Journal of Agricultural Sciences (Tarim Bilimleri Dergisi)

2023, 29 (2): 395-403

Journal of Agricultural Sciences (Tarim Bilimleri Dergisi)

> J Agr Sci-Tarim Bili €-ISSN: 2148-9297

jas.ankara.edu.tr

DOI: 10.15832/ankutbd.970525

A Meta-analysis of Bentonite Efficacy on Performance, Carcass Yield, Giblet, and Blood Constituents of Broiler Fed Contaminated Aflatoxin

Arif DARMAWAN^{a,b,c*}, Anuraga JAYANEGARA^{b,e}, Ergin OZTURK^a

^aDepartment of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey ^bDepartment of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia ^cAnimal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor, Indonesia

ARTICLE INFO

Research Article Corresponding Author: Arif DARMAWAN, E-mail: arifdarmawan@apps.ipb.ac.id Received: 13 Jul 2021 / Revised: 02 Aug 2022 / Accepted: 03 Aug 2022 / Online: 25 Mar 2023

Cite this article

DARMAWAN A, JAYANEGARA A, OZTURK E (2023). A Meta-analysis of Bentonite Efficacy on Performance, Carcass Yield, Giblet, and Blood Constituents of Broiler Fed Contaminated Aflatoxin. *Journal of Agricultural Sciences (Tarim Bilimleri Dergisi)*, 29(2):395-403. DOI: 10.15832/ankutbd.970525

ABSTRACT

Aflatoxins can easily grow and develop in many feed ingredients and influence the risk of several animal chronic diseases. The present study aimed to evaluate the effect of bentonite inclusion on performances, carcass yield, giblet, and blood constituents of broiler-fed contaminated aflatoxin through a metaanalytical approach. A database was developed based on scientific publications that were searched using several search tools such as Science Direct, PubMed, Scopus, and Google Scholar with "bentonite", "clay", "montmorillonite", "aflatoxin" and "broiler" as keywords. A total of 31 studies were retrieved and included in the analysis. Data analysis was based on the mixed model in which dietary bentonite inclusion was treated as the fixed effect and different studies were considered as random effects. Bentonite used were sodium bentonite, calcium bentonite, and montmorillonite form with levels ranging from 0 to 5%. Meanwhile, aflatoxin B1 levels in the diet ranged from 0 to 5 mg/kg. In this study, body weight gain, feed intake, and feed efficiency showed a linear increase (p<0.001) in all phases. The mortality rate linearly decreased (p<0.05) in the cumulative. Bentonite inclusion linearly increased (p<0.001) the carcass, breast, leg, bursa of Fabricius, and gizzard weight proportion. The percentage of kidney, liver, heart, pancreas, uric acid, and gamma-glutamyltransferase linearly decreased (p<0.001) by increasing bentonite levels. Dietary bentonite linearly increased (p<0.001) total protein, albumin, aspartate aminotransferase, calcium, glycogen, globulin, and hemoglobin (p<0.05). It was concluded that bentonites have the ability to eliminate the detrimental effects of aflatoxin, which may increase the broiler performance, carcass yield and prevent the change in abnormal giblet weight. For effectiveness and animal safety, the EFSA recommends using a maximum of 2% bentonite in the feed.

Keywords: Aflatoxin, Bentonite, Body weight gain, Feed efficiency, Mixed model, Montmorillonite

1. Introduction

Aflatoxins are secondary metabolites produced by *Aspergillus* species that can easily grow and develop in many feed ingredients and influence the risk of several animal chronic diseases. Aflatoxin B1 is the most toxic among the aflatoxins types such as aflatoxin B2, aflatoxin G1, and aflatoxin G2 (Manafi 2012). Acute aflatoxicosis in broilers occurs in excessive and long-term consumption of aflatoxin, and it has effects such as fatigue, anorexia, anemia, bleeding, respiratory distress, pubescence, bloody diarrhea, and high mortality in poultry (Mohamadi & Alizadeh 2010). In low levels and long-term consumption, aflatoxin causes poor performance in poultry and a decrease in egg production, feed consumption, and egg weight (Nasaruddin et al. 2021). In the poultry industry, aflatoxins cause serious economic losses due to these negative effects (Bryden 2012). Therefore, effective methods are urgently needed for the detoxification of feeds containing aflatoxin.

For this purpose, some adsorbents are used in the poultry diet to reduce their absorption from the digestive system by binding aflatoxin. Some adsorbents have been tested *in vitro* as well as *in vivo*, including bentonites. The main advantages of using bentonite as an adsorbent in the feed are its affordability, safety, and convenience. Bentonite belongs to the smectite family, which is mostly composed of montmorillonite clay (Pouraboulghasem et al. 2016). Bentonite primarily contains sodium montmorillonite or calcium montmorillonite,

which sodium montmorillonite can absorb huge amounts of water and has greater swelling potential than calcium montmorillonite (Park et al. 2016). It has been reported that bentonite has been found effective in counteracting mycotoxins (Jaynes & Zartman 2011), and improves broiler weight gain (Ani et al. 2014) and egg production (Darmawan & Ozturk 2022). Dietary bentonite also increased feed efficiency but did not affect blood constituents and carcass yield (Khanedar et al. 2013). However, a meta-analysis study that can describe quantitatively summarize the effectiveness of dietary bentonite on broiler has not been provided yet. Therefore, our study aimed to evaluate the bentonite influence on performances, carcass yield, percentage of giblet, and blood constituents of broiler-fed aflatoxin-contaminated feed using data from published articles in a meta-analysis study. It was hypothesized that bentonite would eliminate the negative effects of aflatoxin by binding the mycotoxin in the digestive tract and it would improve broiler performance.

