}(n)} v_{k} x_{k}-\frac{2}{v_{t(n)+2}+v_{t(n)}-6} \sum_{k=1}^{\prime(n)} v_{k} x_{k}\right|
$$

$$
=\left|\sum_{k=1}^{f_{k}^{(n)}} v_{k} x_{k}\left(\frac{2}{v_{T(n)+2}+v_{T(n)}-6}-\frac{2}{v_{t(n)+2}+v_{t(n)}-6}\right)+\frac{2}{v_{T(n)+2}+v_{T(n)}-6} \sum_{k=(n(n)+1}^{T_{k}(n)} v_{k} x_{k}\right|
$$

$$
\leq\|x\|_{\infty}\left(\sum_{k=1}^{t(n)} v_{k}\left|\frac{2\left(v_{t(n)+2}+v_{t(n)}-v_{T(n)+2}-v_{T(n)}\right)}{\left.\mid v_{T(n)+2}+v_{T(n)}-6\right)\left(v_{(n)+2}+v_{t(n)}-6\right)}\right|+\sum_{k=(n)+1}^{T(n)} v_{k}\left|\frac{2}{v_{T(n)+2}+v_{T(n)}-6 \mid}\right|\right)
$$

$$
\leq\|x\|_{\infty}\left(\frac{\left(v_{(n)+2}+v_{t(n)}-v_{T(n)+2}-v_{T(n)}\right)\left(v_{((n)+2}+v_{t(n)}-6\right)}{\left(v_{T(n)+2}+v_{T(n)}-6\right)\left(v_{((n)+2}+v_{t(n)}-6\right)}+\frac{v_{T(n)+2}+v_{T(n)}-v_{t(n)+2}-v_{t(n)}}{v_{T(n)+2}+v_{T(n)}-6}\right)
$$

$$
\leq 2\|x\|_{\infty}\left(\frac{\left(v_{T(n)+2}+v_{T(n)}-6\right)-\left(v_{(t)+2}+v_{t(n)}-6\right)}{v_{T(n)+2}+v_{T(n)}-6}\right)
$$

$$
\leq 2\|x\|_{\infty}\left(1-\frac{v_{t(n)+2}+v_{t(n)}-6}{v_{T(n)+2}+v_{T(n)}-6}\right)=o(1)
$$

since $\quad \lim _{n \rightarrow \infty} \frac{v_{\beta(n)+2}+v_{\beta(n)}-6}{v_{\gamma(n)+2}+v_{\gamma(n)}-6}=1$ and $\lim _{n \rightarrow \infty} \frac{v_{t(n)+2}+v_{t(n)}-6}{v_{T(n)+2}+v_{T(n)}-6}=1$.
Therefore, if x is V_{β} - summable to L, then we obtain
$0 \leq\left|\left(V_{\gamma} x\right)_{n}-L\right| \leq\left|\left(V_{\gamma} x\right)_{n}-\left(V_{\beta} x\right)_{n}\right|+\left|\left(V_{\beta} x\right)_{n}-L\right|=o(1)+o(1)=o(1)$ and in a similar way, , if x is V_{γ} - summable to L, then we obtain
$0 \leq\left|\left(V_{\beta} x\right)_{n}-L\right| \leq\left|\left(V_{\beta} x\right)_{n}-\left(V_{\gamma} x\right)_{n}\right|+\left|\left(V_{\gamma} x\right)_{n}-L\right|=o(1)+o(1)=o(1)$.
Theorem 2.12. Cesaro matrix $C_{n k}$ is stronger than TribonacciLucas matrix $V=\left(v_{n k}\right)$.

Proof. From Theorem 1.5, if we take $B=V$ (Tribonacci-Lucas matrix) and $A=C$ (Cesaro matrix), then we find

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\frac{2 n v_{k}}{v_{n+2}+v_{n}-6}-\frac{2 n v_{k+1}}{v_{n+2}+v_{n}-6}\right| & =\sum_{k=1}^{n} \frac{2 n}{v_{n+2}+v_{n}-6}\left(v_{k}-v_{k+1}\right) \\
& =\frac{2 n}{v_{n+2}+v_{n}-6} \sum_{k=1}^{n}\left(v_{k}-v_{k+1}\right) .
\end{aligned}
$$