2. Material and Methods

2.1. Development of the database

The journal's search engines (Web of Science, Science Direct, Scopus, and Pub Med) were used to find articles that discussed the different dosages used of bentonite in broiler diets (Table 1). "Bentonite", "clay", "montmorillonite", "aflatoxin", and "broiler" were used as keywords. The criteria article used to be included into the database were: (a) conducting *in vivo* trials on broiler chicken, (b) adding bentonite to basal diets, (c) containing aflatoxin as positive control and/or without aflatoxin as negative control treatments (d) reporting broiler performances, carcass yield, percentage of giblet, blood parameter, (e) the data were not presented in the graph, and (f) articles in English. A total of 100 studies were found from the electronic database. Thus, the studies were screened based on their title and abstract, with 32 deleted related to unsuitable articles such as duplicate articles, review articles, data in graph form, and articles not written in English. Finally, 31 studies were fully reviewed and included in the analysis.

Authors	Birds (n)	Bentonite Form	Dosage (%)	Aflatoxin Level (mg/kg)	Period (day)
Tauqir et al. (2001)	240	Sodium bentonite	0-4.5	0	1-42
Rosa et al. (2001)	100	Sodium bentonite	0-0.3	0-5	30-52
Xia et al. (2004)	240	Montmorillonite	0-0.15	0	1-49
Miazzo et al. (2005)	160	Sodium bentonite	0-0.3	0-2.5	23-50
Thalij (2005)	100	Sodium bentonite	0-0.5	0-2.5	1-21
Bailey et al. (2006)	900	Montmorillonite	0-0.5	0-4	1-42
Shi et al. (2006)	160	Montmorillonite	0-0.3	0-0.1	1-42
Pasha et al. (2007)	300	Sodium bentonite	0-0.1	0-0.1	1-42
Pasha et al. (2008)	300	Sodium bentonite	0-1	0	1-42
Kermanshahi et al. (2009)	288	Sodium bentonite	0-1	0-0.5	1-42
Ghahri et al. (2010)	500	Sodium bentonite	0-0.5	0-0.5	1-35
Katouli et al. (2010)	448	Bentonite	0-3	0	1-42
Damiri et al. (2010)	288	Sodium bentonite	0-3	0	1-42
Manafi (2012)	336	Sodium bentonite	0-0.75	0-0.5	1-35
Damiri et al. (2012)	288	Sodium bentonite	0-3.75	0	1-42
Safaeikatouli et al. (2012)	448	Sodium bentonite	0-3	0	1-42
Indresh et al. (2013)	360	High-grade bentonite	0-0.75	0-0.5	1-35
Khanedar et al. (2013)	260	Sodium bentonite	0-1.5	0	1-42
Eckhardt et al. (2014)	1056	Ca Montmorillonite	0-0.5	0-3	1-42
Pappas et al. (2014)	300	Bentonite	0-1	0.02	1-42
Ani et al. (2014)	360	Bentonite	0-5	0	1-28
Dos Anjos et al. (2015)	250	Bentonite	0-0.75	0-2	1-21
Azizpour & Moghadam (2010)	300	Sodium bentonite	0-3	0-0.2	1-42
Malekinejad et al. (2015)	224	Bentonite	0-0.5	0-0.5	1-24

Table 1- Description of the studies included in the database

Table 1- Continued									
Authors	Birds (n)		Dosage (%)	Aflatoxin Level (mg/kg)	Period (day)				
Shannon et al. (2017)	180	Natural bentonite, Concentrated bentonite	0-0.5	0-2	1-21				
Attar et al. (2017)	540	Sodium bentonite	0-1.5	0	25-42				
Rafiu et al. (2019)	180	Sodium bentonite	0-0.15	Unknown	1-56				
Basseboua et al. (2018)	420	Sodium bentonite	0-5	0	1-50				
Abadi et al. (2019)	256	Sodium bentonite	0-3	0	1-42				
Attar et al. (2019)	540	Sodium bentonite	0-1.5	0	11-42				
Saleemi et al. (2020)	125	Bentonite	0-0.3	0-0.3	1-42				
Mgbeahuruike et al. (2018)	80	Sodium bentonite	0-0.2	0-0.12	1-56				

Table 1- Continued

2.2. Data extraction and description

The variables used in the database were average daily gain (ADG), feed conversion ratio (FCR), daily feed intake (DFI), mortality, carcass yield, breast weight, leg weight, giblet weight (liver, heart, kidney, gizzard, pancreas, bursa of Fabricius), and blood constituents (albumin, total protein, uric acid, calcium, gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST) glycogen, globulin, hemoglobin, packed cell value (PCV). Microbial population and intestinal shape were excluded in the database due to the small number of studies that provided the related parameter. All measured data were converted into the same units for statistical analysis and the dosage of bentonite was expressed in percentage (%) of diets. The data on broiler performances were divided into the starter phase, the final phase, and the cumulative. The database used in meta-analysis and descriptive statistics are presented in Table 1 and Table 2. The database was published between 2001 and 2020 with a total of 10 527 broiler chickens. Bentonite used were sodium bentonite, calcium bentonite, and montmorillonite form with levels ranging from 0 (control) to 5 %. Meanwhile, aflatoxin B1 levels in the diet ranged from 0 to 5 mg/kg. The minimum period of the evaluated study lasted 21 days, while the maximum period lasted 50 days. The broiler strains used were Cobb 500, Ross 308, Arbor Acres, Faobro, and Vencobb (Table 1).

					Parameter of	estimates			Model stati	stics	
Parameter	Unit	n	Model	Intercept	SE intercept	Slope	SE slope	p-value	RMSE	AIC	
Starter phase											
ADG	g/bird/day	56	L	30.16	1.66	0.7115	0.554	< 0.0001	9.642	351.0	
DFI	g/bird/day	56	L	47.13	2.57	1.1235	0.703	< 0.0001	12.114	380.5	
FCR		56	L	1.57	0.06	0.001	0.009	< 0.0001	0.156	-74.5	
Mortality	%	10	L	3.83	2.66	-1.0158	4.021	0.3864	8.828	51.2	
Finisher phase											
ADG	g/bird/day	70	L	59.6014	5.1638	1.2407	0.763	< 0.0001	15.221	522.0	
DFI	g/bird/day	68	L	111.67	10.2945	2.4961	1.265	< 0.0001	25.243	596.0	
FCR		70	L	2.0423	0.1008	-0.01552	0.014	< 0.0001	0.280	-19.6	
Cumulative											
ADG	g/bird/day	86	L	44.0454	1.9219	1.3514	0.666	< 0.0001	13.859	601.2	
DFI	g/bird/day	86	L	90.2034	4.4378	1.6860	1.145	< 0.0001	23.489	700.9	
FCR		86	L	2.1092	0.1104	-0.02356	0.0117	< 0.0001	0.236	-40.2	
Mortality	%	30	L	11.8190	3.4268	-1.1562	1.605	0.025	20.410	222.7	

Table 2- Regression equations for the effect of bentonite dose on broiler performances

n: Number of treatments, RMSE: Root mean square error, SE: Standard error, AIC: Akaike information criterion, L: Linear

2.3. Statistical analysis

The data in the database were analyzed statistically in a meta-analysis using a mixed model methodology (St-Pierre 2001). The level of bentonites was fixed effects while the studies were random effects. The procedure for the mixed model was as follows:

Yij= B0+ B1Xij+ si+ eij

where Yij was the dependent variable, B0 was overall intercepted across all experiments (fixed effect), B1 was the linear regression coefficient of Y on X, Xij was the value of the continuous predictor variable (bentonite level), si was a random effect of experiment i, and eij was the unexplained residual error. The statistical analysis was conducted using SAS software version 9.1 and the p-value 0.05 criteria to assess the significant effect of each variable.

3. Results and Discussion

3.1. Performances

The regression equations between the level of bentonite and broiler performances are presented in Table 2. In general, our meta-analysis study shows that dietary bentonite supplementation indicates positive effects on broiler performances. ADG and DFI showed a linear increase (p<0.001) and FCR represented a linear decrease (p<0.001) in all phases. A higher bentonite level was correlated with an increase in ADG (Figure 1) with linear equation Y= 44.05+1.351X and a decrease in FCR with linear equation Y= 2.11–0.024X (Figure 2). The mortality rate linearly decreased (p<0.05) in cumulative by increasing bentonite level.

Figure 1- Relationship between bentonite levels and ADG cumulative based on the results of the meta-analysis. Equation: ADG cumulative (gram/bird/day) = 44.05+1.351×bentonite (%) (n=86; p<0.0001; RMSE=13.86)

Figure 2- Relationship between bentonite levels and FCR cumulative (FI: ADG) based on the results of the meta-analysis. Equation: FCR cumulative =2.11-0.024 × bentonite (%) (n=86; p<0.0001; RMSE=0.24)

The improvement in ADG, DFI, and feed efficiency indicates that adding bentonite to the diet improves nutrient utilization and also suggests that bentonite has a beneficial effect on chickens fed an aflatoxin-contaminated diet. This result was supported by previous studies that used calcium bentonite and sodium bentonite (Khanedar et al. 2013; Besseboua et al. 2018). The positive impact of dietary bentonite could be attributed to the effect of bentonite in improving the digesta retention time, water absorption, and digestive enzymes in the intestine (Damiri et al. 2012; Khalifeh et al. 2012), nutrient digestibility (Pasha et al. 2008) and lowering in total counts of pathogenic bacteria (Shehata & Abd El-Shafi 2011) hence improving broiler performance. Moreover, bentonite improved intestine health and nutrient absorption by increasing villus height and surface area of broilers and enhancing regeneration of the intestinal epithelium (Wu et al. 2013; Besseboua et al. 2018).