Since the inequality $2 n \leq v_{n+2}+v_{n}-6$ holds for all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \frac{2 n}{v_{n+2}+v_{n}-6} \sum_{k=1}^{n}\left(v_{k}-v_{k+1}\right) \leq \frac{v_{n+2}+v_{n}-6}{v_{n+2}+v_{n}-6} \sum_{k=1}^{n}\left(v_{k}-v_{k+1}\right) \\
& \leq v_{1}-v_{2}+v_{2}-v_{3}+v_{3}-v_{4}+\ldots+v_{n}-v_{n+1} \leq 1-v_{n+1}<1 .
\end{aligned}
$$

Consequently, we obtain $V \subset C$ and the proof is completed.
In general, the converse of this theorem is not true. Indeed, for the sequence $x_{n}=\frac{(-1)^{n}}{n},\left(C_{n} x\right)=\frac{1}{n} \sum_{k=1}^{n} \frac{(-1)^{k}}{k}$ is convergent but the $\quad V-$ transformation of $\left(x_{n}\right)$, that is $\left(V_{n} x\right)=\frac{2}{v_{n+2}+v_{n}-6} \sum_{k=1}^{n} v_{k} \frac{(-1)^{k}}{k}$ is not convergent.

3. Summary and Conclusions

In our study, a new regular matrix was first defined by using the well-known sequence of integer number called TribonacciLucas. Then, we compared the Tribonacci-Lucas matrix with the other summability matrices such as Nörlund mean, Riesz mean and Cesaro mean and also investigated the relation between these matrices. Since the matrix $V=\left(v_{n k}\right)$ is regular, the sequence $\left(V_{n} x\right)$ is convergent for a sequence $\left(x_{n}\right)$. So, for the matrix $V=\left(v_{n k}\right)$, both statistical convergence and the studies with regular matrices can be investigated.

References

[1] Feinberg, M., 1963. Fibonacci-Tribonacci. The Fibonacci Quarterly, 1 (3), 70-74.
[2] Catalani, M., 2002. Identities for Tribonacci-related Sequences, Cornell University Library, arXiv:0209179.
[3] Frontczak, R., 2018. Sums of Tribonacci and TribonacciLucas Numbers, International Journal of Mathematical Analysis, 12 (1), 19-24.
[4] Kılıç, E., 2008. Tribonacci Sequences with Certain Indices and Their Sums, Ars Combinatoria, 86, 13-22.
[5] Kara, E.E., and Başarır, M., 2012. An Application of Fibonacci Numbers into Infinite Toeplitz Matrices, Caspian Journal of Mathematical Sciences, 1 (1), 43-47.
[6] Karakaş, M., and Karakaş, A.M., 2017. New Banach Sequence Spaces That is Defined By The Aid of Lucas

Numbers, Iğdır University Journal of the Institute of Science and Technology, 7 (4), 103-111.
[7] Karakaş, M., and Karakaş, A.M., 2018. A Study on Lucas Difference Sequence Spaces $l_{p}(\hat{E}(r, s))$ and $l_{\infty}(\hat{E}(r, s))$, Maejo International Journal of Science and Technology, 12 (1), 70-78.
[8] Yaying, T., Hazarika, B., and Mohiuddine, S.A., 2021. On Difference Sequence Spaces of Fractional Order Involving Padovan Numbers, Asian-European Journal of Mathematics, 14 (6), 1-24.
[9] Yaying, T., and Hazarika, B., 2020. On Sequence Spaces Defined by the Domain of a Regular Tribonacci Matrix, Mathematica Slovaca, 70 (3), 697-706.
[10] Ercan, S., and Bektaş, Ç., 2017. Some Topological and Geometric Properties of a New BK-space Derived by Using Regular Matrix of Fibonacci Numbers, Linear and Multilinear Algebra, 65 (5), 909-921.
[11] Petersen, G.M., 1966. Regular Matrix Transformations. McGraw Hill Publishing Company Limited.
[12] Başar, F., 2011. Summability Theory and Its Applications. Bentham Science Publishers.
[13] Armitage, D.H., and Maddox, I.J., 1989. A New Type of Cesaro Mean, Analysis, 9, 195-204.
[14] Küçükaslan, M., and Aris, B., 2019. Sequence Spaces Defined by Fibonacci Matrix, General Letters in Mathematics, 6 (2), 45-60.

[^0]: * Corresponding author. Tel.: +0 434222 0020; fax: +0 4342229143

 E-mail address: mkarakas@beu.edu.tr
 ORCID :0000-0002-5174-0282(M. Karakaş)