Additionally, the efficacy of bentonite is related to its high mineral content including macro minerals (calcium, sodium, magnesium) and micro minerals (iodine, selenium, iron, zinc) which are needed to improve the enzymes activity and hormones to support growth (Smith et al. 2018). The presence of silicate minerals activity, which enhanced the transit time of feed in digestive tract and nutrient metabolism, might be responsible for performance improvement (Safaeikatouli et al. 2012). Suzanne et al. (2017) stated that clay groups have anionic microstructures in which most of the alkali metal ions and trace elements can be used as sources of animal minerals.

Another mechanism of bentonite in increasing the performance of broilers was through its ability to absorb aflatoxins B1 (Eckhardt et al. 2014; Mgbeahuruike et al. 2018). The previous study revealed that high doses of aflatoxin lead to acute clinical symptoms, increase liver damage, and decrease immune system. In broilers, aflatoxin was able to eliminate several enzymes activity involved in protein, starch, and lipids digestion, resulting in lower body weight increase and feed efficiency (Dos Anjos et al. 2015). The mechanisms of mycotoxins binding by bentonite had been widely investigated including ion interactions, electron donors, selective chemisorption, hydrogen and furan rings bonds as well as the interaction between carbonyl groups and exchange cations (Wang et al. 2018; Deng et al. 2010).

3.2. Percentage of carcass yield and giblet weight

The regression equations between the level of bentonite, carcass yield, and giblet percentage are presented in Table 3. The positive effects of bentonite addition in diet with a linear pattern (p < 0.001) resulted in increasing carcass weight percentage, breast weight percentage, leg, bursa of Fabricius, and gizzard. Meanwhile, the percentage of kidney, liver, heart, and pancreas linearly decreased (p<0.001) by increasing bentonite level. The increase in the carcass yield revealed the efficacy of bentonite in improving digestive enzymes and nutrient digestibility in the intestine as well as protecting the giblet against aflatoxins, as result, it was able to work normally during digestion, absorption, and metabolism. The efficacy of bentonite may also be recognized in the reduction of liver and kidney size that is susceptible to aflatoxins. This argument is confirmed by Dos Anjos et al. (2015) who claimed that the inclusion of bentonite to aflatoxin B1 diet reduced the prevalence of histological lesions, the proportion of kidney and liver weights of chicks. Aflatoxins are recognized as irritating to the digestive tract and causing intestinal dysfunction, increasing the relative weights of giblets, including liver, kidneys, heart, bursa fabricius, and pancreas (Valchev et al. 2013). Additionally, histological results revealed hepatocellular degeneration lesions in the livers of aflatoxin-exposed birds, as well as vacuolar degeneration and significant fat accumulation caused by decreased lipid transport rather than enhanced lipid biosynthesis (Cruz et al. 2019). In birds, the kidney is involved in the clearance of hazardous metabolic waste products from the blood as well as the preservation of biochemical homeostasis. Because of these activities, the kidney is the primary organ in poultry that accumulates Aflatoxin B1. Several studies have found that Aflatoxin B1 induces renal dysfunction, which might explain the lower 1, 25-dihydroxycalciferol level, calcium, and phosphorus (Gholami-Ahangaran et al. 2016; Fouad et al. 2019). This statement could also explain why the calcium content of the blood increased with bentonite inclusion in this study.

									Parameter estimates					
Parameter	Unit	n	Model	Intercept	SE intercept	Slope	SE slope	p-value	RMSE	AIC				
Carcass	%	24	L	60.94	4.24	0.594	0.747	< 0.0001	3.376	115.1				
Breast	%	22	L	21.81	2.91	0.036	0.294	< 0.0001	2.162	84.7				
Leg	%	22	L	23.81	3.35	0.116	0.269	< 0.0001	1.972	82.4				
Bursa of Fabricius	%	34	L	0.15	0.04	0.008	0.009	< 0.0001	0.051	-104.9				
Gizzard	%	45	L	2.29	0.26	0.028	0.039	< 0.0001	0.329	25.2				
Heart	%	24	L	0.59	0.03	-0.009	0.026	0.0354	0.143	-34.2				
Kidney	%	52	L	0.75	0.08	-0.098	0.098	< 0.0001	0.446	17.2				
Liver	%	80	L	3.36	0.35	-0.172	0.197	< 0.0001	2.353	287.0				
Pancreas	%	26	L	0.37	0.049	-0.014	0.013	< 0.0001	0.063	-68.1				

Table 3- Regression equations for the effect of bentonite dose on giblet and carcass yield

n: Number of treatments, RMSE: Root mean square error, SE: Standard error, AIC: Akaike information criterion, L: Linear

3.3. Blood constituents

The regression equations between the level of bentonite and metabolites parameters of broiler chickens are presented in Table 4. The increase of dietary bentonite increased total protein, albumin, hemoglobin, aspartate aminotransferase, calcium, glycogen, and globulin (linear pattern; p<0.001). There was a linear decrease (p<0.001) in uric acid and gamma-glutamyltransferase. Our study shows that the indication of bentonite inclusion in the broiler diet increases the absorption of aflatoxin in the digestive system, which inhibits the decrease of blood serum albumin, globulin, hemoglobin, PCV, and total protein when using a contaminated diet. In previous studies, the effect of bentonite inclusion in the broiler chicken diet increased albumin, total protein, and globulin in the serum (Aghashahi 2015; Shannon et al. 2017). The efficacy of bentonite may be attributed to its composition, which is mostly in the form of adsorption montmorillonite (Pouraboulghasem et al. 2016). Montmorillonite has the ability to inhibit uric acid absorption in the gut by increasing uric acid diffusion from the bloodstream to the intestine (Ma et al. 2009). The addition of bentonite to the aflatoxin diet was also beneficial in avoiding alterations in GGT enzyme concentrations that were highly correlated with the damage of the liver as the main target organ. As a result, the decrease in GGT suggested that bentonite alleviated the negative effects of aflatoxin (Shannon et al. 2017). The low proportion of PCV might be due to aflatoxin-induced hemolysis caused by plasma membrane lipid peroxidation (Umar et al. 2012). Meanwhile, the decrease in hemoglobin concentration during aflatoxicosis might be attributed to a combination of decreased iron absorption and hematopoiesis suppression (Abeena et al. 2015).

Table 4- Regression equations on the influence of bentonite dosage blood parameter

			Parameter estimates					Model statistics			
Parameter	Unit	n	Model	Intercept	SE intercept	Slope	SE slope	p-value	RMSE	AIC	
Albumin	g/dL	51	L	1.32	0.17	0.119	0.106	< 0.0001	0.570	49.2	
Total Protein	g/dL	51	L	2.74	0.29	0.116	0.185	< 0.0001	1.001	103.2	
Calcium	mg/dL	15	L	9.92	0.80	0.13	0.09	< 0.0001	0.54	19.0	
Uric acid	mg/dL	25	L	5.77	0.66	-0.414	0.414	0.0001	2.218	85.1	
AST	U/L	15	L	39.96	6.57	1.210	1.281	< 0.0001	6.104	85.4	
GGT	U/L	21	L	11.49	2.42	-1.891	2.288	0.0009	5.819	109.5	
Glycogen	mg/dL	14	L	224.16	17.95	24.846	20.904	< 0.0001	56.695	119.2	
Globulin	g/dL	22	L	1.69	0.41	0.069	0.144	< 0.0001	0.449	18.6	
Hemoglobin	g/dL	12	L	9.60	1.34	1.132	2.428	0.0141	2.694	48.0	
PCV	%	12	L	34.36	3.74	11.300	13.019	0.2879	14.559	77.5	

n: Number of treatments, RMSE: Root mean square error, SE: Standard error; AIC: Akaike information criterion, L: Linear

Generally, by meta-analysis, the use of bentonite benefited broiler performance in an aflatoxin-contaminated diet. Nonetheless, it should be recognized that bentonite is also able to absorb the nutritional content in animal diets including micronutrients as well as veterinary drugs (Alam & Deng 2017). Because bentonite has no specific effects on mycotoxin binders, The European Food Safety Authority (EFSA) has advised that oral veterinary drugs be evaluated in the diet containing a mycotoxin binder to ensure their safety in terms of binding to the drug components. Therefore, EFSA recommended using no more than 20 g/kg of bentonite in the diet with the composition of smectite (>70%), opal and feldspar (<10%), and calcite and quartz (4%) for effectiveness in binding aflatoxin B1 and safe for all animals (EFSA 2012).

4. Conclusion

The bentonite addition has the ability to eliminate the detrimental effects of aflatoxin which may increase the broiler performance (ADG, DFI, FCR, and mortality rate). Bentonite is also effective in improving carcass yield and preventing changes in abnormal giblet weights caused by aflatoxin. However, for effectiveness and animal safety, the EFSA recommends using a maximum of 2% bentonite in the feed.

Acknowledgment

The authors would like to express our gratefulness to YTB Scholarship from the Turkey Government for providing a Ph.D. scholarship to the first author.

Data availability: Data are available on request due to privacy or other restrictions.

Authorship Contributions: Concept: A.D., A.J., E.O., Design: A.D., A.J., E.O., Data Collection or Processing: A.D., Analysis or Interpretation: A.D., A.J., Literature Search: A.D., Writing: A.D., A.J., E.O.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

References

- Abadi M G M H, Moravej H, Shivazad M, Torshizi M A K & Kim W K (2019). Effects of feed form and particle size, and pellet binder on performance, digestive tract parameters, intestinal morphology, and cecal microflora populations in broilers. Poultry Science 98(3): 1432-1440. doi.org/10.3382/ ps/pey488
- Abeena B, George A J, Mohammed Shejir R, Nair N D & Manomohan C B (2015). Haematobiochemical changes of layer chicken in experimental aflatoxicosis. Indian Veterinary Journal 92(10): 84-86
- Aghashahi A R, Hosseinijangjo S H, Sadeghipanah H & Hosseini S A (2015). Effects of various types of bentonite (montmorillonite) on ascites-related physiologic and metabolic factors in broilers. *Iranian Journal* of *Applied Animal Science* 5(2): 423-430
- Alam S S & Deng Y (2017). Protein interference on aflatoxin B1 adsorption by smectites in corn fermentation solution. Applied Clay Science 144: 36-44. doi.org/10.1016/j.clay.2017.04.024
- Ani A O, Ogbu C C & Iloh E A (2014). Response of broiler chicks to diets containing graded levels of clay. Journal of Animal and Plant Science 24 (1): 30-34
- Attar A, Kermanshahi H & Golian A (2017). Effects of conditioning time and sodium bentonite on pellet quality, growth performance, intestinal morphology and nutrients retention in finisher broilers. British Poultry Science 59(2): 190-197. doi.org/10.1080/00071668.2017.1409422
- Attar A, Kermanshahi H, Golian A, Abbasipour A & Daneshmand A (2019). Conditioning time and sodium bentonite affect pellet quality, growth performance, nutrient retention and intestinal morphology of growing broiler chickens. British Poultry Science 60(6): 777-783. doi.org/10.1080/0 0071668.2019.1663493
- Azizpour A & Moghadam N (2015). Effects of yeast glucomannan and sodium bentonite on the toxicity of aflatoxin in broilers. Brazilian Journal of Poultry Science 17: 7-13. doi.org/10.1590/1516-635xspecialissuenutrition-poultryfeedingadditives007-014
- Bailey C A, Latimer G W, Barr A C, Wigle W L, Haq A U, Balthrop J E & Kubena L F (2006). Efficacy of montmorillonite clay (NovaSil PLUS) for protecting full-term broilers from aflatoxicosis. Journal of Applied Poultry Research 15(2): 198-206. doi.org/10.1093/japr/15.2.198
- Besseboua O, Ayad A, Hornick J L & Benbarek H (2018). Dietary effects of Algerian sodium bentonite on growth performance and biochemical parameters in broiler chickens. Cercetări Agronomice în Moldova 4(176): 108-121
- Bryden W L (2012). Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Animal Feed Science and Technology 173(1-2): 134-158. doi.org/10.1016/j.anifeedsci.2011.12.014

- Cruz B S, Patlan D H, Petrone V M, Pontin K P, Latorre J D, Beyssac E, Velasco X H, Guzman R M, Owens C, Hargis B M, Arellano R L & Isaias G T (2019). Evaluation of cellulosic polymers and curcumin to reduce aflatoxin B1 toxic effects on performance, biochemical, and immunological parameters of broiler chickens. Toxins 11(2): 121. doi.org/10.3390/toxins11020121
- Damiri H, Chaji M, Bojarpour M & Mamuei, M (2012). Effect of different sodium bentonite levels on performance, carcass traits and passage rate of broilers. Pakistan Veterinary Journal 32(2): 197-200
- Damiri H, Chaji M, Bojarpour M, Eslami M & Mamoei M (2010). The effect of sodium betonites on economic value of broiler chickens diet. Journal of Animal Veterinary Advance 9(20): 2668-26670. doi.org/10.3923/javaa.2010.2668.2670
- Darmawan A & Ozturk E (2022). The impact of bentonite feed additives on laying hens performance and egg quality: a meta analysis. Iranian Journal of Applied Animal Science 12(4): 647-653
- Deng Y, Velázquez A L B, Billes F & Dixon J B (2010). Bonding mechanisms between Aflatoxin B1 and smectite. Applied Clay Science 50(1): 92-98. doi.org/10.1016/j.clay.2010.07.008
- Dos Anjos F R, Ledoux D R, Rottinghaus G E & Chimonyo M (2015). Efficacy of Mozambican bentonite and diatomaceous earth in reducing the toxic effects of aflatoxins in chicks. World Mycotoxin Journal 9(1): 63-72. doi.org/10.3920/wmj2014.1842
- Eckhardt J C, Santurio J M, Zanette R A, Rosa A P, Scher A, Dal Pozzo M, Alves S H & Ferreiro L (2014). Efficacy of a Brazilian calcium montmorillonite against toxic effects of dietary aflatoxins on broilers reared to market weight. Brtish Poultry Science 55(2): 215-220. doi.org/10. 1080/00071668.2014.883065
- EFSA (2012). Scientific opinion on the safety and efficacy of bentonite as a technological feed additive for all species. EFSA Journal 10(7): 2787
- Fouad A M, Ruan D, El-Senousey H K, Chen W, Jiang S & Zheng C (2019). Harmful effects and control strategies of Aflatoxin B1 Produced by *Aspergillus flavus* and *Aspergillus parasiticus* strains on poultry: review. Toxins (Basel) 11(3): 176. doi.org/10.3390/toxins11030176
- Ghahri H, Habibian R & Fam M A (2010). Evaluation of the efficacy of esterified glucomannan, sodium bentonite, and humic acid to ameliorate the toxic effects of aflatoxin in broilers. Turkish Journal of Veterinary and Animal Science 34(4): 385-391. doi.org/10.3906/vet-0903-19
- Gholami-Ahangaran M, Rangsaz N & Azizi S (2016). Evaluation of turmeric (Curcuma longa) effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis. Pharmaceutical Biology 54(5): 780-787. doi.org/10.3109/13880209.2015.1080731
- Indresh H C, Devegowda G, Ruban S W & Shivakumar M C (2013). Effects of high grade bentonite on performance, organ weights and serum biochemistry during aflatoxicosis in broilers. Veterinary World 6(6): 313-317. doi.org/10.5455/vetworld.2013.313-317
- Jaynes W F & Zartman R E (2011). Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives. Toxins (Basel) 3(6): 551-565. doi.org/10.3390/toxins3060551
- Katouli M S, Boldaji F, Daster B & Hassani S (2010). Effect of different level of koaline, bentonite and zeolite on broilers performance. Journal of Biological Sciences 10(1): 58-62. doi.org/10.3923/jbs.2010.58.62
- Kermanshahi H, Hazegh A R & Afzali N (2009). Effect of sodium bentonite in broiler chickens fed diets contaminated with Aflatoxin B1. Journal of Animal and Veterinary Advance 8(8): 1631-1636
- Khalifeh M J, Mohammadabadi T, Chaji M, Salari S & Khalil M (2012). The effect of different levels of sodium bentonite on in vitro fermentation and digestibility of soybean meal. In: Proceedings of the 15th AAAP Animal Science Congress; Thammasat University, Thailand. pp. 23-27
- Khanedar F, Vakili R & Zakizadeh S (2013). Effects of two kinds of bentonite on performance, blood biochemical parameters, carcass characteristics and tibia ash of broiler chickens. Iranian Journal of Applied Animal Science 3 (3): 577-581. https://doi.org/10.1186/2055-0391-56-20
- Ma Z, Long L H, Liu J & Cao Y X (2009). Montmorillonite adsorbs uric acid and increases the excretion of uric acid from the intestinal tract in mice. Journal of Pharmacy and Pharmacology 61(11): 1499-1504. doi.org/10.1211/jpp.61.11.0009
- Malekinejad P, Afzali N, Mohammadi A & Sarir H (2015). Effects of combination of different levels sodium bentonite and *Silybum marianum* seeds on performance and carcass traits of broiler chicks fed diet contaminated with Aflatoxin B1 in starter and grower period. Journal of Applied Environmental and Biological Sciences 5(12): 269-275
- Manafi M (2012). Counteracting effect of high-grade sodium bentonite during aflatoxicosis in broilers. Journal of Agricultural Science and Technology 14(3): 539-547
- Mgbeahuruike A C, Nwoko I E, Nwaoga C T & Okorie-Kanu O (2018). Assessing the ameliorating effects of adsorbents on the health and performance of ducklings fed mold (Fungal) contaminated diets. International Journal of Plant, Animal and Environmental Sciences 10(2): 54-66
- Miazzo R, Peralta M F, Magnoli C, Salvano M, Ferrero S, Chiacchiera S M, Carvalho E C Q, Rosa C A R & Dalcero A (2005). Efficacy of sodium bentonite as a detoxifier of broiler feed contaminated with aflatoxin and fumonisin. Poultry Science 84(1): 1-8. doi.org/10.1093/ps/84.1.1
- Mohamadi H & Alizadeh M (2010). A Study of the occurrence of Aflatoxin M1 in dairy products marketed in Urimia, Iran. Journal of Agricultural Science and Technology 12(5): 579-583
- Nasaruddin N, Jinap S, Samsudin N I, Kamarulzaman N H & Sanny M (2021). Prevalence of mycotoxigenic fungi and assessment of aflatoxin contamination: a multiple case study along the integrated corn-based poultry feed supply chain in Malaysia. Journal of the Science of Food and Agriculture 101(5): 1812-1821 doi.org/10.1002/jsfa.10795
- Pappas A C, Tsiplakou E, Georgiadou M, Anagnostopoulos C, Markoglou A N, Liapis K & Zervas G (2014). Bentonite binders in the presence of mycotoxins: Results of in vitro preliminary tests and an in vivo broiler trial. Applied Clay Science 99: 48-53. doi.org/10.1016/j.clay.2014.06.009
- Park J H, Shin H J, Kim M H, Kim J S, Kang N, Lee J Y, Kim K T, Lee J I & Kim D D (2016). Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. Journal of Pharmaceutical Investigation 46(4): 363-375. doi.org/10.1007/s40005-016-0258-8

- Pasha T N, Farooq M U, Khattak F M, Jabbar M A & Khan A D (2008). Effectiveness of sodium bentonite and two commercial products as aflatoxin absorbents in diets for broiler chickens. Animal Feed Science and Technology 132(1-2): 103-110. doi.org/10.1016/j.anifeedsci.2006.03.014
- Pasha T N, Mahmood A, Khattak F M, Jabbar M A & Khan A D (2007). The effect of feed supplemented with different sodium bentonite treatments on broiler performance. Turkish Journal of Veterinary and Animal Science 32(4): 245-248
- Pouraboulghasem H, Ghorbanpour M, Shayegh R & Lotfiman S (2016). Synthesis, characterization and antimicrobial activity of alkaline ionexchanged ZnO/bentonite nanocomposites. Journal of Central South University 23: 787-792. doi.org/10.1007/s11771-016-3124-y
- Rafiu T A, Babatunde G M, Ibrahim O O K, Akanbi A O & Ojelade R A (2019). Toxin and toxin-binders affecting the performance, organs, haematology and histological characteristics of broilers fed with infected diets. International Journal of Livestock Production 10(2): 33-42. doi.org/10.5897/ ijlp2018.0536
- Rathod P, Gangadhar K, Gangane G & Bhojane N (2017). Effect of aflatoxin on haematological and biochemical alteration in broilers. International Journal of Science Environment 6(1): 824-831
- Rosa C A, Miazzo R, Magnoli C, Salvano M, Chiacchiera S M, Ferrero S, Saenz M, Carvalho E C Q & Dalcero A (2001). Evaluation of the efficacy of bentonite from the south of Argentina to ameliorate the toxic effects of aflatoxin in broilers. Poultry Science 80(2): 139-144. doi.org/10.1093/ ps/80.2.139
- Safaeikatouli M, Boldaji F, Dastar B & Hassani S (2012). The effect of dietary silicate mineral supplementation on apparent ileal digestibility of energy and protein in broiler chickens. International Journal of Agriculture and Biology 14(2): 299-302
- Saleemi M K, Ashraf K, Gul S T, Naseem M N, Sajid M S, Mohsin M, He C, Zubair M & Khan A (2020). Toxicopathological effects of feeding aflatoxins B1 in broilers and its amelioration with indigenous mycotoxin binder. Ecotoxicology and Environmental Safety187: 109712. doi. org/10.1016/j.ecoenv.2019.109712
- Shannon T A, Ledoux D R, Rottinghaus G E, Shaw D P, Daković A & Marković M (2017). The efficacy of raw and concentrated bentonite clay in reducing the toxic effects of aflatoxin in broiler chicks. Poultry Science 96(6): 1651-1658. doi.org/10.3382/ps/pew408
- Shehata S A & El-Shafi S A (2011). Effect of copper bearing Egyptian bentonite on the growth performance and intestinal microflora of rabbits. The Journal of American Science 7(11): 72-78
- Shi Y H, Xu Z R, Feng J L & Wang C Z (2006). Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Animal Feed Science and Technology 129 (1-2): 138-148. doi.org/10.1016/j.anifeedsci.2005.12.006
- Smith A D, Panickar K S, Urban Jr J F & Dawson H D (2018). Impact of micronutrients on the immune response of animals. Annual Review and Animal Biosciences 6: 227-254. doi.org/10.1146/annurev-animal-022516-022914
- St-Pierre N (2001). Integrating quantitative findings from multiple studies using mixed model methodology. Journal of Dairy Science 84(4):741-755. doi.org/10.3168/jds.S0022-0302(01)74530-4
- Suzanne C A M, Marlia M H & Jalal A K C (2017). Environmental characteristics of clay and clay-based minerals. Geology Ecology and Landscape 1(3): 155-161. doi.org/10.1080/24749508.2017.1361128
- Tauqir N A, Sultan G I & Nawaz H (2001). Effect of different levels of bentonite with varying energy levels on the performance of broilers. International Journal of Agriculture and Biology 3(1): 85-88.
- Thalij K M (2005). Efficacy of activated sodium bentonite to reduce the toxicity of aflatoxins and T-2 toxin in broiler chicks. Mesopotamia Journal of Agriculture 33(4): 29-32. doi.org/10.33899/magrj.2005.34878
- Umar S, Arshad A, Ahmad B & Arshad M (2012). Clinico biochemical and hematological changes in broilers induced by concurrent exposure to Aflatoxin B1 and Ochratoxin A. Journal of Public Health and Biological Sciences 1(3):79-85
- Valchev I, Hristov T S, Lazarov L, Kanakov D, Binev R & Nikolov Y (2013). Investigations on production traits in broiler chickens with experimental aflatoxicosis. Bulgarian Journal of Veterinary Medicine 16 (4): 271-281
- Wang G, Lian C, Xi Y, Sun Z & Zheng S (2018). Evaluation of nonionic surfactant modified montmorillonite as mycotoxins adsorbent for aflatoxin B1 and zearalenone. Journal of Colloid and Interface Science 518: 48-56. doi.org/10.1016/j.jcis.2018.02.020
- Wu Q J, Wang L C, Zhou Y M, Zhang J F & Wang T (2013). Effects of clinoptilolite and modified clinoptilolite on the growth performance, intestinal microflora, and gut parameters of broilers. Poultry Science 92(3): 684-692. doi.org/10.3382/ps.2012-02308
- Xia M S, Hu C H & Xu Z R (2004). Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poultry Science 83(11): 1868-1875. doi.org/10.1093/ps/83.11.1868

